1
|
Wang Z, Yang J, Huang T, Chen Z, Nyasulu M, Zhong Q, He H, Bian J. Genetic Analysis of the Awn Length Gene in the Rice Chromosome Segment Substitution Line CSSL29. Int J Mol Sci 2025; 26:1436. [PMID: 40003903 PMCID: PMC11855105 DOI: 10.3390/ijms26041436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Awn length is a significant agronomic trait in rice. To analyze the genetic mechanism of awn length in the chromosome segment substitution line 29 (CSSL29) derived from 9311 (recipient) into Nipponbare (NIP, donor), an F2 segregated population was constructed from 9311 (indica) and CSSL29. The population and candidate genes were analyzed using quantitative trait loci sequencing (QTL-seq), yeast two-hybrid assays, and 3 k and 10 k rice population databases. The results indicated that the awn length in the F2 segregating population followed a normal distribution, and the long-awn phenotype in CSSL29 was controlled by multiple genes. Through BSA sequencing data, a major QTL qAWN4 associated with rice awn length was identified on chromosome 4, containing the cloned gene An-2. Further investigation of the CSSL29 long-awn substitution segment revealed the presence of the awn length gene An-1, with both genes exhibiting an additive effect on the regulation of the long-awn phenotype. Yeast two-hybrid experiments confirmed no interaction between An-2 and An-1, suggesting that additive effect awn length regulation is not mediated through simple protein-to-protein binding. Population genetic analysis indicated that the An-2 allele was artificially selected during domestication but did not significantly differ between indica and japonica subspecies. These findings enhance our understanding of the genetic regulation of rice awn length and the domestication of long-awn rice, laying the groundwork for future research in this area.
Collapse
Affiliation(s)
- Zhengjie Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Jun Yang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Tao Huang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Zhihao Chen
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Mvuyeni Nyasulu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Qi Zhong
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Haohua He
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Jianmin Bian
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (Z.W.); (J.Y.); (T.H.); (Z.C.); (M.N.); (Q.Z.); (H.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| |
Collapse
|
2
|
Liao TJ, Xiong HY, Sakuma S, Duan RJ. The development of hooded awns in barley: From ectopic Kap1 expression to yield potential. Gene 2025; 934:149036. [PMID: 39447708 DOI: 10.1016/j.gene.2024.149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Awns in barley have different shapes including awnless, straight, hooded, crooked, and leafy awns. The hooded awns are characterized by an appendage of the lemma, which forms a trigonal or cap-shaped structure, and even blossoms and yields fruits on barley awn. In the lemma primordia of wild-type (straight awn), cells divide and elongate to form the straight awn. However, in the lemma primordia of KNOX3 mutant (hooded awn), cells divide at various orientations without elongating, and they form hooded awns. This phenomenon is due to the upregulation of KNOX3 expression via insertion of a tandem direct duplication of 305 bp in the intron IV. Here, we summarize the development of barley hooded awn research in the following two aspects: on the one hand, the morphology, development of hooded awns, and the expression regulation of the KNOX3 gene. The latter includes ectopic expression of the KNOX3 gene, gene interactions among awn-related genes, the regulatory relationship between class I KNOX genes and hormones, as well as the influence of abiotic stresses. On the other hand, the potential performance of hooded awns in barley for yield breeding is discussed. Hooded awns have potential application value in forage, which could compensate for the disadvantage of the long straight awn in the barley straw used for feed in modern cultivars. In addition, the hooded awn produces ectopic meristems to develop complete florets, which is an interesting question and helps to understand the development, adaptation, and evolution of plant floral organs.
Collapse
Affiliation(s)
- Tian-Jiang Liao
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hui-Yan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, 680-8553, Tottori, Japan
| | - Rui-Jun Duan
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China.
| |
Collapse
|
3
|
Richardson A, Jones H, Bartlett M. Grass awns: Morphological diversity arising from developmental constraint. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102663. [PMID: 39549684 DOI: 10.1016/j.pbi.2024.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Grasses dominate agriculturally and ecologically. One hypothesized driver of this dominance is grasses' facility for grain dispersal and rapid seedling establishment. Dispersal and establishment are aided by the awned lemma - a modified bract associated with grass flowers. Awns have diverse forms, many proposed functions, and have been gained and lost repeatedly in grass evolution. Here we hypothesize that the evolution of awn emergence is underpinned by deep conservation of developmental genes. Awns are likely homologous to leaf blades. Because leaf blades are essential, every grass species likely has a latent developmental program available for awn development. This developmental program may be repeatedly reactivated in lemmas, resulting in the frequent appearance of awns. Because awns are inessential, they can be lost and modified without dire consequences to fitness, resulting in the frequent loss and diversity of awns. Replicated awn evolution reveals how developmental conservation can potentiate the evolution of diversity. Awns also present a powerful opportunity to dissect mechanisms of leaf development.
Collapse
Affiliation(s)
- Annis Richardson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, Edinburgh, EH9 3BF, UK.
| | - Heather Jones
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, Edinburgh, EH9 3BF, UK
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts, 611 N. Pleasant St, Amherst, MA 01002, United States.
| |
Collapse
|
4
|
Sun N, Liu W, Shi D, Zhao C, Ou J, Song Y, Yang Z, Sun H, Wu Y, Qin R, Yuan T, Jiao Y, Li L, Cui F. Mapping QTLs with additive and epistatic effects for awn length and their effects on kernel-related traits in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1417588. [PMID: 39233911 PMCID: PMC11371672 DOI: 10.3389/fpls.2024.1417588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Introduction Wheat awns are crucial determinants of wheat yield due to their capacity to photosynthesize and exchange gas. Understanding the genetic basis of awn length (AL) is essential for improving wheat yield in molecular breeding programs. Methods In this study, quantitative trait loci (QTLs) of AL were analyzed using recombinant inbred line (RIL) mapping population referred to as YY-RILs, which was derived from a cross between Yannong 15 (YN15) and Yannong 1212 (YN1212). Results and discussion Seven putative additive QTLs and 30 pairwise epistatic QTLs for AL were identified. Among them, five novel additive QTLs (except qAl-2A and qAl-5A.2) and 30 novel pairwise epistatic QTLs were identified. qAl-5A.1 was repeatedly identified in all five environment datasets, which was considered to be one novel stable QTL for AL with minor additive effects. eqAl-2B.2-2 significantly interacted with eight loci and could be of great importance in regulating awn development. The genes associated with the major stable QTL of qAl-5A.2 and the minor stable QTL of qAl-2A were B1 and WFZP-A, respectively. Awn lengths exhibited significant genetic correlations with kernel weight and kernels per spike, which could affect grain protein content to a lesser extent. This study enhances our understanding of the genetic basis of awn development and identifies novel genes as well as markers for future genetic improvement of wheat yield.
Collapse
Affiliation(s)
- Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Deyang Shi
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Chunhua Zhao
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Jinlian Ou
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Yuanze Song
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Zilin Yang
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Han Sun
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Yongzhen Wu
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Ran Qin
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yanlin Jiao
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Fa Cui
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
5
|
Horsnell R, Leigh FJ, Wright TIC, Burridge AJ, Ligeza A, Przewieslik-Allen AM, Howell P, Uauy C, Edwards KJ, Bentley AR. A wheat chromosome segment substitution line series supports characterization and use of progenitor genetic variation. THE PLANT GENOME 2024; 17:e20288. [PMID: 36718796 DOI: 10.1002/tpg2.20288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
Genome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.) chromosome segment substitution lines (CSSLs) generated to systematically capture genetic variation from tetraploid (T. turgidum ssp. dicoccoides) and diploid (Aegilops tauschii) progenitor species. Generated in a common genetic background over four generations of backcrossing, this is a base resource for the mapping and characterization of wheat progenitor variation. To facilitate further exploitation the final population was genetically characterized using a high-density genotyping array and a range of agronomic and grain traits assessed to demonstrate the potential use of the populations for trait localization in wheat.
Collapse
Affiliation(s)
- Richard Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | | | - Aleksander Ligeza
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | | | - Philip Howell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| |
Collapse
|
6
|
Ma C, Yu Y, Liu F, Lin L, Zhang K, Liu N, Zhang H. Influence mechanism of awns on wheat grain Pb absorption: Awns' significant contribution to grain Pb was mainly originated from their direct absorption of atmospheric Pb at the late grain-filling stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114957. [PMID: 37105099 DOI: 10.1016/j.ecoenv.2023.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The spike is the organ that contributes the most to lead (Pb) accumulation in wheat grains. However, as an important photosynthetic and transpiration tissue in spike, the role of awn in wheat grain Pb absorption remains unknown. A field experiment was conducted to investigate the influence mechanism of awn on grain Pb accumulation through two comparative treatments: with and without awns (de-awned treatment). The de-awned treatment decreased wheat yield by 4.1 %; however, it significantly lowered the grain Pb accumulation rate at the late filling stage (15 days after anthesis) and led to a 22.8 % decrease in grain Pb concentration from 0.57 to 0.44 mg·kg-1. Moreover, the relative contribution of awn-to-grain Pb accumulation gradually increased with the filling process, finally reaching 26.6 % at maturity. In addition, Pb isotope source analysis indicated that the Pb in the awn and grain mainly originated from atmospheric deposition, and the de-awned treatment decreased the proportion of grain Pb from atmospheric deposition by 8.9 %. Microstructural observations further confirmed that the contribution of awns to grain Pb accumulation mainly originated from their direct absorption of atmospheric Pb. In conclusion, awns play an important role in wheat grain Pb absorption at the late grain-filling stage; planting awnless or short-awn wheat varieties may be the simplest and effective environmental management measure to reduce the health risks of Pb in wheat in regions with serious atmospheric Pb contamination.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| | - Yawei Yu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, Camerino, 62032 Macerata, Italy
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
7
|
Ma C, Liu F, Yang J, Liu N, Zhang K, Berrettoni M, Zhang H. The newly absorbed atmospheric lead by wheat spike during filling stage is the primary reason for grain lead pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161965. [PMID: 36737026 DOI: 10.1016/j.scitotenv.2023.161965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Wheat spikes could directly absorb lead (Pb) from atmospheric depositions. However, the mechanism by which the spikes contribute to Pb accumulation in the grain remains unclear. To investigate this mechanism, a field experiment was conducted using three comparative spikes shading treatments: 1) exposed to atmospheric deposition and light (CK), 2) non-exposed to atmospheric deposition and light (T1), and 3) non-exposed to atmospheric deposition but light-transmitting (T2). Spikes shading treatments reduced the average rate and peak value of the accumulation of Pb in grains, which significantly decreased the grain Pb concentration by 57.44 % and 50.26 % in T1 and T2 treatments, respectively. Moreover, Pb isotopic analysis shows that the Pb in spike and grain was mainly from atmospheric deposition, and the percentage of the grain Pb originated from atmospheric Pb decreased from 85.98 % in CK to 72.87 % and 79.59 % in T1 and T2, respectively. In addition, the spikes, rather than the leaves/roots, were the largest wheat tissue source of Pb in grains, and the relative contribution of spikes to grain Pb accumulation increased to 65.57 % at the maturity stage, of which the stored Pb re-translocation of spikes and the newly absorbed Pb by spikes during the filling stage contributed 13.37 % and 52.20 % to the grain Pb, respectively. Thus, the contribution of the spike to the grain Pb was mainly from the newly absorbed Pb from the atmospheric deposition during the grain filling phase, and grain filling phase is the key stage for the absorption of Pb by the grain. In brief, the newly absorbed atmospheric Pb by wheat spike during filling stage is the primary cause of grain Pb contamination, which provided a new insight for effective control of wheat Pb pollution.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China; University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Mario Berrettoni
- University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
8
|
Ke W, Xing J, Chen Z, Zhao Y, Xu W, Tian L, Guo J, Xie X, Du D, Wang Z, Li Y, Xu J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z. The TaTCP4/10-B1 cascade regulates awn elongation in wheat (Triticum aestivum L.). PLANT COMMUNICATIONS 2023:100590. [PMID: 36919240 PMCID: PMC10363512 DOI: 10.1016/j.xplc.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield. The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat. However, the mechanism of awn inhibition centered around B1 remains to be clarified. Here, we identified an allelic variant in the coding region of B1 through analysis of re-sequencing data; this variant causes an amino acid substitution and premature termination, resulting in a long-awn phenotype. Transcriptome analysis indicated that B1 inhibited awn elongation by impeding cytokinin- and auxin-promoted cell division. Moreover, B1 directly repressed the expression of TaRAE2 and TaLks2, whose orthologs have been reported to promote awn development in rice or barley. More importantly, we found that TaTCP4 and TaTCP10 synergistically inhibited the expression of B1, and a G-to-A mutation in the B1 promoter attenuated its inhibition by TaTCP4/10. Taken together, our results reveal novel mechanisms of awn development and provide genetic resources for trait improvement in wheat.
Collapse
Affiliation(s)
- Wensheng Ke
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lulu Tian
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinquan Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yufeng Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhenqi Su
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Sanchez-Bragado R, Molero G, Araus JL, Slafer GA. Awned versus awnless wheat spikes: does it matter? TRENDS IN PLANT SCIENCE 2023; 28:330-343. [PMID: 36494304 DOI: 10.1016/j.tplants.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Awnless and awned wheat is found across the globe. Archeological and historical records show that the wheat spike was predominantly awned across the many millennia following domestication. Thus, ancient farmers did not select against awns at least until the last millennium. Here, we describe the evolution and domestication of wheat awns, quantifying their role in spike photosynthesis and yield under contrasting environments. Awns increase grain weight directly (increasing the size of all grains) or indirectly (increasing the failure of distal grains), but not as a consequence of additional spike photosynthesis. However, a trade-off is produced through decreasing grain number. Thus, favorable effects of awns on yield are not consistently found across environments.
Collapse
Affiliation(s)
- Rut Sanchez-Bragado
- Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona - AGROTECNIO-CERCA Center, Lleida, Spain
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico; Current affiliation: WS Momont Recherche, 59246 Mons-en-Pévèle, Hauts-de-France, France
| | - José L Araus
- Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona - AGROTECNIO-CERCA Center, Lleida, Spain
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida - AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
10
|
Sakuma S, Koppolu R. Form follows function in Triticeae inflorescences. BREEDING SCIENCE 2023; 73:46-56. [PMID: 37168815 PMCID: PMC10165339 DOI: 10.1270/jsbbs.22085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Corresponding authors (e-mail: and )
| | - Ravi Koppolu
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Corresponding authors (e-mail: and )
| |
Collapse
|
11
|
Luong NH, Balkunde SG, Shim KC, Adeva C, Lee HS, Kim HJ, Ahn SN. Characterization of Domestication Loci Associated with Awn Development in Rice. RICE (NEW YORK, N.Y.) 2022; 15:61. [PMID: 36449175 PMCID: PMC9712879 DOI: 10.1186/s12284-022-00607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa L.) is a widely studied domesticated model plant. Seed awning is an unfavorable trait during rice harvesting and processing. Hence, loss of awn was one of the target characters selected during domestication. However, the genetic mechanisms underlying awn development in rice are not well understood. In this study, we analyzed and characterized the genes for awn development using a mapping population derived from a cross between the Korean indica cultivar 'Milyang23' and a near-isogenic line NIL4/9 derived from a cross between 'Hwaseong' and Oryza minuta. Two quantitative trait loci (QTLs), qAwn4 and qAwn9, mapped on chromosomes 4 and 9, respectively, increased awn length in an additive manner. Through comparative sequencing analyses of the parental lines, LABA1 was determined as the causal gene underlying qAwn4. qAwn9 was mapped to a 199-kb physical region between markers RM24663 and RM24679. Within this interval, 27 annotated genes were identified, and five genes, including a basic leucine zipper transcription factor 76 (OsbZIP76), were considered as candidate genes for qAwn9 based on their functional annotations and sequence variations. Haplotype analysis using the candidate gene revealed tropical-japonica specific sequence variants in the qAwn9 region, which partly explains the non-detection of qAwn9 in previous studies that used progenies from interspecific crosses. This provides further evidence that OsbZIP76 is possibly a causal gene for qAwn9. The O. minuta qAwn9 allele was identified as a major QTL, providing an important molecular target for understanding the genetic control of awn development in rice. Our results lay the foundation for further cloning of the awn gene underlying qAwn9.
Collapse
Affiliation(s)
- Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | | | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, 55365, South Korea
| | | | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
12
|
Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid MQ, Lin Y, Qiao X, Xiao J, Gray JE, Jin J. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. PLANT PHYSIOLOGY 2022; 190:516-531. [PMID: 35689635 PMCID: PMC9434303 DOI: 10.1093/plphys/kiac278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 05/06/2023]
Abstract
The EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) family of small secreted peptides act to regulate many aspects of plant growth and development; however, their functions are not widely characterized in rice (Oryza sativa). Here, we used clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) technology to individually knockout each of 11 EPF/EPFL genes in the rice cultivar Kasalath. Loss of function of most OsEPF/EPFL genes generated no obvious phenotype alteration, while disruption of OsEPFL2 in Kasalath caused a short or no awn phenotype and reduced grain size. OsEPFL2 is strongly expressed in the young panicle, consistent with a role in regulating awn and grain development. Haplotype analysis indicated that OsEPFL2 can be classified into six major haplotypes. Nucleotide diversity and genetic differentiation analyses suggested that OsEPFL2 was positively selected during the domestication of rice. Our work to systematically investigate the function of EPF/EPFL peptides demonstrates that different members of the same gene family have been independently selected for their ability to regulate a similar biological function and provides perspective on rice domestication.
Collapse
Affiliation(s)
| | | | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Muhammad Qasim Shahid
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yanhui Lin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory of Crop Genetics and Breeding, Hainan Scientific Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Haikou 571100, China
| | - Xiaoyi Qiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Xiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
13
|
Bessho-Uehara K. Dawn of the Awn Regulatory Mechanism in Sorghum. PLANT & CELL PHYSIOLOGY 2022; 63:886-888. [PMID: 35674674 DOI: 10.1093/pcp/pcac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Kanako Bessho-Uehara
- Laboratory of Evolutionary Genomics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
14
|
Takanashi H, Kajiya-Kanegae H, Nishimura A, Yamada J, Ishimori M, Kobayashi M, Yano K, Iwata H, Tsutsumi N, Sakamoto W. DOMINANT AWN INHIBITOR Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. PLANT & CELL PHYSIOLOGY 2022; 63:901-918. [PMID: 35640621 DOI: 10.1093/pcp/pcac057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Kouwa Nishi-Shimbashi Bldg. 5f, 2-14-1 Nishi-Shimbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Asuka Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Junko Yamada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
15
|
InDels Identification and Association Analysis with Spike and Awn Length in Chinese Wheat Mini-Core Collection. Int J Mol Sci 2022; 23:ijms23105587. [PMID: 35628397 PMCID: PMC9146729 DOI: 10.3390/ijms23105587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Diversity surveys of germplasm are important for gaining insight into the genomic basis for crop improvement; especially InDels, which are poorly understood in hexaploid common wheat. Here, we describe a map of 89,923 InDels from exome sequencing of 262 accessions of a Chinese wheat mini-core collection. Population structure analysis, principal component analysis and selective sweep analysis between landraces and cultivars were performed. Further genome-wide association study (GWAS) identified five QTL (Quantitative Trait Loci) that were associated with spike length, two of them, on chromosomes 2B and 6A, were detected in 10 phenotypic data sets. Assisted with RNA-seq data, we identified 14 and 21 genes, respectively that expressed in spike and rachis within the two QTL regions that can be further investigated for candidate genes discovery. Moreover, InDels were found to be associated with awn length on chromosomes 5A, 6B and 4A, which overlapped with previously reported genetic loci B1 (Tipped 1), B2 (Tipped 2) and Hd (Hooded). One of the genes TaAGL6 that was previously shown to affect floral organ development was found at the B2 locus to affect awn length development. Our study shows that trait-associated InDels may contribute to wheat improvement and may be valuable molecular markers for future wheat breeding.
Collapse
|
16
|
Liu T, Shi X, Wang J, Song J, Xiao E, Wang Y, Gao X, Nan W, Wang Z. Mapping and Characterization of QTLs for Awn Morphology Using Crosses between "Double-Awn" Wheat 4045 and Awnless Wheat Zhiluowumai. PLANTS (BASEL, SWITZERLAND) 2021; 10:2588. [PMID: 34961059 PMCID: PMC8703630 DOI: 10.3390/plants10122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/03/2022]
Abstract
Awns play important roles in seed dispersal, protection against predators, and photosynthesis. The characterization of genes related to the formation of awns helps understand the regulation mechanisms of awn development. In the present study, the "double-awn" wheat 4045, which features super-long lemma awns and long glume awns, and an awnless wheat line, Zhiluowumai, were used to investigate QTLs or genes involved in awn development. QTL analysis identified three loci-Qawn-1D, Qawn-5A, and Qawn-7B-using a population of 101 4045 × ZLWM F2 plants. Fine mapping with a total of 9018 progenies narrowed the mapping interval of Qawn-5A to an 809-kb region, which was consistent with the B1 locus, containing five genes on chromosome 5AL. Gene structure and expression analysis indicated that TraesCS5A02G542800 was the causal gene, which was subsequently verified by overexpression of TraesCS5A02G542800 in a "double-awn" wheat, Yangmai20. The retained "double-awn" phenotype of transgenic plants suggested that B1 represses the elongation but does not influence the emergence of the awns. Moreover, 4045 harbors a new allele of B1 with a 261-bp insertion in the promoter region and a lack of the EAR2 motif in the encoding region, which influences several important agronomic traits. In this study, we identify two novel QTLs and a novel allele of B1, providing new resources for exploration of awn development.
Collapse
Affiliation(s)
- Tianxiang Liu
- Department of Agronomy, Northwest Agriculture and Forestry University, Xianyang 712100, China; (T.L.); (X.S.); (J.W.); (E.X.); (Y.W.); (X.G.)
| | - Xue Shi
- Department of Agronomy, Northwest Agriculture and Forestry University, Xianyang 712100, China; (T.L.); (X.S.); (J.W.); (E.X.); (Y.W.); (X.G.)
| | - Jun Wang
- Department of Agronomy, Northwest Agriculture and Forestry University, Xianyang 712100, China; (T.L.); (X.S.); (J.W.); (E.X.); (Y.W.); (X.G.)
| | - Jiawang Song
- Key Laboratory of Plant Development and Stress Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China;
| | - Enshi Xiao
- Department of Agronomy, Northwest Agriculture and Forestry University, Xianyang 712100, China; (T.L.); (X.S.); (J.W.); (E.X.); (Y.W.); (X.G.)
| | - Yong Wang
- Department of Agronomy, Northwest Agriculture and Forestry University, Xianyang 712100, China; (T.L.); (X.S.); (J.W.); (E.X.); (Y.W.); (X.G.)
| | - Xin Gao
- Department of Agronomy, Northwest Agriculture and Forestry University, Xianyang 712100, China; (T.L.); (X.S.); (J.W.); (E.X.); (Y.W.); (X.G.)
| | - Wenzhi Nan
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Zhonghua Wang
- Department of Agronomy, Northwest Agriculture and Forestry University, Xianyang 712100, China; (T.L.); (X.S.); (J.W.); (E.X.); (Y.W.); (X.G.)
| |
Collapse
|
17
|
Targeting the B1 Gene and Analysis of Its Polymorphism Associated with Awned/Awnless Trait in Russian Germplasm Collections of Common Wheat. PLANTS 2021; 10:plants10112285. [PMID: 34834646 PMCID: PMC8621087 DOI: 10.3390/plants10112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022]
Abstract
The presence of awns on the ear is associated with a number of important plant properties, such as drought resistance, quality of the grain mass during processing, etc. The main manifestations of this trait are controlled by the B1 gene, which has recently been identified and encodes the C2H2 zinc finger transcription factor. Based on the previously identified SNPs in the promoter region of this gene, we constructed markers for dominant and recessive alleles which determine awnless and awned phenotypes, respectively. The markers were successful for use in targeting the respective alleles of the B1 gene in 176 varieties of common wheat, accessions of T. spelta L., as well as on F2/F3 hybrids from crosses between awned and awnless forms of T. aestivum. We first identified a new allele, b1mite, which has both an insert of a miniature Stowaway-like transposon, 261 bp in length, and 33 novel SNPs in the promoter region. Despite these changes, this allele had no effect on the awned phenotype. The possible mechanisms of the influence of the analyzed gene on phenotype are discussed.
Collapse
|
18
|
Huang B, Wu W, Hong Z. Genetic Loci Underlying Awn Morphology in Barley. Genes (Basel) 2021; 12:genes12101613. [PMID: 34681007 PMCID: PMC8535194 DOI: 10.3390/genes12101613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022] Open
Abstract
Barley awns are highly active in photosynthesis and account for 30–50% of grain weight in barley. They are diverse in length, ranging from long to awnless, and in shape from straight to hooded or crooked. Their diversity and importance have intrigued geneticists for several decades. A large collection of awnness mutants are available—over a dozen of them have been mapped on chromosomes and a few recently cloned. Different awnness genes interact with each other to produce diverse awn phenotypes. With the availability of the sequenced barley genome and application of new mapping and gene cloning strategies, it will now be possible to identify and clone more awnness genes. A better understanding of the genetic basis of awn diversity will greatly facilitate development of new barley cultivars with improved yield, adaptability and sustainability.
Collapse
Affiliation(s)
- Biguang Huang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Collegiate Key Laboratory of Applied Plant Genetics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Weiren Wu
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.W.); (Z.H.)
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
- Correspondence: (W.W.); (Z.H.)
| |
Collapse
|
19
|
Genetic Interactions of Awnness Genes in Barley. Genes (Basel) 2021; 12:genes12040606. [PMID: 33924025 PMCID: PMC8073869 DOI: 10.3390/genes12040606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Awns are extending structures from lemmas in grasses and are very active in photosynthesis, contributing directly to the filling of the developing grain. Barley (Hordeum vulgare L.) awns are highly diverse in shape and length and are known to be controlled by multiple awn-related genes. The genetic effects of these genes on awn diversity and development in barley are multiplexed and include complementary effect, cumulative effect, duplicate effect, recessive epistasis, dominant epistasis, and inhibiting effect, each giving a unique modified Mendelian ratio of segregation. The complexity of gene interactions contributes to the awn diversity in barley. Excessive gene interactions create a challenging task for genetic mapping and specific strategies have to be developed for mapping genes with specific interactive effects. Awn gene interactions can occur at different levels of gene expression, from the transcription factor-mediated gene transcription to the regulation of enzymes and metabolic pathways. A better understanding of gene interactions will greatly facilitate deciphering the genetic mechanisms underlying barley awn diversity and development.
Collapse
|
20
|
Dobrovolskaya OB, Dresvyannikova AE, Badaeva ED, Popova KI, Trávníčková M, Martinek P. [The study of genetic factors that determine the awned glume trait in bread wheat]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:568-574. [PMID: 33659842 PMCID: PMC7716541 DOI: 10.18699/vj20.650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Awns are bristle-like structures, typically extending from the tip end of the lemmas in the florets of cereal species, including such economically important crops as wheat (Triticum aestivum L., T. durum Desf.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and rye (Secale cereale L.). The presence of long awns adhered at tip end of glumes is a characteristic feature of "Persian wheat" T. carthlicum Nevski spike. Glume outgrowth of T. carthlicum Nevski spike passes into a long awn, equal in length to the lemma awn. Awned glumes can be formed in T. aestivum and T. aethiopicum wheats, however, such forms are rare. Features of the awned glume development and the genetic determinants of this trait have been little studied. In this paper, we described the features of the development and inheritance of the tetra-awness (awned glume) trait of the bread wheat T. aestivum line CD 1167-8, using classical genetic analysis, molecular genetic mapping, and scanning electron microscopy. It was shown that the trait is inherited as a recessive monogenic. The gene for the awned glume trait of CD 1167-8 was mapped in the long arm of chromosome 5A, using the Illumina Infinium 15K Wheat Array (TraitGenetics GmbH), containing 15,000 SNPs associated with wheat genes. Results of allelism test and molecular-genetic mapping suggest that the gene for awned glumes in bread wheat is a recessive allele of the B1 awn suppressor. This new allele was designated the b1.ag (b1. awned glume). Analysis of the CD 1167-8 inflorescence development, using scanning electron microscopy, showed that awns had grown from the top of the lemmas and glumes simultaneously, and no differences in patterns of their development were found.
Collapse
Affiliation(s)
- O B Dobrovolskaya
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia RUDN University, Agrarian and Technological Institute, Moscow, Russia
| | - A E Dresvyannikova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E D Badaeva
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - K I Popova
- Novosibirsk State Agricultural University, Novosibirsk, Russia
| | | | - P Martinek
- Agrotest Fyto, Ltd., Kroměříž, Czech Republic
| |
Collapse
|
21
|
Wang D, Cao D, Zong Y, Li Y, Wang J, Li Z, Liu B. Bulked QTL-Seq identified a major QTL for the awnless trait in spring wheat cultivars in Qinghai, China. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1857661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Dongxia Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, PR China
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, PR China
| | - Dong Cao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, PR China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Laboratory of Wheat Quality Improvement, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, Qinghai, PR China
| | - Yuan Zong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, PR China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Laboratory of Wheat Quality Improvement, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, Qinghai, PR China
| | - Yun Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, PR China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Laboratory of Wheat Quality Improvement, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, Qinghai, PR China
| | - Jinmin Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, PR China
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, PR China
| | - Zongren Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, PR China
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, PR China
| | - Baolong Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, PR China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Laboratory of Wheat Quality Improvement, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, Qinghai, PR China
| |
Collapse
|
22
|
Ntakirutimana F, Xie W. Unveiling the Actual Functions of Awns in Grasses: From Yield Potential to Quality Traits. Int J Mol Sci 2020; 21:ijms21207593. [PMID: 33066600 PMCID: PMC7589186 DOI: 10.3390/ijms21207593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
Awns, which are either bristles or hair-like outgrowths of lemmas in the florets, are one of the typical morphological characteristics of grass species. These stiff structures contribute to grain dispersal and burial and fend off animal predators. However, their phenotypic and genetic associations with traits deciding potential yield and quality are not fully understood. Awns appear to improve photosynthesis, provide assimilates for grain filling, thus contributing to the final grain yield, especially under temperature- and water-stress conditions. Long awns, however, represent a competing sink with developing kernels for photosynthates, which can reduce grain yield under favorable conditions. In addition, long awns can hamper postharvest handling, storage, and processing activities. Overall, little is known about the elusive role of awns, thus, this review summarizes what is known about the effect of awns on grain yield and biomass yield, grain nutritional value, and forage-quality attributes. The influence of awns on the agronomic performance of grasses seems to be associated with environmental and genetic factors and varies in different stages of plant development. The contribution of awns to yield traits and quality features previously documented in major cereal crops, such as rice, barley, and wheat, emphasizes that awns can be targeted for yield and quality improvement and may advance research aimed at identifying the phenotypic effects of morphological traits in grasses.
Collapse
|
23
|
Niu J, Zheng S, Shi X, Si Y, Tian S, He Y, Ling HQ. Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Genetic Characterization of a Wheat Association Mapping Panel Relevant to Brazilian Breeding Using a High-Density Single Nucleotide Polymorphism Array. G3-GENES GENOMES GENETICS 2020; 10:2229-2239. [PMID: 32350030 PMCID: PMC7341152 DOI: 10.1534/g3.120.401234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bread wheat (Triticum aestivum L.) is one of the world’s most important crops. Maintaining wheat yield gains across all of its major production areas is a key target toward underpinning global food security. Brazil is a major wheat producer in South America, generating grain yields of around 6.8 million tons per year. Here, we establish and genotype a wheat association mapping resource relevant to contemporary Brazilian wheat breeding programs. The panel of 558 wheat accessions was genotyped using an Illumina iSelect 90,000 single nucleotide polymorphism array. Following quality control, the final data matrix consisted of 470 accessions and 22,475 polymorphic genetic markers (minor allele frequency ≥5%, missing data <5%). Principal component analysis identified distinct differences between materials bred predominantly for the northern Cerrado region, compared to those bred for southern Brazilian agricultural areas. We augmented the genotypic data with 26 functional Kompetitive Allele-Specific PCR (KASP) markers to identify the allelic combinations at genes with previously known effects on agronomically important traits in the panel. This highlighted breeding targets for immediate consideration – notably, increased Fusarium head blight resistance via the Fhb1 locus. To demonstrate the panel’s likely future utility, genome-wide association scans for several phenotypic traits were undertaken. Significant (Bonferroni corrected P < 0.05) marker-trait associations were detected for Fusarium kernel damage (a proxy for type 2 Fusarium resistance), identifying previously known quantitative trait loci in the panel. This association mapping panel represents an important resource for Brazilian wheat breeding, allowing future genetic studies to analyze multiple agronomic traits within a single genetically diverse population.
Collapse
|
25
|
Identification of Quantitative Trait Loci Relating to Flowering Time, Flag Leaf and Awn Characteristics in a Novel Triticum dicoccum Mapping Population. PLANTS 2020; 9:plants9070829. [PMID: 32630645 PMCID: PMC7412379 DOI: 10.3390/plants9070829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022]
Abstract
Tetraploid landraces of wheat harbour genetic diversity that could be introgressed into modern bread wheat with the aid of marker-assisted selection to address the genetic diversity bottleneck in the breeding genepool. A novel bi-parental Triticum turgidum ssp. dicoccum Schrank mapping population was created from a cross between two landrace accessions differing for multiple physiological traits. The population was phenotyped for traits hypothesised to be proxies for characteristics associated with improved photosynthesis or drought tolerance, including flowering time, awn length, flag leaf length and width, and stomatal and trichome density. The mapping individuals and parents were genotyped with the 35K Wheat Breeders’ single nucleotide polymorphism (SNP) array. A genetic linkage map was constructed from 104 F4 individuals, consisting of 2066 SNPs with a total length of 3295 cM and an average spacing of 1.6 cM. Using the population, 10 quantitative trait loci (QTLs) for five traits were identified in two years of trials. Three consistent QTLs were identified over both trials for awn length, flowering time and flag leaf width, on chromosomes 4A, 7B and 5B, respectively. The awn length and flowering time QTLs correspond with the major loci Hd and Vrn-B3, respectively. The identified marker-trait associations could be developed for marker-assisted selection, to aid the introgression of diversity from a tetraploid source into modern wheat for potential physiological trait improvement.
Collapse
|
26
|
Würschum T, Jähne F, Phillips AL, Langer SM, Longin CFH, Tucker MR, Leiser WL. Misexpression of a transcriptional repressor candidate provides a molecular mechanism for the suppression of awns by Tipped 1 in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3428-3436. [PMID: 32103263 PMCID: PMC7307850 DOI: 10.1093/jxb/eraa106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/24/2020] [Indexed: 05/30/2023]
Abstract
Awns are bristle-like structures formed at the tip of the lemma on the florets of some cereal grasses. Wild-type wheat is awned, but awnletted and awnless variants have been selected and nowadays all forms are cultivated. In this study, we dissected the genetic control underlying variation of this characteristic feature by association mapping in a large panel of 1110 winter wheat cultivars of worldwide origin. We identified the B1 (Tipped 1) locus on chromosome 5A as the major determinant of awnlessness globally. Using a combination of fine-mapping and expression analysis, we identified a putative C2H2 zinc finger protein with an EAR domain, characteristic of transcriptional repressors, as a likely candidate for Tipped 1. This gene was found to be up-regulated in awnless B1 compared with awned b1 plants, indicating that misexpression of this transcriptional regulator may contribute to the reduction of awn length in B1 plants. Taken together, our study provides an entry point towards a better molecular understanding of the evolution of morphological features in cereals through selection and breeding.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Felix Jähne
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | | | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | | | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
27
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
28
|
Wang D, Yu K, Jin D, Sun L, Chu J, Wu W, Xin P, Gregová E, Li X, Sun J, Yang W, Zhan K, Zhang A, Liu D. Natural variations in the promoter of Awn Length Inhibitor 1 (ALI-1) are associated with awn elongation and grain length in common wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1075-1090. [PMID: 31628879 DOI: 10.1111/tpj.14575] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Wheat awn plays a vital role in photosynthesis, grain production, and drought tolerance. However, the systematic identification or cloning of genes controlling wheat awn development is seldom reported. Here, we conducted a genome-wide association study (GWAS) with 364 wheat accessions and identified 26 loci involved in awn length development, including previously characterized B1, B2, Hd, and several rice homologs. The dominant awn suppressor B1 was fine mapped to a 125-kb physical interval, and a C2 H2 zinc finger protein Awn Length Inhibitor 1 (ALI-1) was confirmed to be the underlying gene of the B1 locus through the functional complimentary test with native awnless allele. ALI-1 expresses predominantly in the developing spike of awnless individuals, transcriptionally suppressing downstream genes. ALI-1 reduces cytokinin content and simultaneously restrains cytokinin signal transduction, leading to a stagnation of cell proliferation and reduction of cell numbers during awn development. Polymorphisms of four single nucleotide polymorphisms (SNPs) located in ALI-1 promoter region are diagnostic for the B1/b1 genotypes, and these SNPs are associated with awn length (AL), grain length (GL) and thousand-grain weight (TGW). More importantly, ali-1 was observed to increase grain length in wheat, which is a valuable attribute of awn on grain weight, aside from photosynthesis. Therefore, ALI-1 pleiotropically regulates awn and grain development, providing an alternative for grain yield improvement and addressing future climate changes.
Collapse
Affiliation(s)
- Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518120, China
| | - Di Jin
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linhe Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Edita Gregová
- National Agricultural and Food centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68, Piešťany, Slovakia
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhan
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| |
Collapse
|
29
|
Liu L, Yuan C, Wang M, See DR, Chen X. Mapping Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 197734 Using a Doubled Haploid Population and Genotyping by Multiplexed Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:596962. [PMID: 33281855 PMCID: PMC7688900 DOI: 10.3389/fpls.2020.596962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/13/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a global concern for wheat production. Spring wheat cultivar PI 197734, of Sweden origin, has shown high-temperature adult-plant resistance (APR) to stripe rust for many years. To map resistance quantitative trait loci (QTL), 178 doubled haploid lines were developed from a cross of PI 197734 with susceptible AvS. The DH lines and parents were tested in fields in 2017 and 2018 under natural infection of Pst and genotyped with genotyping by multiplexed sequencing (GMS). Kompetitive allele specific PCR (KASP) and simple sequence repeat (SSR) markers from specific chromosomal regions were also used to genotype the population to validate and saturate resistance QTL regions. Two major QTL on chromosomes 1AL and 3BL and one minor QTL on 2AL were identified. The two major QTL, QYrPI197734.wgp-1A and QYrPI197734.wgp-3B, were detected in all tested environments explaining up to 20.7 and 46.8% phenotypic variation, respectively. An awnletted gene mapped to the expected distal end of chromosome 5AL indicated the accuracy of linkage mapping. The KASP markers converted from the GMS-SNPs in the 1A and 3B QTL regions were used to genotype 95 US spring wheat cultivars and breeding lines, and they individually showed different percentages of polymorphisms. The haplotypes of the three markers for the 1A QTL and four markers for the 3B QTL identified 37.9 and 21.1% of the wheat cultivar/breeding lines possibly carrying these two QTL, indicating their usefulness in marker-assisted selection (MAS) for incorporating the two major QTL into new wheat cultivars.
Collapse
Affiliation(s)
- Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - Congying Yuan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- *Correspondence: Xianming Chen, ;
| |
Collapse
|
30
|
Huang D, Zheng Q, Melchkart T, Bekkaoui Y, Konkin DJF, Kagale S, Martucci M, You FM, Clarke M, Adamski NM, Chinoy C, Steed A, McCartney CA, Cutler AJ, Nicholson P, Feurtado JA. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. THE NEW PHYTOLOGIST 2020; 225:340-355. [PMID: 31469444 PMCID: PMC6916588 DOI: 10.1111/nph.16154] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/16/2019] [Indexed: 05/22/2023]
Abstract
Awns, bristle-like structures extending from grass lemmas, provide protection against predators, contribute to photosynthesis and aid in grain dispersal. In wheat, selection of awns with minimal extension, termed awnletted, has occurred during domestication by way of loci that dominantly inhibit awn development, such as Tipped1 (B1), Tipped2 (B2), and Hooded (Hd). Here we identify and characterize the B1 gene. B1 was identified using bulked segregant RNA-sequencing of an F2 durum wheat population and through deletion mapping of awned bread wheat mutants. Functional characterization was accomplished by gene overexpression while haplotype analyses assessed B1 polymorphisms and genetic variation. Located on chromosome 5A, B1 is a C2H2 zinc finger encoding gene with ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. Constitutive overexpression of B1 in awned wheat produced an awnletted phenotype with pleiotropic effects on plant height and fertility. Transcriptome analysis of B1 overexpression plants suggests a role as transcriptional repressor, putatively targeting pathways involved in cell proliferation. Haplotype analysis revealed a conserved B1 coding region with proximal polymorphisms and supported the contention that B1 is mainly responsible for awnletted wheats globally. B1, predominantly responsible for awn inhibition in wheat, encodes a C2H2 zinc finger protein with EAR motifs which putatively functions as a transcriptional repressor.
Collapse
Affiliation(s)
- Daiqing Huang
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| | - Qian Zheng
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| | - Tancey Melchkart
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| | - Yasmina Bekkaoui
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| | - David J. F. Konkin
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| | - Martial Martucci
- Morden Research and Development CentreAgriculture and Agri‐Food Canada101 Route 100MordenMBR6M 1Y5Canada
| | - Frank M. You
- Ottawa Research and Development CentreAgriculture and Agri‐Food Canada960 Carling AvenueOttawaONK1A 0C6Canada
| | - Martha Clarke
- Department of Crop GeneticsJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| | - Nikolai M. Adamski
- Department of Crop GeneticsJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| | - Catherine Chinoy
- Department of Crop GeneticsJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| | - Andrew Steed
- Department of Crop GeneticsJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| | - Curt A. McCartney
- Morden Research and Development CentreAgriculture and Agri‐Food Canada101 Route 100MordenMBR6M 1Y5Canada
| | - Adrian J. Cutler
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| | - Paul Nicholson
- Department of Crop GeneticsJohn Innes CentreNorwich Research Park, Colney LaneNorwichNR4 7UHUK
| | - J. Allan Feurtado
- Aquatic and Crop Resource DevelopmentNational Research Council of CanadaSaskatoonSKS7N 0W9Canada
| |
Collapse
|
31
|
DeWitt N, Guedira M, Lauer E, Sarinelli M, Tyagi P, Fu D, Hao Q, Murphy JP, Marshall D, Akhunova A, Jordan K, Akhunov E, Brown‐Guedira G. Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat. THE NEW PHYTOLOGIST 2020; 225:326-339. [PMID: 31465541 PMCID: PMC6916393 DOI: 10.1111/nph.16152] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/16/2019] [Indexed: 05/27/2023]
Abstract
Awns are stiff, hair-like structures which grow from the lemmas of wheat (Triticum aestivum) and other grasses that contribute to photosynthesis and play a role in seed dispersal. Variation in awn length in domesticated wheat is controlled primarily by three major genes, most commonly the dominant awn suppressor Tipped1 (B1). This study identifies a transcription repressor responsible for awn inhibition at the B1 locus. Association mapping was combined with analysis in biparental populations to delimit B1 to a distal region of 5AL colocalized with QTL for number of spikelets per spike, kernel weight, kernel length, and test weight. Fine-mapping located B1 to a region containing only two predicted genes, including C2H2 zinc finger transcriptional repressor TraesCS5A02G542800 upregulated in developing spikes of awnless individuals. Deletions encompassing this candidate gene were present in awned mutants of an awnless wheat. Sequence polymorphisms in the B1 coding region were not observed in diverse wheat germplasm whereas a nearby polymorphism was highly predictive of awn suppression. Transcriptional repression by B1 is the major determinant of awn suppression in global wheat germplasm. It is associated with increased number of spikelets per spike and decreased kernel size.
Collapse
Affiliation(s)
- Noah DeWitt
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Mohammed Guedira
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Edwin Lauer
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Martin Sarinelli
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Priyanka Tyagi
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Daolin Fu
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - QunQun Hao
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - J. Paul Murphy
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - David Marshall
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
- USDA‐ARS SAAPlant Science ResearchRaleighNC27695USA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Katherine Jordan
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Eduard Akhunov
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Gina Brown‐Guedira
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNC27695USA
- USDA‐ARS SAAPlant Science ResearchRaleighNC27695USA
| |
Collapse
|
32
|
Ntakirutimana F, Xiao B, Xie W, Zhang J, Zhang Z, Wang N, Yan J. Potential Effects of Awn Length Variation on Seed Yield and Components, Seed Dispersal and Germination Performance in Siberian Wildrye ( Elymus sibiricus L.). PLANTS 2019; 8:plants8120561. [PMID: 31805733 PMCID: PMC6963408 DOI: 10.3390/plants8120561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
: Awns, needle-like structures formed on the distal of the lemmas in the florets, are of interest because of their essential roles in seed dispersal, germination and photosynthesis. Previous research has reported the potential benefits of awns in major cereal grasses, yet reports on the agronomic and economic implications of awn length variation in forage grasses remain scarce. This study investigated the variation of awn length among 20 Siberian wildrye populations and the effect of awn length on seed yield and yield components. This work then studied the impact of awn length on seed dispersal and germination. The analyses indicated a high level of awn length variation among populations. Awn length showed a significant influence on harvested seed yield per plant (p < 0.05) mostly driven by interactions between awn length and the majority of seed yield components. Principal component analysis clearly revealed that the final impact of awn length on seed yield depends on the balance of its positive and negative effects on traits determining seed yield. Furthermore, awn length tended to increase seed dispersal distance, although little diversity in the nature of this progression was observed in some populations. Awn length exhibited a significant relationship (p < 0.05) with germination percentage. It also tended to shorten germination duration, although this interaction was not statistically significant. Collectively, these results provide vital information for breeding and agronomic programs aiming to maintain yield in grasses. This is the first report to demonstrate in Siberian wildrye the agronomic impacts of awn length variation.
Collapse
Affiliation(s)
- Fabrice Ntakirutimana
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (F.N.); (B.X.); (J.Z.); (Z.Z.); (N.W.)
| | - Bowen Xiao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (F.N.); (B.X.); (J.Z.); (Z.Z.); (N.W.)
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (F.N.); (B.X.); (J.Z.); (Z.Z.); (N.W.)
- Correspondence: ; Tel.: +86-931-891-3014
| | - Junchao Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (F.N.); (B.X.); (J.Z.); (Z.Z.); (N.W.)
| | - Zongyu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (F.N.); (B.X.); (J.Z.); (Z.Z.); (N.W.)
| | - Na Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (F.N.); (B.X.); (J.Z.); (Z.Z.); (N.W.)
| | - Jiajun Yan
- Sichuan Academy of Grassland Science, Chengdu 611731, China;
| |
Collapse
|
33
|
Muterko A, Salina E. VRN1-ratio test for polyploid wheat. PLANTA 2019; 250:1955-1965. [PMID: 31529399 DOI: 10.1007/s00425-019-03279-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/08/2019] [Indexed: 05/15/2023]
Abstract
The duplications of the dominantVrn-A1alleles as well as theVRN-B1gene, revealed for the first time, are new sources of polymorphism in polyploid wheat at these agronomically valuable genomic locations. Flowering time is an important trait in wheat breeding. In spring wheat, this feature is mainly determined by the variants and number of the homoeologous dominant VRN1 alleles. Previously, multiplication of the recessive vrn-A1 allele was shown for winter hexaploid wheat (Würschum et al., BMC Genet 29:16-96, 2015). In the present study, VRN1 gene copy-number variation as well as the copy number of VRN-A1 with the alternative exon 4 haplotype were investigated in spring and winter accessions of different tetraploid and hexaploid wheat species. Two ratio tests were optimized based on end-point quantification of PCR fragments and results were verified by a qPCR assay. It was defined that since the genomic environment affects the accessibility of amplified VRN1 regions, the DNA template should be fragmented for proper quantification of VRN1 copy number during PCR-based assays. For the first time, it was shown that the dominant Vrn-A1 alleles are most often duplicated in hexaploid wheat. In tetraploid wheat, both the dominant and recessive alleles were represented as a single haploid copy, and in only two accessions of T. dicoccum, vrn-A1b.3 was duplicated. Multiplication of VRN-A1 was often associated with awnless spikes. Five haploid combinations of the recessive vrn-A1 copies with alternative exon 4 were identified in hexaploid wheat. Finally for the first time, duplication of VRN-B1 was found in hexaploid wheat of T. compactum and T. spelta. These results expand our knowledge of the genetic diversity of VRN1 genes in wheat and provide additional strategies for the manipulation of flowering time in this strategic crop.
Collapse
Affiliation(s)
- Alexandr Muterko
- The Federal Research Center Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk, 630090, Russian Federation.
| | - Elena Salina
- The Federal Research Center Institute of Cytology and Genetics, Lavrentyeva Avenue 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
34
|
Navalikhina A, Antonyuk M, Pasichnyk T, Ternovska T. Identification of Oryza sativa’s Awn Development Regulatory Gene Orthologs in Triticinae Accessions. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719040091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Ntakirutimana F, Xie W. Morphological and Genetic Mechanisms Underlying Awn Development in Monocotyledonous Grasses. Genes (Basel) 2019; 10:E573. [PMID: 31366144 PMCID: PMC6723108 DOI: 10.3390/genes10080573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023] Open
Abstract
The identification of biological mechanisms underlying the development of complex quantitative traits, including those that contribute to plant architecture, yield and quality potential, and seed dispersal, is a major focus in the evolutionary biology and plant breeding. The awn, a bristle-like extension from the lemma in the floret, is one of the distinct morphological and physiological traits in grass species. Awns are taught as an evolutionary trait assisting seed dispersal and germination and increasing photosynthesis. Awn development seems to be complex process, involving dramatic phenotypic and molecular changes. Although recent advances investigated the underlying morphological and molecular genetic factors of awn development, there is little agreement about how these factors interact during awn formation and how this interaction affects variation of awn morphology. Consequently, the developmental sequence of the awn is not yet well understood. Here, we review awn morphological and histological features, awn development pathways, and molecular processes of awn development. We argue that morphological and molecular genetic mechanisms of awn development previously studied in major cereal crops, such as barley, wheat, and rice, offered intriguing insights helping to characterize this process in a comparative approach. Applying such an approach will aid to deeply understand factors involved in awn development in grass species.
Collapse
Affiliation(s)
- Fabrice Ntakirutimana
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
36
|
Sheoran S, Jaiswal S, Kumar D, Raghav N, Sharma R, Pawar S, Paul S, Iquebal MA, Jaiswar A, Sharma P, Singh R, Singh CP, Gupta A, Kumar N, Angadi UB, Rai A, Singh GP, Kumar D, Tiwari R. Uncovering Genomic Regions Associated With 36 Agro-Morphological Traits in Indian Spring Wheat Using GWAS. FRONTIERS IN PLANT SCIENCE 2019; 10:527. [PMID: 31134105 PMCID: PMC6511880 DOI: 10.3389/fpls.2019.00527] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 05/13/2023]
Abstract
Wheat genetic improvement by integration of advanced genomic technologies is one way of improving productivity. To facilitate the breeding of economically important traits in wheat, SNP loci and underlying candidate genes associated with the 36 agro-morphological traits were studied in a diverse panel of 404 genotypes. By using Breeders' 35K Axiom array in a comprehensive genome-wide association study covering 4364.79 cM of the wheat genome and applying a compressed mixed linear model, a total of 146 SNPs (-log10 P ≥ 4) were found associated with 23 traits out of 36 traits studied explaining 3.7-47.0% of phenotypic variance. To reveal this a subset of 260 genotypes was characterized phenotypically for six quantitative traits [days to heading (DTH), days to maturity (DTM), plant height (PH), spike length (SL), awn length (Awn_L), and leaf length (Leaf_L)] under five environments. Gene annotations mined ∼38 putative candidate genes which were confirmed using tissue and stage specific gene expression data from RNA Seq. We observed strong co-localized loci for four traits (glume pubescence, SL, PH, and awn color) on chromosome 1B (24.64 cM) annotated five putative candidate genes. This study led to the discovery of hitherto unreported loci for some less explored traits (such as leaf sheath wax, awn attitude, and glume pubescence) besides the refined chromosomal regions of known loci associated with the traits. This study provides valuable information of the genetic loci and their potential genes underlying the traits such as awn characters which are being considered as important contributors toward yield enhancement.
Collapse
Affiliation(s)
- Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Deepender Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ruchika Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sushma Pawar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Surinder Paul
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - M. A. Iquebal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Akanksha Jaiswar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Arun Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeraj Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - U. B. Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - G. P. Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
37
|
Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:204-225. [PMID: 30414305 DOI: 10.1111/jipb.12737] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/27/2018] [Indexed: 05/02/2023]
Abstract
Wheat and barley are two of the founder crops of the agricultural revolution that took place 10,000 years ago in the Fertile Crescent and both crops remain among the world's most important crops. Domestication of these crops from their wild ancestors required the evolution of traits useful to humans, rather than survival in their natural environment. Of these traits, grain retention and threshability, yield improvement, changes to photoperiod sensitivity and nutritional value are most pronounced between wild and domesticated forms. Knowledge about the geographical origins of these crops and the genes responsible for domestication traits largely pre-dates the era of next-generation sequencing, although sequencing will lead to new insights. Molecular markers were initially used to calculate distance (relatedness), genetic diversity and to generate genetic maps which were useful in cloning major domestication genes. Both crops are characterized by large, complex genomes which were long thought to be beyond the scope of whole-genome sequencing. However, advances in sequencing technologies have improved the state of genomic resources for both wheat and barley. The availability of reference genomes for wheat and some of its progenitors, as well as for barley, sets the stage for answering unresolved questions in domestication genomics of wheat and barley.
Collapse
Affiliation(s)
- Matthew Haas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Hong MJ, Kim DY, Nam BM, Ahn JW, Kwon SJ, Seo YW, Kim JB. Characterization of novel mutants of hexaploid wheat (Triticum aestivum L.) with various depths of purple grain color and antioxidant capacity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:55-63. [PMID: 29802632 DOI: 10.1002/jsfa.9141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Wheat grain is recognized as a rich source of nutrients, including proteins, vitamins, minerals, fibers and antioxidants. In recent years, the focus of wheat breeding has been to increase the content of bioactive compounds to improve human health and prevent diseases. RESULTS Five novel wheat mutant lines with variable seed color were developed using gamma irradiation of hexaploid wheat inbred line K4191 (purple seed color). The total anthocyanin contents of three mutant lines (L47, L167 and L925) were significantly higher than those of wild-type lines, including K4191 and 'Keumkang' (white seed color). L925 showed the highest total anthocyanin content, and cyanidin-3-glucoside was presented as the most predominant anthocyanin. Compared with 'Keumkang', the expression of anthocyanin biosynthesis genes was significantly up-regulated in purple seed mutant lines. The highest antioxidant activity was observed in L925 extracts. The expression of a few antioxidant-related genes and total anthocyanin content were positively correlated with antioxidant capacity. These data suggest that anthocyanins and phenolic compounds in wheat grains contribute to the antioxidant potential. CONCLUSION Purple grain color is associated with higher anthocyanin accumulation and antioxidant capacity in wheat. Wheat mutants developed in this study may serve as a valuable source of antioxidants. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Dae Yeon Kim
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Bo Mi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yong Weon Seo
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
39
|
Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. A Large-Scale Genome-Wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With Important Traits. FRONTIERS IN PLANT SCIENCE 2019; 10:691. [PMID: 31191590 PMCID: PMC6549537 DOI: 10.3389/fpls.2019.00691] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/08/2019] [Indexed: 05/20/2023]
Abstract
The eastern Africa region, Ethiopia and its surroundings, is considered as the center of origin and diversity for sorghum, and has contributed to global sorghum genetic improvement. The germplasm from this region harbors enormous genetic variation for various traits but little is known regarding the genetic architecture of most traits. Here, 1425 Ethiopian landrace accessions were phenotyped under field conditions for presence or absence of awns, panicle compactness and shape, panicle exsertion, pericarp color, glume cover, plant height and smut resistance under diverse environmental conditions in Ethiopia. In addition, F1 hybrids obtained from a subset of 1341 accessions crossed to an A1 cytoplasmic male sterile line, ATx623, were scored for fertility/sterility reactions. Subsequently, genotyping-by-sequencing generated a total of 879,407 SNPs from which 72,190 robust SNP markers were selected after stringent quality control (QC). Pairwise distance-based hierarchical clustering identified 11 distinct groups. Of the genotypes assigned to either one of the 11 sub-populations, 65% had high ancestry membership coefficient with the likelihood of more than 0.60 and the remaining 35% represented highly admixed accessions. A genome-wide association study (GWAS) identified loci and SNPs associated with aforementioned traits. GWAS based on compressed mixed linear model (CMLM) identified SNPs with significant association (FDR ≤ 0.05) to the different traits studied. The percentage of total phenotypic variation explained with significant SNPs across traits ranged from 2 to 43%. Candidate genes showing significant association with different traits were identified. The sorghum bHLH transcription factor, ABORTED MICROSPORES was identified as a strong candidate gene conditioning male fertility. Notably, sorghum CLAVATA1 receptor like kinase, known for regulation of plant growth, and the ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR gene RAP2-7, known to suppress transition to flowering, were significantly associated with plant height. In addition, the YELLOW SEED1 like MYB transcription factor and TANNIN1 showed strong association with pericarp color validating previous observations. Overall, the genetic architecture of natural variation representing the complex Ethiopian sorghum germplasm was established. The study contributes to the characterization of genes and alleles controlling agronomic traits, and will serve as a source of markers for molecular breeding.
Collapse
Affiliation(s)
- Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Amare Seyoum
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Moges Mekonen
- Chiro Agricultural Research Center, Ethiopian Institute of Agricultural Research, Chiro, Ethiopia
| | - Amare Nega
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Dagnachew Lule
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Kebede Dessalegn
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Alemnesh Bekele
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Adane Gebreyohannes
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Adedayo Adeyanju
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Alemu Tirfessa
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Getachew Ayana
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Taye Taddese
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Firew Mekbib
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Ketema Belete
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- *Correspondence: Gebisa Ejeta,
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Tesfaye Mengiste,
| |
Collapse
|
40
|
Takenaka S, Nitta M, Nasuda S. Population structure and association analyses of the core collection of hexaploid accessions conserved ex situ in the Japanese gene bank NBRP-Wheat. Genes Genet Syst 2018; 93:237-254. [PMID: 30555105 DOI: 10.1266/ggs.18-00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we investigated the genetic diversity and population structure of the core collection of hexaploid wheat accessions in the Japanese wheat gene bank NBRP-Wheat. The core collection, consisting of 188 accessions of Triticum aestivum, T. spelta, T. compactum, T. sphaerococcum, T. macha and T. vavilovii, was intensively genotyped by DArTseq markers and consisted of 20,186 SNPs and 60,077 present and absent variations (PAVs). Polymorphic markers were distributed in all chromosomes, with a tendency for smaller numbers on the D-genome chromosomes. We examined the population structure by Bayesian clustering and principal component analysis with a general linear model. Overall, the core collection was divided into seven clusters. Non-admixture accessions in each cluster indicated that the clusters reflect the geographic distribution of the accessions. Both structure analyses strongly suggested that the cluster consisting of T. spelta and T. macha is out-grouped from other hexaploid wheat accessions. We performed genome-wide association analysis pilot studies for nine quantitative and seven qualitative traits and found marker-trait associations for all traits but one, indicating that the current core collection will be useful for detecting uncharacterized QTLs associated with phenotypes of interest.
Collapse
Affiliation(s)
- Shotaro Takenaka
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University.,Department of Plant Life Science, Faculty of Agriculture, Ryukoku University
| | - Miyuki Nitta
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
41
|
Nishijima R, Ikeda TM, Takumi S. Genetic mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheat Aegilops tauschii. Genetica 2017; 146:75-84. [PMID: 29101627 DOI: 10.1007/s10709-017-9998-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
Aegilops tauschii, a wild wheat relative, is the D-genome donor of common wheat. Subspecies and varieties of Ae. tauschii are traditionally classified based on differences in their inflorescence architecture. However, the genetic information for their diversification has been quite limited in the wild wheat relatives. The variety anathera has no awn on the lemma, but the genetic basis for this diagnostic character is unknown. Wide variations in awn length traits at the top and middle spikes were found in the Ae. tauschii core collection, and the awn length at the middle spike was significantly smaller in the eastward-dispersed sublineage than in those in other sublineages. To clarify loci controlling the awnless phenotype of var. anathera, we measured awn length of an intervariety F2 mapping population, and found that the F2 individuals could be divided into two groups mainly based on the awn length at the middle of spike, namely short and long awn groups, significantly fitting a 3:1 segregation ratio, which indicated that a single locus controls the awnless phenotype. The awnless locus, Anathera (Antr), was assigned to the distal region of the short arm of chromosome 5D. Quantitative trait locus analysis using the awn length data of each F2 individual showed that only one major locus was at the same chromosomal position as Antr. These results suggest that a single dominant allele determines the awnless diagnostic character in the variety anathera. The Antr dominant allele is a novel gene inhibiting awn elongation in wheat and its relatives.
Collapse
Affiliation(s)
- Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Tatsuya M Ikeda
- Western Region Agricultural Research Center of the National Agriculture and Food Research Organization, 6-12-1 Nishi-fukatsucho, Fukuyama, Hiroshima, 721-8514, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|