1
|
Gao R, He W, Zhu WT, Zhao X, Chen C, Wu Y, Wu S, Zhai JW, Liu ZJ. Selection of Reference Genes of Flower Development in Ludisia discolor. Genes (Basel) 2024; 15:1225. [PMID: 39336816 PMCID: PMC11431258 DOI: 10.3390/genes15091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: RT-qPCR is a powerful strategy for recognizing the most appropriate reference genes, which can successfully minimize experimental mistakes through accurate normalization. Ludisia discolor, recognized for its ornamental value, features little, distinctive blossoms with twisted lips and gynostemium showing chiral asymmetry, together with striking blood-red fallen leaves periodically marked with golden blood vessels. Methods and Results: To ensure the accuracy of qRT-PCR, selecting appropriate reference genes for quantifying target gene expression levels is essential. This study aims to identify stable reference genes during the development of L. discolor. In this study, the entire floral buds, including the lips and gynostemium from different development stages, were taken as materials. Based upon the transcriptome information of L. discolor, nine housekeeping genes, ACT, HIS, EF1-α1, EF1-α2, PP2A, UBQ1, UBQ2, UBQ3, and TUB, were selected in this research study as prospect interior referral genes. The expression of these nine genes were found by RT-qPCR and afterwards comprehensively examined by four software options: geNorm, NormFinder, BestKeeper, and ΔCt. The outcomes of the analysis showed that ACT was the most steady gene, which could be the most effective inner referral gene for the expression evaluation of flower advancement in L. discolor. Conclusions: The results of this study will contribute to the molecular biology research of flower development in L. discolor and closely related species.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyan He
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Tao Zhu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Wen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Jiang J, Mu C, Bai Y, Cheng W, Geng R, Xu J, Dou Y, Cheng Z, Gao J. Selection and Validation of Reference Genes in Dendrocalamus brandisii for Quantitative Real-Time PCR. PLANTS (BASEL, SWITZERLAND) 2024; 13:2363. [PMID: 39273847 PMCID: PMC11396877 DOI: 10.3390/plants13172363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with a wide distribution in tropical and subtropical regions. Due to its remarkable regenerative ability and exceptional flavor, this species plays a pivotal role in bolstering the economies of numerous nations across these regions. We recently published a high-quality genome of this species. To date, no study results have identified the optimal reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) normalization in Dendrocalamus brandisii. qRT-PCR offers a highly accurate and effective approach to analyzing gene expression. However, the precision of the resulting quantitative data hinges on the correct choice of reference genes. Twenty-one potential reference genes were identified from the D. brandisii transcriptomes. Their expression in 23 samples, including 8 different tissue organs and 15 samples of D. brandisii under various treatment conditions, were evaluated through qRT-PCR. Subsequently, four software programs-Delta CT, geNorm, NormFinder, and RefFinder-were employed to compare their expression stability. The results revealed that the selection of optimal reference genes varied based on the particular organ and condition being examined. EF-1-α-2 consistently exhibits the most stable expression across diverse tissues, while ACTIN-1, TUBULIN-1, and EF-1-α-2 were the most consistent reference genes in roots, culms, and leaves under various treatments, respectively. In this study, we identified and characterized appropriate internal genes utilized for calibrating qRT-PCR analyses of D. brandisii across different tissue organs and under various treatments. This research will provide key insights for advancing the study of gene functionality and molecular biology in D. brandisii and related species.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
3
|
Wang X, Shu X, Su X, Xiong Y, Xiong Y, Chen M, Tong Q, Ma X, Zhang J, Zhao J. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Centipedegrass under Different Abiotic Stress. Genes (Basel) 2023; 14:1874. [PMID: 37895223 PMCID: PMC10606319 DOI: 10.3390/genes14101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
As a C4 warm-season turfgrass, centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is known for its exceptional resilience to intensive maintenance practices. In this research, the most stably expressed reference genes in the leaves of centipedegrass under different stress treatments, including salt, cold, drought, aluminum (Al), and herbicide, were screened by the quantitative real-time PCR (RT-qPCR) technique. The stability of 13 candidate reference genes was evaluated by software GeNorm V3.4, NormFinder V20, BestKeeper V1.0, and ReFinder V1.0. The results of this experiment demonstrated that the expression of the UBC (ubiquitin-conjugating enzyme) remained the most stable under cold and Al stress conditions. On the other hand, the MD (malate dehydrogenase) gene exhibited the best performance in leaf tissues subjected to salt and drought stresses. Under herbicide stress, the expression level of the RIP (60S ribosomal protein L2) gene ranked the highest. The expression levels of abiotic stress-associated genes such as PIP1, PAL, COR413, ALMT9, and BAR were assessed to validate the reliability of the selected reference genes. This study provides valuable information and reference points for gene expression under abiotic stress conditions in centipedegrass.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xin Shu
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Minli Chen
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Qi Tong
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jianbo Zhang
- Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
4
|
Zhou Y, Zhang Y, Mu D, Lu Y, Chen W, Zhang Y, Zhang R, Qin Y, Yuan J, Pan L, Tang Q. Selection of Reference Genes in Evodia rutaecarpa var. officinalis and Expression Patterns of Genes Involved in Its Limonin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3197. [PMID: 37765365 PMCID: PMC10534417 DOI: 10.3390/plants12183197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
E. rutaecarpa var. officinalis is a traditional Chinese medicinal plant known for its therapeutic effects, which encompass the promotion of digestion, the dispelling of cold, the alleviation of pain, and the exhibition of anti-inflammatory and antibacterial properties. The principal active component of this plant, limonin, is a potent triterpene compound with notable pharmacological activities. Despite its significance, the complete biosynthesis pathway of limonin in E. rutaecarpa var. officinalis remains incompletely understood, and the underlying molecular mechanisms remain unexplored. The main purpose of this study was to screen the reference genes suitable for expression analysis in E. rutaecarpa var. officinalis, calculate the expression patterns of the genes in the limonin biosynthesis pathway, and identify the relevant enzyme genes related to limonin biosynthesis. The reference genes play a pivotal role in establishing reliable reference standards for normalizing the gene expression data, thereby ensuring precision and credibility in the biological research outcomes. In order to identify the optimal reference genes and gene expression patterns across the diverse tissues (e.g., roots, stems, leaves, and flower buds) and developmental stages (i.e., 17 July, 24 August, 1 September, and 24 October) of E. rutaecarpa var. officinalis, LC-MS was used to analyze the limonin contents in distinct tissue samples and developmental stages, and qRT-PCR technology was employed to investigate the expression patterns of the ten reference genes and eighteen genes involved in limonin biosynthesis. Utilizing a comprehensive analysis that integrated three software tools (GeNorm ver. 3.5, NormFinder ver. 0.953 and BestKeeper ver. 1.0) and Delta Ct method alongside the RefFinder website, the best reference genes were selected. Through the research, we determined that Act1 and UBQ served as the preferred reference genes for normalizing gene expression during various fruit developmental stages, while Act1 and His3 were optimal for different tissues. Using Act1 and UBQ as the reference genes, and based on the different fruit developmental stages, qRT-PCR analysis was performed on the pathway genes selected from the "full-length transcriptome + expression profile + metabolome" data in the limonin biosynthesis pathway of E. rutaecarpa var. officinalis. The findings indicated that there were consistent expression patterns of HMGCR, SQE, and CYP450 with fluctuations in the limonin contents, suggesting their potential involvement in the limonin biosynthesis of E. rutaecarpa var. officinalis. This study lays the foundation for further research on the metabolic pathway of limonin in E. rutaecarpa var. officinalis and provides reliable reference genes for other researchers to use for conducting expression analyses.
Collapse
Affiliation(s)
- Yu Zhou
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Yuxiang Zhang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Detian Mu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Ying Lu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Wenqiang Chen
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Yao Zhang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Ruiying Zhang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| | - Ya Qin
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Jianhua Yuan
- Changsha Hemao Agricultural Development Co., Ltd., Ningxiang County, Changsha 410609, China;
| | - Limei Pan
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Qi Tang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (Y.Z.); (D.M.); (Y.L.); (W.C.); (Y.Z.); (R.Z.)
| |
Collapse
|
5
|
Yin X, He T, Yi K, Zhao Y, Hu Y, Liu J, Zhang X, Meng L, Wang L, Liu H, Li Y, Cui G. Comprehensive evaluation of candidate reference genes for quantitative real-time PCR-based analysis in Caucasian clover. Sci Rep 2021; 11:3269. [PMID: 33558610 PMCID: PMC7870939 DOI: 10.1038/s41598-021-82633-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/19/2021] [Indexed: 11/08/2022] Open
Abstract
The forage species Caucasian clover (Trifolium ambiguum M. Bieb.), a groundcover plant, is resistant to both cold and drought. However, reference genes for qRT-PCR-based analysis of Caucasian clover are lacking. In this study, 12 reference genes were selected on the basis of transcriptomic data. These genes were used to determine the most stably expressed genes in various organs of Caucasian clover under cold, salt and drought stress for qRT-PCR-based analysis. Reference gene stability was analyzed by geNorm, NormFinder, BestKeeper, the ∆Ct method and RefFinder. Under salt stress, RCD1 and PPIL3 were the most stable reference genes in the leaves, and NLI1 and RCD1 were the most stable references genes in the roots. Under low-temperature stress, APA and EFTu-GTP were the most stable reference genes in the leaves, and the RCD1 and NLI2 genes were highly stable in the roots. Under 10% PEG-6000 stress, NLI1 and NLI2 were highly stable in the leaves, and RCD1 and PPIL3 were the most stable in the roots. Overall, RCD1 and NLI2 were the most stable reference genes in organs under normal conditions and across all samples. The most and least stable reference genes were validated by assessing their appropriateness for normalization via WRKY genes.
Collapse
Affiliation(s)
- Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Taotao He
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Kun Yi
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Yihang Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Yao Hu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Jiaxue Liu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Lina Wang
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Haoyue Liu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Yonggang Li
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin City, Heilongjiang, China.
| |
Collapse
|
6
|
Liang C, Hao J, Meng Y, Luo L, Li J. Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress. PLoS One 2018; 13:e0194436. [PMID: 29543906 PMCID: PMC5854380 DOI: 10.1371/journal.pone.0194436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/02/2018] [Indexed: 11/28/2022] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is an economically important pathogen and causes significant reduction of both yield and quality of cucumber (Cucumis sativus). Currently, there were no satisfied strategies for controlling the disease. A better understanding of microRNA (miRNA) expression related to the regulation of plant-virus interactions and virus resistance would be of great assistance when developing control strategies for CGMMV. However, accurate expression analysis is highly dependent on robust and reliable reference gene used as an internal control for normalization of miRNA expression. Most commonly used reference genes involved in CGMMV-infected cucumber are not universally expressed depending on tissue types and stages of plant development. It is therefore crucial to identify suitable reference genes in investigating the role of miRNA expression. In this study, seven reference genes, including Actin, Tubulin, EF-1α, 18S rRNA, Ubiquitin, GAPDH and Cyclophilin, were evaluated for the most accurate results in analyses using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression was assayed on cucumber leaves, stems and roots that were collected at different days post inoculation with CGMMV. The expression data were analyzed using algorithms including delta-Ct, geNorm, NormFinder, and BestKeeper as well as the comparative tool RefFinder. The reference genes were subsequently validated using miR159. The results showed that EF-1α and GAPDH were the most reliable reference genes for normalizing miRNA expression in leaf, root and stem samples, while Ubiquitin and EF-1α were the most suitable combination overall.
Collapse
Affiliation(s)
- Chaoqiong Liang
- Department of Plant Pathology, China Agricultural University/Key Laboratory of Plant Pathology, Ministry of Agriculture, Beijing, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Plant Gene Expression Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, Maine, United States of America
| | - Yan Meng
- Department of Plant Pathology, China Agricultural University/Key Laboratory of Plant Pathology, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University/Key Laboratory of Plant Pathology, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University/Key Laboratory of Plant Pathology, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Liang W, Zou X, Carballar-Lejarazú R, Wu L, Sun W, Yuan X, Wu S, Li P, Ding H, Ni L, Huang W, Zou S. Selection and evaluation of reference genes for qRT-PCR analysis in Euscaphis konishii Hayata based on transcriptome data. PLANT METHODS 2018; 14:42. [PMID: 29881443 PMCID: PMC5985561 DOI: 10.1186/s13007-018-0311-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/29/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Quantitative real-time reverse transcription-polymerase chain reaction has been widely used in gene expression analysis, however, to have reliable and accurate results, reference genes are necessary to normalize gene expression under different experimental conditions. Several reliable reference genes have been reported in plants of Traditional Chinese Medicine, but none have been identified for Euscaphis konishii Hayata. RESULTS In this study, 12 candidate reference genes, including 3 common housekeeping genes and 9 novel genes based on E. konishii Hayata transcriptome data were selected and analyzed in different tissues (root, branch, leaf, capsule and seed), capsule and seed development stages. Expression stability was calculated using geNorm and NormFinder, the minimal number of reference genes required for accurate normalization was calculated by Vn/Vn + 1 using geNorm. EkEEF-5A-1 and EkADF2 were the two most stable reference genes for all samples, while EkGSTU1 and EkGAPDH were the most stable reference genes for tissue samples. For seed development stages, EkGAPDH and EkEEF-5A-1 were the most stable genes, whereas EkGSTU1 and EkGAPDH were identified as the two most stable genes in the capsule development stages. Two reference genes were sufficient to normalize gene expression across all sample sets. CONCLUSION Results of this study revealed that suitable reference genes should be selected for different experimental samples, and not all the common reference genes are suitable for different tissue samples and/or experimental conditions. In this study, we present the first data of reference genes selection for E. konishii Hayata based on transcriptome data, our data will facilitate further studies in molecular biology and gene function on E. konishii Hayata and other closely related species.
Collapse
Affiliation(s)
- Wenxian Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxing Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Lingjiao Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weihong Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyuan Yuan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengfei Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Ding
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Ni
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Huang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|