1
|
Farouk SM, Ahmed AAM, Hashem MA, Badran SH. Differential expression of prostatic androgen receptor and alpha-smooth muscle actin in castrated and non-castrated dogs. Res Vet Sci 2025; 185:105563. [PMID: 39914232 DOI: 10.1016/j.rvsc.2025.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
The prostate, the only accessory sex gland in dogs, is androgen-dependent and has a vital influence on male fertility. Either for therapeutic or preventative purposes, orchidectomy is performed in both human and animal, especially for androgen-dependent disorders. Thereby, the current study aimed to evaluate the immunohistochemical characteristics of the canine prostate gland after unilateral and bilateral orchiectomy. Primarily, twenty-one healthy male dogs of 18-20 kg and 1-2 years were divided into three main groups; control, unilateral castrated and bilateral castrated groups. The last two groups were subdivided, based on post castration time, into three subgroups; 10, 20, and 30 days. The prostatic tissues were harvested from all experimental groups for immunohistochemical studies. The results revealed progressive significant alterations in the prostate gland immunostaining affinity after bilateral castration as time passed; gradual reduction in the androgen receptors and α-SMA immunoexpression was observed. On the contrary, the unilateral procedure conserves the prostatic tissue nearly similar to the control. It was concluded that, however, immunohistochemical characteristics of prostatic tissue were maintained without detectable changes after unilateral castration, there was a marked ongoing decrease of androgen receptors and α-SMA immunoreactivity post bilateral castration procedure.
Collapse
Affiliation(s)
- Sameh M Farouk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal A M Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Hashem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Safa H Badran
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Arish University, North Sinai, Egypt.
| |
Collapse
|
2
|
Fukui T, Okasho K, Okuno Y, Fujiwara M, Hikami K, Fukunaga A, Sunada T, Kita Y, Sumiyoshi T, Goto T, Saito R, Ogawa O, Kobayashi T, Akamatsu S. A highly sensitive screening system to evaluate the reversibility of neuroendocrine prostate cancer to prostate adenocarcinoma. Cancer Med 2025; 14:e70047. [PMID: 40013333 PMCID: PMC11865886 DOI: 10.1002/cam4.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 02/28/2025] Open
Abstract
We established a robust and sensitive androgen response element luciferase reporter assay to monitor androgen receptor (AR) activity using KUCaP13 cells, a novel human-derived treatment-related neuroendocrine prostate cancer (t-NEPC) cell line. A high-throughput screening using a chemical library to identify potential compounds that induce AR re-expression in KUCaP13 cells revealed 30 candidate molecules potentially enhancing luciferase luminescence; however, subsequent validation steps demonstrated these signals to be false-positives. Despite not achieving the goal of AR re-expression, this study stands as a significant proof-of-concept for the application of high-throughput screening approaches in t-NEPC research.
Collapse
Affiliation(s)
- Tomohiro Fukui
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Kosuke Okasho
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yukiko Okuno
- Medical Research Support Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Maki Fujiwara
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Kensuke Hikami
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Arinobu Fukunaga
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takuro Sunada
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yuki Kita
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takayuki Sumiyoshi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takayuki Goto
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Ryoichi Saito
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Osamu Ogawa
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takashi Kobayashi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Shusuke Akamatsu
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
- Department of UrologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
3
|
Cho H, Jun I, Adnan KM, Park CG, Lee SA, Yoon J, Ryu CS, Kim YJ. Effects of 5α-reductase inhibition by dutasteride on reproductive gene expression and hormonal responses in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110048. [PMID: 39313015 DOI: 10.1016/j.cbpc.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Steroid 5α-reductase (SRD5A) is a crucial enzyme involved in steroid metabolism, primarily converting testosterone to dihydrotestosterone (DHT). Dutasteride, an inhibitor of SRD5A types 1 and 2, is widely used for treating benign prostatic hyperplasia. An adverse outcome pathway (AOP) has been documented wherein SRD5A inhibition decreases DHT synthesis, leading to reduced levels of 17β-estradiol (E2) and vitellogenin (VTG), subsequently impairing fecundity in fish (AOP 289). However, the molecular and cellular mechanisms underlying these effects remain poorly understood. In this study, we assessed the impact of SRD5A inhibition on zebrafish embryos (Danio rerio). Exposure to dutasteride resulted in decreased DHT, E2, and VTG levels, showing a positive correlation. Dutasteride also downregulated the expression of reproduction-related genes (srd5a2, cyp19a1, esr1, esr2a, esr2b, and vtg), with interrelated reductions observed across these levels. Docking studies suggested that dutasteride's effects may operate independently of androgen receptor (AR) and estrogen receptor (ER) interactions. Furthermore, co-exposure of dutasteride (0.5 or 2 μM) with 0.5 μM DHT revealed gene expression levels comparable to the control group. These findings underscore DHT's pivotal role in modulating estrogenic function and the interplay between estrogenic and androgenic responses in vertebrates. Our proposed AOP model offers insights into mechanistic gaps, thereby enhancing current understanding and bridging knowledge disparities.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Karim Md Adnan
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-Ro, Jeju 63243, Republic of Korea
| | - Juyong Yoon
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Barsky ST, Monks DA. Lifespan Effects of Muscle-Specific Androgen Receptor Overexpression on Body Composition of Male and Female Rats. Endocrinology 2024; 165:bqae012. [PMID: 38301268 DOI: 10.1210/endocr/bqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Androgenic actions of gonadal testosterone are thought to be a major mechanism promoting sex differences in body composition across the lifespan. However, this inference is based on studies of androgen receptor (AR) function in late adolescent or emerging adult rodents. Here we assess body composition and AR expression in skeletal muscle of rats at defined ages, comparing wild-type (WT) to transgenic human skeletal actin-driven AR overexpression (HSAAR) rats which overexpress AR in skeletal muscle. Male and female HSAAR and WT Sprague Dawley rats (N = 288) underwent dual-energy x-ray absorptiometry (DXA) scanning and tissue collection at postnatal day (PND) 1, 10, 21, 42, 70, 183, 243, and 365. Expected sex differences in body composition and muscle mass largely onset with puberty (PND-21), with no associated changes to skeletal muscle AR protein. In adulthood, HSAAR increased tibialis anterior (TA) and extensor digitorum longus mass in males, and reduced the expected gain in gonadal fat mass in both sexes. In WT rats, AR protein was reduced in soleus, but not TA, throughout life. Nonetheless, soleus AR protein expression was greater in male rats than female rats at all ages of sexual development, yet only at PND-70 in TA. Overall, despite muscle AR overexpression effects, results are inconsistent with major sex differences in body composition during sexual development being driven by changes in muscle AR, rather suggesting that changes in ligand promote sexual differentiation of body composition during pubertal timing. Nonetheless, increased skeletal muscle AR in adulthood can be sufficient to increase muscle mass in males, and reduce adipose in both sexes.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
5
|
Hong JY, Wang JY, Yue HW, Zhang XL, Zhang SX, Jiang LL, Hu HY. Coaggregation of polyglutamine (polyQ) proteins is mediated by polyQ-tract interactions and impairs cellular proteostasis. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37171184 DOI: 10.3724/abbs.2023081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Nine polyglutamine (polyQ) proteins have already been identified that are considered to be associated with the pathologies of neurodegenerative disorders called polyQ diseases, but whether these polyQ proteins mutually interact and synergize in proteinopathies remains to be elucidated. In this study, 4 polyQ-containing proteins, androgen receptor (AR), ataxin-7 (Atx7), huntingtin (Htt) and ataxin-3 (Atx3), are used as model molecules to investigate their heterologous coaggregation and consequent impact on cellular proteostasis. Our data indicate that the N-terminal fragment of polyQ-expanded (PQE) Atx7 or Htt can coaggregate with and sequester AR and Atx3 into insoluble aggregates or inclusions through their respective polyQ tracts. In vitro coprecipitation and NMR titration experiments suggest that this specific coaggregation depends on polyQ lengths and is probably mediated by polyQ-tract interactions. Luciferase reporter assay shows that these coaggregation and sequestration effects can deplete the cellular availability of AR and consequently impair its transactivation function. This study provides valid evidence supporting the viewpoint that coaggregation of polyQ proteins is mediated by polyQ-tract interactions and benefits our understanding of the molecular mechanism underlying the accumulation of different polyQ proteins in inclusions and their copathological causes of polyQ diseases.
Collapse
Affiliation(s)
- Jun-Ye Hong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Xian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
6
|
Li M, Wang R, Wang P. Galaxolide and Irgacure 369 are novel environmental androgens. CHEMOSPHERE 2023; 324:138329. [PMID: 36906002 DOI: 10.1016/j.chemosphere.2023.138329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Endocrine disruptors are environmental chemicals that can interfere with the endocrine system. However, research on endocrine disruptors that interfere with androgen's actions is still limited. The purpose of this study is to use in silico computation, i.e., molecular docking to facilitate the identification of environmental androgens. Computational docking was used to study the binding interactions of environmental/industrial compounds with the three dimensional structure of human androgen receptor (AR). Then reporter assay and cell proliferation assay using AR-expressing LNCaP prostate cancer cells were used to determine their in vitro androgenic activity. Animal studies using immature male rats were also carried out to test their in vivo androgenic activity. Two novel environmental androgens were identified. As a photoinitiator, 2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone (Irgacure 369, abbreviated as IC-369) is widely used in the packaging and electronics industries. Galaxolide (HHCB) is widely used in the production of perfume, fabric softeners and detergents. We found that both IC-369 and HHCB could activate AR transcriptional activity and promote cell proliferation in AR-sensitive LNCaP cells. Furthermore, IC-369 and HHCB could induce cell proliferation and histological changes of seminal vesicles in immature rats. RNA sequencing and qPCR analysis showed that androgen-related genes in seminal vesicle tissue were up-regulated by IC-369 and HHCB. In conclusion, IC-369 and HHCB are new environmental androgens that bind AR and induce AR transcriptional activity, thereby exerting toxicological effects on the development of male reproductive organs.
Collapse
Affiliation(s)
- Mingzhao Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ren Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
7
|
Kim S, Au CC, Jamalruddin MAB, Abou-Ghali NE, Mukhtar E, Portella L, Berger A, Worroll D, Vatsa P, Rickman DS, Nanus DM, Giannakakou P. AR-V7 exhibits non-canonical mechanisms of nuclear import and chromatin engagement in castrate-resistant prostate cancer. eLife 2022; 11:e73396. [PMID: 35848798 PMCID: PMC9398446 DOI: 10.7554/elife.73396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Expression of the AR splice variant, androgen receptor variant 7 (AR-V7), in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here, we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-α/β pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.
Collapse
Affiliation(s)
- Seaho Kim
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - CheukMan C Au
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | | | | | - Eiman Mukhtar
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Luigi Portella
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Adeline Berger
- Department of Pathology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Daniel Worroll
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Prerna Vatsa
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - David S Rickman
- Department of Pathology, Weill Cornell Medical CollegeNew YorkUnited States
| | - David M Nanus
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Meyer Cancer Center, Weill Cornell Medical CollegeNew YorkUnited States
| | - Paraskevi Giannakakou
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Meyer Cancer Center, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
8
|
Azeem W, Olsen JR, Hellem MR, Hua Y, Marvyin K, Ke X, Øyan AM, Kalland KH. Proteasome-Mediated Regulation of GATA2 Expression and Androgen Receptor Transcription in Benign Prostate Epithelial Cells. Biomedicines 2022; 10:biomedicines10020473. [PMID: 35203681 PMCID: PMC8962351 DOI: 10.3390/biomedicines10020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
GATA2 has been shown to be an important transcription factor together with androgen receptor (AR) in prostate cancer cells. Less is known about GATA2 in benign prostate epithelial cells. We have investigated if GATA2 exogenous expression in prostate epithelial basal-like cells could induce AR transcription or luminal differentiation. Prostate epithelial basal-like (transit amplifying) cells were transduced with lentiviral vector expressing GATA2. Luminal differentiation markers were assessed by RT-qPCR, Western blot and global gene expression microarrays. We utilized our previously established AR and androgen-dependent fluorescence reporter assay to investigate AR activity at the single-cell level. Exogenous GATA2 protein was rapidly and proteasome-dependently degraded. GATA2 protein expression was rescued by the proteasome inhibitor MG132 and partly by mutating the target site of the E3 ligase FBXW7. Moreover, MG132-mediated proteasome inhibition induced AR mRNA and additional luminal marker gene transcription in the prostate transit amplifying cells. Different types of intrinsic mechanisms restricted GATA2 expression in the transit amplifying cells. The appearance of AR mRNA and additional luminal marker gene expression changes following proteasome inhibition suggests control of essential cofactor(s) of AR mRNA expression and luminal differentiation at this proteolytic level.
Collapse
Affiliation(s)
- Waqas Azeem
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
- Centre for Cancer Biomarkers, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (W.A.); (K.-H.K.)
| | - Jan Roger Olsen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Margrete Reime Hellem
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Kristo Marvyin
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Xisong Ke
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
| | - Anne Margrete Øyan
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (J.R.O.); (M.R.H.); (Y.H.); (K.M.); (X.K.); (A.M.Ø.)
- Centre for Cancer Biomarkers, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: (W.A.); (K.-H.K.)
| |
Collapse
|
9
|
Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson MT, Schmitz W, Wach S, Krebs M, Hartmann E, Puhr M, Müller A, Spahn M, Seitz AK, Frank T, Marouf H, Büchel G, Eckstein M, Kübler H, Eilers M, Saar M, Junker K, Röhrig F, Kneitz B, Rosenfeldt MT, Schulze A. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat Commun 2021; 12:5066. [PMID: 34417456 PMCID: PMC8379214 DOI: 10.1038/s41467-021-25325-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) shows strong dependence on the androgen receptor (AR) pathway. Here, we show that squalene epoxidase (SQLE), an enzyme of the cholesterol biosynthesis pathway, is overexpressed in advanced PCa and its expression correlates with poor survival. SQLE expression is controlled by micro-RNA 205 (miR-205), which is significantly downregulated in advanced PCa. Restoration of miR-205 expression or competitive inhibition of SQLE led to inhibition of de novo cholesterol biosynthesis. Furthermore, SQLE was essential for proliferation of AR-positive PCa cell lines, including abiraterone or enzalutamide resistant derivatives, and blocked transactivation of the AR pathway. Inhibition of SQLE with the FDA approved antifungal drug terbinafine also efficiently blocked orthotopic tumour growth in mice. Finally, terbinafine reduced levels of prostate specific antigen (PSA) in three out of four late-stage PCa patients. These results highlight SQLE as a therapeutic target for the treatment of advanced PCa.
Collapse
Affiliation(s)
- C Kalogirou
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - J Linxweiler
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - P Schmucker
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - M T Snaebjornsson
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Heidelberg, Germany
| | - W Schmitz
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - S Wach
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - M Krebs
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - E Hartmann
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - M Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University, Homburg/Saar, Germany
| | - M Spahn
- Center for Urology, Hirslanden Private Hospital Group, Zurich, Switzerland
| | - A K Seitz
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - T Frank
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - H Marouf
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - G Büchel
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - M Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - H Kübler
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - M Eilers
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - M Saar
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - K Junker
- Department of Urology, Saarland University, Homburg/Saar, Germany
| | - F Röhrig
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany
| | - B Kneitz
- Department of Urology and Paediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - M T Rosenfeldt
- Institute of Pathology, Julius Maximilians University and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - A Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Würzburg, Germany.
- German Cancer Research Center, Division of Tumor Metabolism and Microenvironment, Heidelberg, Germany.
| |
Collapse
|
10
|
Selective targeting of the androgen receptor-DNA binding domain by the novel antiandrogen SBF-1 and inhibition of the growth of prostate cancer cells. Invest New Drugs 2021; 39:442-457. [PMID: 33411211 DOI: 10.1007/s10637-020-01050-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Prostate cancers are reliant on androgens for growth and survival. Clinicians and researchers are looking for potent treatments for the resistant forms of prostate cancer; however, a handful of small molecules used in the treatment of castration-resistant prostate cancer have not shown potent effects owing to the mutations in the AR (Androgen Receptor). We used SBF-1, a well-characterized antitumor agent with potent cytotoxic effects against different kinds of cancers and investigated its effect on human prostate cancer. SBF-1 substantially inhibited the proliferation, induced apoptosis, and caused cell cycle arrest in LNCaP and PC3/AR+ prostate cancer cell lines. SBF-1 inhibited the activation of the IGF-1-PNCA pathway, as demonstrated by decreased expression of IGF-1 (insulin-like growth factor 1), proliferating cell nuclear antigen (PCNA), and its downstream Bcl-2 protein. Using microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) assays, we observed a direct binding of SBF-1 to the AR. SBF-1 binds to the AR-DBD (DNA-binding domain) and blocks the transcription of its target gene. SBF-1 demonstrated a potent antitumor effect in vivo; it inhibited AR signaling and suppressed tumor growth in animals. Our study suggests that SBF-1 is an inhibitor of the AR and might be used in the treatment of prostate cancer.
Collapse
|
11
|
Lu K, Yu M, Chen Y. Non-coding RNAs regulating androgen receptor signaling pathways in prostate cancer. Clin Chim Acta 2020; 513:57-63. [PMID: 33309734 DOI: 10.1016/j.cca.2020.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignancies for men worldwide, and abnormal activation of the androgen receptor (AR) signaling plays an important role in the progression of PCa. However, in the androgen deprivation therapy (ADT), AR signaling inevitably recovered, as a result, exploring novel regulating mechanisms is of great importance. Recently, non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, circular RNAs, could be involved in the progression of PCa, and participate in the regulatory network of AR signaling in a variety of ways. This will help to identify novel molecular mechanisms to promote the development of PCa and find new potential therapeutic targets. In this review, we provide a synopsis of the latest research relating to ncRNAs and associated AR signaling in PCa.
Collapse
Affiliation(s)
- Ke Lu
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China
| | - Muyuan Yu
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China
| | - Yongchang Chen
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China.
| |
Collapse
|
12
|
Azeem W, Bakke RM, Appel S, Øyan AM, Kalland KH. Dual Pro- and Anti-Inflammatory Features of Monocyte-Derived Dendritic Cells. Front Immunol 2020; 11:438. [PMID: 32292402 PMCID: PMC7120039 DOI: 10.3389/fimmu.2020.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
The transcription factor β-catenin is able to induce tolerogenic/anti-inflammatory features in different types of dendritic cells (DCs). Monocyte-derived dendritic cells (moDCs) have been widely used in dendritic cell-based cancer therapy, but so far with limited clinical efficacy. We wanted to investigate the hypothesis that aberrant differentiation or induction of dual pro- and anti-inflammatory features may be β-catenin dependent in moDCs. β-catenin was detectable in both immature and lipopolysaccharide (LPS)-stimulated DCs. The β-catenin inhibitor ICG-001 dose-dependently increased the pro-inflammatory signature cytokine IL-12p70 and decreased the anti-inflammatory signature molecule IL-10. The β-catenin activator 6-bromoindirubin-3′-oxime (6-BIO) dose-dependently increased total and nuclear β-catenin, and this was associated with decreased IL-12p70, increased IL-10, and reduced surface expression of activation markers, such as CD80 and CD86, and increased expression of inhibitory markers, such as PD-L1. 6-BIO and ICG-001 competed dose-dependently regarding these features. Genome-wide mRNA expression analyses further underscored the dual development of pro- and anti-inflammatory features of LPS-matured moDCs and suggest a role for β-catenin inhibition in production of more potent therapeutic moDCs.
Collapse
Affiliation(s)
- Waqas Azeem
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ragnhild Maukon Bakke
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| | - Silke Appel
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Anne Margrete Øyan
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| | - Karl-Henning Kalland
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Norway Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Hua Y, Azeem W, Shen Y, Zhang S, Olsen JR, Øyan AM, Ke X, Zhang W, Kalland KH. Dual androgen receptor (AR) and STAT3 inhibition by a compound targeting the AR amino-terminal domain. Pharmacol Res Perspect 2018; 6:e00437. [PMID: 30410767 PMCID: PMC6218398 DOI: 10.1002/prp2.437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer (PCa) often recurs as incurable castration-resistant prostate cancer (CRPC) after the failure of androgen deprivation therapy. CRPC development relies on androgen receptor (AR) signaling. The IL6/STAT3 pathway is also a key driver of CRPC. The crosstalk between IL6/STAT3 and the AR pathways provides opportunities to explore next-generation agents to treat PCa. Through screening of around 600 natural compounds in our newly established prostate tumorigenesis model, potential STAT3 signaling inhibitors were found and additionally examined for effects on AR signaling. The small molecular compound 154 exhibited dual effects on IL6/STAT3 and AR pathways. We show here that compound 154 inhibits AR and STAT3 transcriptional activity, reduces the expression of phosphorylation of STAT3 (Y705) and downregulates the mRNA levels of AR target genes. Compound 154 also inhibits protein expression of AR and AR splice variants (ARv567es and AR-V7) without altering AR mRNA levels. Compound 154 binds to AR directly, but not to STAT3 and is identified as an antagonist of the AR amino-terminal domain (NTD) by disrupting protein-protein interactions between STAT3 and the AR NTD. Moreover, compound 154 does not reduce AR nuclear translocation. Compound 154 possesses the potential to become a leading compound in novel therapies against CRPC.
Collapse
Affiliation(s)
- Yaping Hua
- Department of Clinical Science University of Bergen Bergen Norway
| | - Waqas Azeem
- Department of Clinical Science University of Bergen Bergen Norway.,Centre for Cancer Biomarkers University of Bergen Bergen Norway
| | - Yunheng Shen
- College of Pharmacy Second Military Medical University Shanghai China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University Qinghai China
| | - Jan R Olsen
- Department of Clinical Science University of Bergen Bergen Norway
| | - Anne M Øyan
- Department of Clinical Science University of Bergen Bergen Norway
| | - Xisong Ke
- Department of Clinical Science University of Bergen Bergen Norway
| | - Weidong Zhang
- College of Pharmacy Second Military Medical University Shanghai China
| | - Karl-Henning Kalland
- Department of Clinical Science University of Bergen Bergen Norway.,Centre for Cancer Biomarkers University of Bergen Bergen Norway.,Department of Microbiology Haukeland University Hospital Bergen Norway
| |
Collapse
|