1
|
Loh CA, Shields DA, Schwing A, Evrony GD. High-fidelity, large-scale targeted profiling of microsatellites. Genome Res 2024; 34:1008-1026. [PMID: 39013593 PMCID: PMC11368184 DOI: 10.1101/gr.278785.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Microsatellites are highly mutable sequences that can serve as markers for relationships among individuals or cells within a population. The accuracy and resolution of reconstructing these relationships depends on the fidelity of microsatellite profiling and the number of microsatellites profiled. However, current methods for targeted profiling of microsatellites incur significant "stutter" artifacts that interfere with accurate genotyping, and sequencing costs preclude whole-genome microsatellite profiling of a large number of samples. We developed a novel method for accurate and cost-effective targeted profiling of a panel of more than 150,000 microsatellites per sample, along with a computational tool for designing large-scale microsatellite panels. Our method addresses the greatest challenge for microsatellite profiling-"stutter" artifacts-with a low-temperature hybridization capture that significantly reduces these artifacts. We also developed a computational tool for accurate genotyping of the resulting microsatellite sequencing data that uses an ensemble approach integrating three microsatellite genotyping tools, which we optimize by analysis of de novo microsatellite mutations in human trios. Altogether, our suite of experimental and computational tools enables high-fidelity, large-scale profiling of microsatellites, which may find utility in diverse applications such as lineage tracing, population genetics, ecology, and forensics.
Collapse
Affiliation(s)
- Caitlin A Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Danielle A Shields
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Gilad D Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA;
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| |
Collapse
|
2
|
Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity. Methods Mol Biol 2021; 2222:263-286. [PMID: 33301099 DOI: 10.1007/978-1-0716-0997-2_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Retrotransposable elements (RTEs) are highly common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The "copy-out and paste-in" life cycle of replicative transposition in these dispersive and ubiquitous RTEs leads to new genome insertions without excision of the original element. RTEs are important drivers of species diversity; they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative components in genome evolution. Accordingly, various applications have been developed to explore the polymorphisms in RTE insertion patterns. These applications include conventional or anchored polymerase chain reaction (PCR) and quantitative or digital PCR with primers designed for the 5' or 3' junction. Marker systems exploiting these PCR methods can be easily developed and are inexpensively used in the absence of extensive genome sequence data. The main inter-repeat amplification polymorphism techniques include inter-retrotransposon amplified polymorphism (IRAP), retrotransposon microsatellite amplified polymorphism (REMAP), and Inter-Primer Binding Site (iPBS) for PCR amplification with a single or two primers.
Collapse
|
3
|
Kalendar R, Raskina O, Belyayev A, Schulman AH. Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants. Int J Mol Sci 2020; 21:ijms21082931. [PMID: 32331257 PMCID: PMC7215508 DOI: 10.3390/ijms21082931] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 5), FI-00014 Helsinki, Finland
- RSE “National Center for Biotechnology”, Korgalzhyn Highway 13/5, Nur-Sultan 010000, Kazakhstan
- Correspondence: (R.K.); (A.H.S.)
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel;
| | - Alexander Belyayev
- Laboratory of Molecular Cytogenetics and Karyology, Institute of Botany of the ASCR, Zámek 1, CZ-252 43 Průhonice, Czech Republic;
| | - Alan H. Schulman
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
- Correspondence: (R.K.); (A.H.S.)
| |
Collapse
|
4
|
Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, Brouwer CR, Reid RR, Jay JJ, Bekele WA, Jackson EW, Tinker NA, Langdon T, Schlueter JA, Jellen EN. Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biol 2019; 17:92. [PMID: 31757219 PMCID: PMC6874827 DOI: 10.1186/s12915-019-0712-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.
Collapse
Affiliation(s)
- Peter J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA.
| | - Rebekah Lee
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Rachel Walstead
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | - Melissa C Fogarty
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Cory R Brouwer
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Robert R Reid
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jeremy J Jay
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | | | | | - Tim Langdon
- IBERS, Aberystwyth University, Aberystwyth, Wales, UK
| | | | - Eric N Jellen
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| |
Collapse
|
5
|
Lang T, Li G, Wang H, Yu Z, Chen Q, Yang E, Fu S, Tang Z, Yang Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification. PLANTA 2019; 249:663-675. [PMID: 30357506 DOI: 10.1007/s00425-018-3033-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/20/2018] [Indexed: 05/07/2023]
Abstract
A general distribution of tandem repeats (TRs) in the wheat genome was predicted and a new web page combined with fluorescence in situ hybridization experiments, and the newly developed Oligo probes will improve the resolution for wheat chromosome identification. Comprehensive sequence analysis of tandem repeats (TR) in the wheat reference genome permits discovery and application of TRs for chromosome identification. Genome-wide localization of TRs was identified in the reference sequences of Chinese Spring using Tandem Repeat Finder (TRF). A database of repeats unit size, array number, and physical coverage length of TRs in the wheat genome was built. The distribution of TRs occupied 3-5% of the wheat chromosomes, with non-random dispersal across the A, B, and D genomes. Three classes of TRs surrounding the predicted genes were compared. An optimized computer-assisted website page B2DSC was constructed for the general distribution and chromosomally enriched zones of TR sequences to be displayed graphically. The physical distribution of predicted TRs in the wheat genome by B2DSC matched well with the corresponding hybridization signals obtained with fluorescence in situ hybridization (FISH). We developed 20 oligonucleotide probes representing 20-60 bp lengths of high copy number of TRs and verified by FISH. An integrated physical map of TR-Oligo probes for wheat chromosome identification was constructed. Our results suggest that the combination of both molecular cytogenetics and genomic research will significantly benefit wheat breeding through chromosome manipulation and engineering.
Collapse
Affiliation(s)
- Tao Lang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hongjin Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhihui Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiheng Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Shulan Fu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongxiang Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|