1
|
Zhao J, Guo F, Wang M, Zhang J, Ying S, Gao Y, Yang G, Hong W. The advancement of biosensor design and construction utilizing biomolecular motors. Synth Syst Biotechnol 2025; 10:543-554. [PMID: 40092161 PMCID: PMC11908458 DOI: 10.1016/j.synbio.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Biomolecular motors have been extensively studied as efficient molecular machines in detection systems owing to their unique signal conversion mechanisms and high energy conversion efficiencies. The application of these motors in the detection of pathogenic microorganisms is particularly promising. Through reasonable design and optimization, biomolecular motors can enable precise and efficient detection, enhancing clinical diagnostics. This paper reviews recent advances in detection systems utilizing various biomolecular motors, including kinesin, dynein, myosin, DNA polymerase, FoF1-ATPase, and flagellar motors. Detection mechanisms involving these motors are also introduced. Furthermore, the review covers recent progress in detecting antigens, antibodies, bacteria, and small molecules using biomolecular motors. Finally, the challenges and future prospects of biomolecular motor-based detection systems for pathogenic microorganisms are discussed, highlighting their potential as rapid and efficient tools for applications in food safety and medicine.
Collapse
Affiliation(s)
- Jinhong Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Jie Zhang
- Taizhou Technician College, 318000, Taizhou, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Ying Gao
- Zhejiang Moda Biotech Co., Ltd, 310018, Hangzhou, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Weiyong Hong
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, 318000, Taizhou, China
| |
Collapse
|
2
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
3
|
Changes within the central stalk of E. coli F 1F o ATP synthase observed after addition of ATP. Commun Biol 2023; 6:26. [PMID: 36631659 PMCID: PMC9834311 DOI: 10.1038/s42003-023-04414-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.
Collapse
|
4
|
Krah A, Vogelaar T, de Jong SI, Claridge JK, Bond PJ, McMillan DGG. ATP binding by an F 1F o ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria. Front Mol Biosci 2023; 10:1059673. [PMID: 36923639 PMCID: PMC10010621 DOI: 10.3389/fmolb.2023.1059673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023] Open
Abstract
It is a conjecture that the ε subunit regulates ATP hydrolytic function of the F1Fo ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, preventing ATP hydrolysis. The ε subunit takes a contracted conformation when bound to ATP, thus would not interfere with catalysis. A recent crystallographic study has disputed this; the Caldalkalibacillus thermarum TA2.A1 F1Fo ATP synthase cannot natively hydrolyse ATP, yet studies have demonstrated that the loss of the ε subunit terminal helix results in an ATP synthase capable of ATP hydrolysis, supporting ε subunit function. Analysis of sequence and crystallographic data of the C. thermarum F1Fo ATP synthase revealed two unique histidine residues. Molecular dynamics simulations suggested that the protonation state of these residues may influence ATP binding site stability. Yet these residues lie outside the ATP/Mg2+ binding site of the ε subunit. We then probed the effect of pH on the ATP binding affinity of the ε subunit from the C. thermarum F1Fo ATP synthase at various physiologically relevant pH values. We show that binding affinity changes 5.9 fold between pH 7.0, where binding is weakest, to pH 8.5 where it is strongest. Since the C. thermarum cytoplasm is pH 8.0 when it grows optimally, this correlates to the ε subunit being down due to ATP/Mg2+ affinity, and not being involved in blocking ATP hydrolysis. Here, we have experimentally correlated that the pH of the bacterial cytoplasm is of critical importance for ε subunit ATP affinity regulated by second-shell residues thus the function of the ε subunit changes with growth conditions.
Collapse
Affiliation(s)
- Alexander Krah
- Korea Institute for Advanced Study, School of Computational Sciences, Seoul, South Korea.,Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Timothy Vogelaar
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Sam I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jolyon K Claridge
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP. Biochim Biophys Acta Gen Subj 2020; 1865:129766. [PMID: 33069831 DOI: 10.1016/j.bbagen.2020.129766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prediction of ligand binding and design of new function in enzymes is a time-consuming and expensive process. Crystallography gives the impression that proteins adopt a fixed shape, yet enzymes are functionally dynamic. Molecular dynamics offers the possibility of probing protein movement while predicting ligand binding. Accordingly, we choose the bacterial F1Fo ATP synthase ε subunit to unravel why ATP affinity by ε subunits from Bacillus subtilis and Bacillus PS3 differs ~500-fold, despite sharing identical sequences at the ATP-binding site. METHODS We first used the Bacillus PS3 ε subunit structure to model the B. subtilis ε subunit structure and used this to explore the utility of molecular dynamics (MD) simulations to predict the influence of residues outside the ATP binding site. To verify the MD predictions, point mutants were made and ATP binding studies were employed. RESULTS MD simulations predicted that E102 in the B. subtilis ε subunit, outside of the ATP binding site, influences ATP binding affinity. Engineering E102 to alanine or arginine revealed a ~10 or ~54 fold increase in ATP binding, respectively, confirming the MD prediction that E102 drastically influences ATP binding affinity. CONCLUSIONS These findings reveal how MD can predict how changes in the "second shell" residues around substrate binding sites influence affinity in simple protein structures. Our results reveal why seemingly identical ε subunits in different ATP synthases have radically different ATP binding affinities. GENERAL SIGNIFICANCE This study may lead to greater utility of molecular dynamics as a tool for protein design and exploration of protein design and function.
Collapse
|
6
|
Wang H, Yang Z, Liu Y. Systematic characterization of
adenosine triphosphate
response to lung cancer epidermal growth factor receptor missense mutations: A molecular insight into “generic” drug resistance mutations. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hui Wang
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| | - Zengjian Yang
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| | - Yanliang Liu
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| |
Collapse
|
7
|
Krah A, Huber RG, McMillan DGG, Bond PJ. The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit. Chembiochem 2020; 21:3249-3254. [PMID: 32608105 DOI: 10.1002/cbic.202000291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Indexed: 12/21/2022]
Abstract
The ϵ subunit of ATP synthases has been proposed to regulate ATP hydrolysis in bacteria. Prevailing evidence supports the notion that when the ATP concentration falls below a certain threshold, the ϵ subunit changes its conformation from a non-inhibitory down-state to an extended up-state that then inhibits enzymatic ATP hydrolysis by binding to the catalytic domain. It has been demonstrated that the ϵ subunit from Bacillus PS3 is selective for ATP over other nucleotides, including GTP. In this study, the purine triphosphate selectivity is rationalized by using results from MD simulations and free energy calculations for the R103A/R115A mutant of the ϵ subunit from Bacillus PS3, which binds ATP more strongly than the wild-type protein. Our results are in good agreement with experimental data, and the elucidated molecular basis for selectivity could help to guide the design of novel GTP sensors.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,Korea Institute for Advanced Study, School of Computational Sciences, 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of Korea
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore
| | - Duncan G G McMillan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
8
|
Krah A, Huber RG, Bond PJ. How Ligand Binding Affects the Dynamical Transition Temperature in Proteins. Chemphyschem 2020; 21:916-926. [DOI: 10.1002/cphc.201901221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Krah
- School of Computational SciencesKorea Institute for Advanced Study 85 Hoegiro, Dongdaemun-gu Seoul 02455 Republic of Korea
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Roland G. Huber
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Peter J. Bond
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
- National University of SingaporeDepartment of Biological Sciences 14 Science Drive 4 Singapore 117543
| |
Collapse
|
9
|
Inabe K, Kondo K, Yoshida K, Wakabayashi KI, Hisabori T. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity. J Biol Chem 2019; 294:10094-10103. [PMID: 31068416 DOI: 10.1074/jbc.ra118.007131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis activity catalyzed by chloroplast and proteobacterial ATP synthase is inhibited by their ϵ subunits. To clarify the function of the ϵ subunit from phototrophs, here we analyzed the ϵ subunit-mediated inhibition (ϵ-inhibition) of cyanobacterial F1-ATPase, a subcomplex of ATP synthase obtained from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. We generated three C-terminal α-helix null ϵ-mutants; one lacked the C-terminal α-helices, and in the other two, the C-terminal conformation could be locked by a disulfide bond formed between two α-helices or an α-helix and a β-sandwich structure. All of these ϵ-mutants maintained ATPase-inhibiting competency. We then used single-molecule observation techniques to analyze the rotary motion of F1-ATPase in the presence of these ϵ-mutants. The stop angular position of the γ subunit in the presence of the ϵ-mutant was identical to that in the presence of the WT ϵ. Using magnetic tweezers, we examined recovery from the inhibited rotation and observed restoration of rotation by 80° forcing of the γ subunit in the case of the ADP-inhibited form, but not when the rotation was inhibited by the ϵ-mutants or by the WT ϵ subunit. These results imply that the C-terminal α-helix domain of the ϵ subunit of cyanobacterial enzyme does not directly inhibit ATP hydrolysis and that its N-terminal domain alone can inhibit the hydrolysis activity. Notably, this property differed from that of the proteobacterial ϵ, which could not tightly inhibit rotation. We conclude that phototrophs and heterotrophs differ in the ϵ subunit-mediated regulation of ATP synthase.
Collapse
Affiliation(s)
- Kosuke Inabe
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and.,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kumiko Kondo
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Keisuke Yoshida
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Ken-Ichi Wakabayashi
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and.,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Toru Hisabori
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and .,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
10
|
Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Christie M, Stocker R, Duncan TM, Stewart AG. Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 2019; 8:e43864. [PMID: 30912741 PMCID: PMC6449082 DOI: 10.7554/elife.43864] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, β and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Robert Ishmukhametov
- Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUnited Kingdom
| | - James C Bouwer
- Molecular HorizonsThe University of WollongongWollongongAustralia
| | - Anita Ayer
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Cacang Suarna
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Nicola J Smith
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Mary Christie
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Roland Stocker
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Thomas M Duncan
- Department of Biochemistry & Molecular BiologySUNY Upstate Medical UniversitySyracuse, NYUnited States
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| |
Collapse
|
11
|
Mendoza-Hoffmann F, Zarco-Zavala M, Ortega R, García-Trejo JJ. Control of rotation of the F1FO-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF1 proteins. J Bioenerg Biomembr 2018; 50:403-424. [DOI: 10.1007/s10863-018-9773-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
|
12
|
Krah A, Bond PJ. Single mutations in the ε subunit from thermophilic Bacillus PS3 generate a high binding affinity site for ATP. PeerJ 2018; 6:e5505. [PMID: 30202650 PMCID: PMC6129141 DOI: 10.7717/peerj.5505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023] Open
Abstract
The ε subunit from ATP synthases acts as an ATP sensor in the bacterial cell to prevent ATP hydrolysis and thus the waste of ATP under conditions of low ATP concentration. However, the ATP binding affinities from various bacterial organisms differ markedly, over several orders of magnitude. For example, the ATP synthases from thermophilic Bacillus PS3 and Escherichia coli exhibit affinities of 4 µM and 22 mM, respectively. The recently reported R103A/R115A double mutant of Bacillus PS3 ATP synthase demonstrated an increased binding affinity by two orders of magnitude with respect to the wild type. Here, we used atomic-resolution molecular dynamics simulations to determine the role of the R103A and R115A single mutations. These lead us to predict that both single mutations also cause an increased ATP binding affinity. Evolutionary analysis reveals R103 and R115 substitutions in the ε subunit from other bacillic organisms, leading us to predict they likely have a higher ATP binding affinity than previously expected.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.,Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|