1
|
Pawlina-Tyszko K, Semik-Gurgul E, Gurgul A, Oczkowicz M, Szmatoła T, Bugno-Poniewierska M. Application of the targeted sequencing approach reveals the single nucleotide polymorphism (SNP) repertoire in microRNA genes in the pig genome. Sci Rep 2021; 11:9848. [PMID: 33972633 PMCID: PMC8110958 DOI: 10.1038/s41598-021-89363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as gene expression regulators, indirectly orchestrating a plethora of biological processes. Single nucleotide polymorphism (SNP), one of the most common genetic variations in the genome, is established to affect miRNA functioning and influence complex traits and diseases. SNPs in miRNAs have also been associated with important production traits in livestock. Thus, the aim of our study was to reveal the SNP variability of miRNA genes in the genome of the pig, which is a significant farm animal and large-mammal human model. To this end, we applied the targeted sequencing approach, enabling deep sequencing of specified genomic regions. As a result, 73 SNPs localized in 50 distinct pre-miRNAs were identified. In silico analysis revealed that many of the identified SNPs influenced the structure and energy of the hairpin precursors. Moreover, SNPs localized in the seed regions were shown to alter targeted genes and, as a result, enrich different biological pathways. The obtained results corroborate a significant impact of SNPs on the miRNA processing and broaden the state of knowledge in the field of animal genomics. We also report the targeted sequencing approach to be a promising alternative for the whole genome sequencing in miRNA genes focused studies.
Collapse
Affiliation(s)
- Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland.
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
| | - Artur Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, The University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
2
|
Nguyen L, Schilling D, Dobiasch S, Raulefs S, Santiago Franco M, Buschmann D, Pfaffl MW, Schmid TE, Combs SE. The Emerging Role of miRNAs for the Radiation Treatment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123703. [PMID: 33317198 PMCID: PMC7763922 DOI: 10.3390/cancers12123703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with a high mortality rate. Radiotherapy is one treatment option within a multimodal therapy approach for patients with locally advanced, non-resectable pancreatic tumors. However, radiotherapy is only effective in about one-third of the patients. Therefore, biomarkers that can predict the response to radiotherapy are of utmost importance. Recently, microRNAs, small non-coding RNAs regulating gene expression, have come into focus as there is growing evidence that microRNAs could serve as diagnostic, predictive and prognostic biomarkers in various cancer entities, including pancreatic cancer. Moreover, their high stability in body fluids such as serum and plasma render them attractive candidates for non-invasive biomarkers. This article describes the role of microRNAs as suitable blood biomarkers and outlines an overview of radiation-induced microRNAs changes and the association with radioresistance in pancreatic cancer. Abstract Today, pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide with a five-year overall survival rate of less than 7%. Only 15–20% of patients are eligible for curative intent surgery at the time of diagnosis. Therefore, neoadjuvant treatment regimens have been introduced in order to downsize the tumor by chemotherapy and radiotherapy. To further increase the efficacy of radiotherapy, novel molecular biomarkers are urgently needed to define the subgroup of pancreatic cancer patients who would benefit most from radiotherapy. MicroRNAs (miRNAs) could have the potential to serve as novel predictive and prognostic biomarkers in patients with pancreatic cancer. In the present article, the role of miRNAs as blood biomarkers, which are associated with either radioresistance or radiation-induced changes of miRNAs in pancreatic cancer, is discussed. Furthermore, the manuscript provides own data of miRNAs identified in a pancreatic cancer mouse model as well as radiation-induced miRNA changes in the plasma of tumor-bearing mice.
Collapse
Affiliation(s)
- Lily Nguyen
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Sophie Dobiasch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
| | - Susanne Raulefs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Marina Santiago Franco
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
3
|
Liu X, Dong Y, Song D. Inhibition of microRNA-15b-5p Attenuates the Progression of Oral Squamous Cell Carcinoma via Modulating the PTPN4/STAT3 Axis. Cancer Manag Res 2020; 12:10559-10572. [PMID: 33149666 PMCID: PMC7604544 DOI: 10.2147/cmar.s272498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Emerging evidence has demonstrated the important functions of microRNAs (miRNAs) in human malignancies. This study focuses on the function of miR-15b-5p on the oral squamous cell carcinoma (OSCC) progression and the molecules involved. METHODS Tumor and the paracancerous tissues were obtained from OSCC patients. Differentially expressed miRNAs between the tumor and normal tissues were screened out. miR-15b-5p expression in tumors and acquired cells was determined, and its correlation with patient survival was analyzed. Knockdown of miR-15b-5p was introduced in SCC-4 and CAL-27 cells to explore its role in cell growth and metastasis. Binding relationship between miR-15b-5p and PTPN4 was validated, and altered expression of PTPN4 was introduced in cells to explore its function in OSCC development. Xenograft tumors were induced in nude mice for in vivo experiments. RESULTS miR-15b-5p was abundantly expressed in OSCC tumors and cells and linked to poor survival in patients. Silencing of miR-15b-5p suppressed proliferation, migration, and invasion and triggered apoptosis in SCC-4 and CAL-27 cells. miR-15b-5p targeted PTPN4. Further silencing of PTPN4 blocked the inhibiting functions of miR-15b-5p inhibitor in OSCC cell growth. The in vitro results were reproduced in vivo, where inhibition of miR-15b-5p led to a decline in tumor growth and metastasis in nude mice. PTPN4 was found as a negative mediator of the STAT3 pathway. CONCLUSION This study evidenced that miR-15b-5p possibly promotes OSCC development through binding to PTPN4 and the following STAT3 signaling activation. miR-15b-5p may be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xuerong Liu
- Department of Oral and Maxillofacial Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong277100, People’s Republic of China
| | - Yuanyuan Dong
- Department of Oral and Maxillofacial Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong277100, People’s Republic of China
| | - Dan Song
- Department of Oral and Maxillofacial Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong277100, People’s Republic of China
| |
Collapse
|
4
|
Wu B, Liu G, Jin Y, Yang T, Zhang D, Ding L, Zhou F, Pan Y, Wei Y. miR-15b-5p Promotes Growth and Metastasis in Breast Cancer by Targeting HPSE2. Front Oncol 2020; 10:108. [PMID: 32175269 PMCID: PMC7054484 DOI: 10.3389/fonc.2020.00108] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) can participate in many behaviors of various tumors. Prior studies have reported that miR-15b-5p in different tumors can either promote or inhibit tumor progression. In breast cancer, the role of miR-15b-5p is unclear. The main objective of this paper is to explore miR-15b-5p effects and their mechanisms in breast cancer using both in vitro and in vivo experiments. This study showed that miR-15b-5p expression was upregulated in breast cancer compared with normal breast tissue and was positively correlated with poor overall survival in patients. Knockdown of miR-15b-5p in MCF-7 and MD-MBA-231 breast cancer cells restrained cell growth and invasiveness and induced apoptosis, whereas overexpression of miR-15b-5p achieved the opposite effects. We next revealed a negative correlation between miR-15b-5p and heparanase-2 (HPSE2) expression in breast cancer. Knockdown of miR-15b-5p significantly increased HPSE2 expression at both mRNA and protein levels in breast cancer cells in vitro. The underlying mechanisms of miR-15-5p in breast cancer were investigated using luciferase activity reporter assay and rescue experiments. In addition, miR-15b-5p knockdown significantly inhibited tumor growth in a xenograft model in mice. In summary, we showed that miR-15b-5p promotes breast cancer cell proliferation, migration, and invasion by directly targeting HPSE2. Accordingly, miR-15b-5p may serve both as a tool for prognosis and as a target for therapy of breast cancer patients.
Collapse
Affiliation(s)
- Balu Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanxia Jin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tian Yang
- Department of Clinical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dongdong Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lu Ding
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Wei S, Peng L, Yang J, Sang H, Jin D, Li X, Chen M, Zhang W, Dang Y, Zhang G. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:32. [PMID: 32039741 PMCID: PMC7011526 DOI: 10.1186/s13046-019-1511-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/17/2019] [Indexed: 02/10/2023]
Abstract
Background Exosomes are essential for tumor growth, metastasis, and are used as novel signaling molecules in targeted therapies. Therefore, exosomal miRNAs can be used in new diagnostic and therapeutic approaches due to their involvement in the development of cancers. However, the detailed biological function, potential molecular mechanism and clinical application of exo-miR-15b-3p in gastric cancer (GC) remains unclear. Methods miR-15b-3p mRNA levels in tissues, serum, cells and exosomes were analyzed using qRT-PCR assays. qRT-PCR, immunohistochemical and western blotting analyses were utilized for the determination of DYNLT1 expression. The interrelationship connecting miR-15b-3p with DYNLT1 was verified using Dual-luciferase report, western blotting and qRT-PCR assays. Fluorescent PKH-26 or GFP-Lv-CD63 labeled exosomes, as well as Cy3-miR-15b-3p, were utilized to determine the efficacy of the transfer of exo-miR-15b-3p between BGC-823 and recipient cells. Several in vitro assays and xenograft tumor models were conducted to determine exo-miR-15b-3p impact on GC progression. Results This is the first study to confirm high miR-15b-3p expression in GC cell lines, tissues and serum. Exosomes obtained from 108 GC patient serum samples and GC cell-conditioned medium were found to show upregulation of exo-miR-15b-3p, with the area under the ROC curve (AUC) being 0.820 [0.763–0.876], which is superior to the AUC of tissues and serum miR-15b-3p (0.674 [0.600–0.748] and 0.642 [0.499–0.786], respectively). In addition, high exo-miR-15b-3p expression in serum was found to accurately predict worse overall survival. SGC-7901 and GES-1 cells are capable of internalizing BGC-823 cell-derived exosomes, allowing the transfer of miR-15b-3p. Migration, invasion, proliferation and inhibition of apoptosis in vitro and in vivo were enhanced by exo-miR-15b-3p, by restraining DYNLT1, Cleaved Caspase-9 and Caspase-3 expression. Conclusions This study identified a previously unknown regulatory pathway, exo-miR-15b-3p/DYNLT1/Caspase-3/Caspase-9, which promotes GC development and GES-1 cell malignant transformation. Therefore, serum exo-miR-15b-3p may be a potential GC diagnosis and prognosis biomarker, which can be used in precise targeted GC therapy.
Collapse
Affiliation(s)
- Shuchun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiajia Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huaiming Sang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Duochen Jin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Meihong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Jiang J, Liu L, Gao Y, Shi L, Li Y, Liang W, Sun D. Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population. BMC Genet 2019; 20:48. [PMID: 31138106 PMCID: PMC6537361 DOI: 10.1186/s12863-019-0751-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background We have previously identified 11 promising candidate genes for milk composition traits by resequencing the whole genomes of 8 Holstein bulls with extremely high and low estimated breeding values for milk protein and fat percentages (high and low groups), including FCGR2B, CENPE, RETSAT, ACSBG2, NFKB2, TBC1D1, NLK, MAP3K1, SLC30A2, ANGPT1 and UGDH those contained 25 indels between high and low groups. In this study, the purpose was to further examine whether these candidates have significant genetic effects on milk protein and fat traits. Results With PCR product sequencing, 13 indels identified by whole genome resequencing were successfully genotyped. With association analysis in 769 Chinese Holstein cows, we found that the indel in FCGR2B was significantly associated with milk yield, protein yield and protein percentage (P = 0.0041 to 0.0297); five indels in CENPE and one indel in MAP3K1 were markedly relevant to milk yield, fat yield and protein yield (P < 0.0001 to 0.0073); polymorphism in RETSAT was evidently associated with milk yield, fat yield, protein yield and protein percentage (P = 0.0001 to 0.0237); variant in ACSBG2 affected fat yield and protein percentage (P = 0.0088 and 0.0052); one indel in TBC1D1 was with respect to fat percentage and protein percentage (P = 0.0224 and 0.0209). Significant associations were shown between indels in NLK and protein yield and protein percentage (P = 0.0012 to 0.0257); variant in UGDH was related to the milk yield (P = 0.0312). The two exonic indels in FCGR2B and CENPE were predicted to change the mRNA and protein secondary structures, and resulted in the corresponding protein dysfunction. Conclusion Our findings presented here provide the first evidence for the associations of eight functional genes with milk yield and composition traits in dairy cattle. Electronic supplementary material The online version of this article (10.1186/s12863-019-0751-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Yahui Gao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Lijun Shi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanhua Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.,Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Weijun Liang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
7
|
Gao Z, Sun L, Dai K, Du Y, Wu S, Bao W. Effects of mutations in porcine miRNA-215 precursor sequences on miRNA-215 regulatory function. Gene 2019; 701:131-138. [PMID: 30905811 DOI: 10.1016/j.gene.2019.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) play an important role in animal growth and disease development, and sequence variation in microRNAs can alter their functions. Herein, we explored the effects of mutations in the miRNA-215 precursor sequence on the miRNA-215 regulatory network and resistance to Escherichia coli (E. coli). Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to detect sequence variations in Sutai and Meishan pigs. The miR-192 precursor sequence was not mutated, but the miR-215 precursor included an AT insertion mutation at position 6 (start from the first base of the miR-215 precursor) and a C/T mutation at position 43. Wild-type (WT) and mutant miR-215 precursor expression vectors were constructed to investigate the effects of sequence variation on expression of miR-215 and its target genes DLG5 and ALCAM, cytokine levels and E. coli adhesion. Compared with the WT control group, cells harbouring the C/T mutant vector displayed reduced miR-215 expression, increased target gene expression, elevated cytokine levels and rising E. coli adhesion, whereas cells harbouring the AT insertion mutant vector were not significantly changed. The sequence variation in the miRNA-215 precursor may affect the miRNA-215 regulatory network, and alter the stability of intestinal epithelial cells (IPEC-J2 cells) and resistance to E. coli. Our findings provide guidance for future research on the regulatory mechanisms of miR-215 in porcine resistance to E. coli F18, and identifying effective genetic markers against this organism.
Collapse
Affiliation(s)
- Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaiyu Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yulu Du
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu, Yangzhou, 225009, China.
| |
Collapse
|