1
|
Nishio H, Kawakatsu T, Yamaguchi N. Beyond heat waves: Unlocking epigenetic heat stress memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1934-1951. [PMID: 37878744 DOI: 10.1093/plphys/kiad558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.
Collapse
Affiliation(s)
- Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
2
|
Tsujimoto M, Araki KS, Honjo MN, Yasugi M, Nagano AJ, Akama S, Hatakeyama M, Shimizu-Inatsugi R, Sese J, Shimizu KK, Kudoh H. Genet assignment and population structure analysis in a clonal forest-floor herb, Cardamine leucantha, using RAD-seq. AOB PLANTS 2020; 12:plz080. [PMID: 32002176 PMCID: PMC6983914 DOI: 10.1093/aobpla/plz080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
To study the genetic structure of clonal plant populations, genotyping and genet detection using genetic markers are necessary to assign ramets to corresponding genets. Assignment is difficult as it involves setting a robust threshold of genetic distance for genet distinction as neighbouring genets in a plant population are often genetically related. Here, we used restriction site-associated DNA sequencing (RAD-seq) for a rhizomatous clonal herb, Cardamine leucantha [Brassicaceae] to accurately determine genet structure in a natural population. We determined a draft genome sequence of this species for the first time, which resulted in 66 617 scaffolds with N50 = 6086 bp and an estimated genome size of approximately 253 Mbp. Using genetic distances based on the RAD-seq analysis, we successfully distinguished ramets that belonged to distinct genets even from a half-sib family. We applied these methods to 372 samples of C. leucantha collected at 1-m interval grids within a 20 × 20 m plot in a natural population in Hokkaido, Japan. From these samples, we identified 61 genets with high inequality in terms of genet size and patchy distribution. Spatial autocorrelation analyses indicated significant aggregation within 7 and 4 m at ramet and genet levels, respectively. An analysis of parallel DNA microsatellite loci (simple sequence repeats) suggested that RAD-seq can provide data that allows robust genet assignment. It remains unclear whether the large genets identified here became dominant stochastically or deterministically. Precise identification of genets will assist further study and characterization of dominant genets.
Collapse
Affiliation(s)
| | - Kiwako S Araki
- Center for Ecological Research, Kyoto University, Hirano Otsu, Japan
- Faculty of Life Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano Otsu, Japan
| | - Masaki Yasugi
- Center for Ecological Research, Kyoto University, Hirano Otsu, Japan
- Faculty of Engineering, Utsunomiya University, Yoto, Utsunomiya, Japan
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Hirano Otsu, Japan
- Faculty of Agriculture, Ryukoku University, Yokatani, Seta Ohe-cho, Otsu, Japan
| | - Satoru Akama
- National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Koto-ku, Tokyo, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
- Functional Genomics Center Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Koto-ku, Tokyo, Japan
- Humanome Lab., Inc. 2-4-10-2F, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Maioka, Totsuka-ku, Yokohama, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano Otsu, Japan
| |
Collapse
|
3
|
Ogasawara Y, Sugimoto R, Maruyama R, Arimoto H, Tamada Y, Watanabe W. Mobile-phone-based Rheinberg microscope with a light-emitting diode array. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-6. [PMID: 30246509 PMCID: PMC6975239 DOI: 10.1117/1.jbo.24.3.031007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 05/12/2023]
Abstract
Mobile phone technology has led to implementation of portable and inexpensive microscopes. Light-emitting diode (LED) array microscopes support various multicontrast imaging by flexible illumination patterns of the LED array that can be achieved without changing the optical components of the microscope. Here, we demonstrate a mobile-phone-based LED array microscope to realize multimodal imaging with bright-field, dark-field, differential phase-contrast, and Rheinberg illuminations using as few as 37 LED bulbs. Using this microscope, we obtained high-contrast images of living cells. Furthermore, by changing the color combinations of Rheinberg illumination, we were able to obtain images of living chromatic structures with enhanced or diminished contrast. This technique is expected to be a foundation for high-contrast microscopy used in modern field studies.
Collapse
Affiliation(s)
- Yuma Ogasawara
- Ritsumeikan University, College of Science and Engineering, Department of Electrical and Electronic Engineering, Kusatsu, Japan
| | - Ryo Sugimoto
- Ritsumeikan University, College of Science and Engineering, Department of Electrical and Electronic Engineering, Kusatsu, Japan
| | - Ryoji Maruyama
- Ritsumeikan University, College of Science and Engineering, Department of Electrical and Electronic Engineering, Kusatsu, Japan
| | - Hidenobu Arimoto
- National Institute of Advanced Industrial Science and Technology, Electronics and Photonics Research Institute, Tsukuba, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Division of Evolutionary Biology, Okazaki, Japan
| | - Wataru Watanabe
- Ritsumeikan University, College of Science and Engineering, Department of Electrical and Electronic Engineering, Kusatsu, Japan
- Address all correspondence to: Wataru Watanabe, E-mail:
| |
Collapse
|