1
|
Alexander E, Khalaman VV, Nelly G, Sandrine C, Rogovskaja NY, Krasnov KA, Manoylina PA, Komendantov AY, Emilie LG. Halichondria panicea (Porifera, Demospongiae) Reparative Regeneration: An Integrative Approach to Better Understand Wound Healing. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:214-235. [PMID: 40200856 DOI: 10.1002/jez.b.23295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Sponges have a remarkable capacity to rapidly regenerate in response to injury. In addition, sponges rapidly renew their aquiferous system to maintain a healthy. This study describes the reparative regeneration in the cold-water demosponge Halichondria panicea. The wide range of methods allow us to make a comprehensive analysis of mechanisms, which contribute to the regeneration in this species, including morphogenetic process, cell proliferation, apoptosis and cytotoxicity. The regeneration in H. panicea includes three main stages: internal milieu isolation, wound healing - epithelization, and restoration of damaged structures. The main morphogenetical mechanisms of regeneration are epithelial-to-mesenchymal transition during the first 12 h post operation (hpo) followed by blastema formation and mesenchymal-to-epithelial transformation leading to the restoration of damaged structures. These processes can be explained by active cell dedifferentiation and transdifferentiation, participation of resident pluripotent cells (archaeocyte-like cells and choanocytes), by migration of pluripotent cells (archaeocyte-like cells), and by activation of proliferation and apoptosis. The rate of apoptosis becomes homogeneous in regeneration area and in intact tissues at 12 hpo at a significantly higher rate than at 0 hpo. The reduction of sponge toxicity at 6 hpo looks like a necessary step for activation of repair processes. However, after 24 hpo, the toxicity exceeded the initial (0 hpo) level. At 96 hpo, the aquiferous system is completely restored. The ability for rapid wound epithelialization, as well as the morphological and functional restoration of damaged tissues, can be considered as a form of sponge's adaptation to extreme conditions in cold shallow water, acquired in the course of evolution.
Collapse
Affiliation(s)
- Ereskovsky Alexander
- Aix Marseille University, IMBE, CNRS, IRD, Avignon University, Marseille, France
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russia
| | | | - Godefroy Nelly
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Chenesseau Sandrine
- Aix Marseille University, IMBE, CNRS, IRD, Avignon University, Marseille, France
| | - Nadezhda Yu Rogovskaja
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, Saint-Petersburg, Russia
| | - Konstantin A Krasnov
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, Saint-Petersburg, Russia
| | | | | | - Le Goff Emilie
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Fortunato A, Taylor J, Scirone J, Seyedi S, Aktipis A, Maley CC. Tethya wilhelma (Porifera) Is Highly Resistant to Radiation Exposure and Possibly Cancer. BIOLOGY 2025; 14:171. [PMID: 40001939 PMCID: PMC11851485 DOI: 10.3390/biology14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
There are no reports of cancer in sponges, despite them having somatic cell turnover, long lifespans, and no specialized adaptive immune cells. In order to investigate whether sponges are cancer resistant, we exposed a species of sponge, Tethya wilhelma, to X-rays. We found that T. wilhelma can withstand 518 Gy of X-ray radiation. That is approximately 100 times the lethal dose for humans. A single high dose of X-rays did not induce cancer in T. wilhelma, providing the first experimental evidence of cancer resistance in the phylum Porifera. Following X-ray exposure, we found an overexpression of genes involved in DNA repair, signaling transduction pathways, and epithelial-to-mesenchymal transition. T. wilhelma has the highest level of radiation resistance that has yet been observed in animals that have sustained somatic cell turnover. This may make them an excellent model system for studying cancer resistance and developing new approaches for cancer prevention and treatment.
Collapse
Affiliation(s)
- Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Jake Taylor
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jonathan Scirone
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Rocher C, Vernale A, Fierro‐Constaín L, Séjourné N, Chenesseau S, Marschal C, Issartel J, Le Goff E, Stroebel D, Jouvion J, Dutilleul M, Matthews C, Marschal F, Brouilly N, Massey‐Harroche D, Schenkelaars Q, Ereskovsky A, Le Bivic A, Renard E, Borchiellini C. The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:503-528. [PMID: 39364688 PMCID: PMC11587685 DOI: 10.1002/jez.b.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years. Here, we report a new step forward by inducing, producing, and maintaining in vitro thousands of clonal buds that now make possible various downstream applications. This study provides a full description of bud morphology, physiology, cells and tissues, from their formation to their development into juveniles, using adapted cell staining protocols. In addition, we show that buds have outstanding capabilities of regeneration after being injured and of re-epithelization after complete cell dissociation. Altogether, Oscarella buds constitute a relevant all-in-one sponge model to access a large set of biological processes, including somatic morphogenesis, epithelial morphogenesis, cell fate, body axes formation, nutrition, contraction, ciliary beating, and respiration.
Collapse
Grants
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE;
- AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR).
- The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments.
- The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE; AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR). The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments. The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
Collapse
Affiliation(s)
- Caroline Rocher
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Amélie Vernale
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | | - Nina Séjourné
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | - Julien Issartel
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Emilie Le Goff
- ISEM, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - David Stroebel
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Julie Jouvion
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Morgan Dutilleul
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | - Florent Marschal
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | | | | | | | - Emmanuelle Renard
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | |
Collapse
|
4
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
5
|
Costa ML, de Andrade Rosa I, Andrade L, Mermelstein C, C Coutinho C. Distinct interactions between epithelial and mesenchymal cells control cell morphology and collective migration during sponge epithelial to mesenchymal transition. J Morphol 2019; 281:183-195. [PMID: 31854473 DOI: 10.1002/jmor.21090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 11/10/2022]
Abstract
Epithelial and mesenchymal cell types are basic for animal multicellularity and they have complementary functions coordinated by cellular interactions. Sponges are especially important model organisms to address the evolutionary basis of morphogenetic programs for epithelial and mesenchymal organization in animals. Evolutionary studies in sponges can contribute to the understanding of the mechanisms that control tissue maintenance and tumor progression in humans. In the present study, sponge mesenchymal and epithelial cells were isolated from the demosponge Hymeniacidon heliophila, and aggregate formation was observed by video microscopy. Epithelial-mesenchymal interaction, epithelial transition, and cell migration led to sponge cell aggregation after drastic stress. Based on their different morphologies, adhesion specificities, and motilities, we suggest a role for different sponge cell types as well as complementary functions in cell aggregation. Micromanipulation under the microscope and cell tracking were also used to promote specific grafting-host interaction, to further test the effects of cell type interaction. The loss of cell polarity and flattened shape during the epithelial to mesenchymal cell transition generated small immobile aggregates of round/amoeboid cells. The motility of these transited epithelial-cell aggregates was observed by cell tracking using fluorescent dye, but only after interaction with streams of migratory mesenchymal cells. Cell motility occurred independently of morphological changes, indicating a progressive step in the transition toward a migratory mesenchymal state. Our data suggest a two-step signaling process: (a) the lack of interaction between mesenchymal and epithelial cells triggers morphological changes; and (b) migratory mesenchymal cells instruct epithelial cells for directional cell motility. These results could have an impact on the understanding of evolutionary aspects of metastatic cancer cells. HIGHLIGHTS: Morphogenetic movements observed in modern sponges could have a common evolutionary origin with collective cell migration of human metastatic cells. A sponge regenerative model was used here to characterize epithelial and mesenchymal cells, and for the promotion of grafting/host interactions with subsequent cell tracking. The transition from epithelial to mesenchymal cell type can be observed in sponges in two steps: (a) withdrawal of epithelial/mesenchymal cell interactions to trigger morphological changes; (b) migratory mesenchymal cells to induce epithelial cells to a collective migratory state.
Collapse
Affiliation(s)
- Manoel L Costa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ivone de Andrade Rosa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Leonardo Andrade
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Cristiano C Coutinho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Ereskovsky AV, Tokina DB, Saidov DM, Baghdiguian S, Le Goff E, Lavrov AI. Transdifferentiation and mesenchymal-to-epithelial transition during regeneration in Demospongiae (Porifera). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:37-58. [PMID: 31725194 DOI: 10.1002/jez.b.22919] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Origin and early evolution of regeneration mechanisms remain among the most pressing questions in animal regeneration biology. Porifera have exceptional regenerative capacities and, as early Metazoan lineage, are a promising model for studying evolutionary aspects of regeneration. Here, we focus on reparative regeneration of the body wall in the Mediterranean demosponge Aplysina cavernicola. The epithelialization of the wound surface is completed within 2 days, and the wound is completely healed within 2 weeks. The regeneration is accompanied with the formation of a mass of undifferentiated cells (blastema), which consists of archaeocytes, dedifferentiated choanocytes, anucleated amoebocytes, and differentiated spherulous cells. The main mechanisms of A. cavernicola regeneration are cell dedifferentiation with active migration and subsequent redifferentiation or transdifferentiation of polypotent cells through the mesenchymal-to-epithelial transformation. The main cell sources of the regeneration are archaeocytes and choanocytes. At early stages of the regeneration, the blastema almost devoid of cell proliferation, but after 24 hr postoperation (hpo) and up to 72 hpo numerous DNA-synthesizing cells appear there. In contrast to intact tissues, where vast majority of DNA-synthesizing cells are choanocytes, all 5-ethynyl-2'-deoxyuridine-labeled cells in the blastema are mesohyl cells. Intact tissues, distant from the wound, retains intact level of cell proliferation during whole regeneration process. For the first time, the apoptosis was studied during the regeneration of sponges. Two waves of apoptosis were detected during A. cavernicola regeneration: The first wave at 6-12 hpo and the second wave at 48-72 hpo.
Collapse
Affiliation(s)
- Alexander V Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Rue de la Batterie des Lions, Avignon University, Marseille, France.,Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Daria B Tokina
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Rue de la Batterie des Lions, Avignon University, Marseille, France
| | - Danial M Saidov
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Emilie Le Goff
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Andrey I Lavrov
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Salinas-Saavedra M, Rock AQ, Martindale MQ. Germ layer-specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm. eLife 2018; 7:e36740. [PMID: 30063005 PMCID: PMC6067901 DOI: 10.7554/elife.36740] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
In triploblastic animals, Par-proteins regulate cell-polarity and adherens junctions of both ectodermal and endodermal epithelia. But, in embryos of the diploblastic cnidarian Nematostella vectensis, Par-proteins are degraded in all cells in the bifunctional gastrodermal epithelium. Using immunohistochemistry, CRISPR/Cas9 mutagenesis, and mRNA overexpression, we describe the functional association between Par-proteins, ß-catenin, and snail transcription factor genes in N. vectensis embryos. We demonstrate that the aPKC/Par complex regulates the localization of ß-catenin in the ectoderm by stabilizing its role in cell-adhesion, and that endomesodermal epithelial cells are organized by a different cell-adhesion system than overlying ectoderm. We also show that ectopic expression of snail genes, which are expressed in mesodermal derivatives in bilaterians, is sufficient to downregulate Par-proteins and translocate ß-catenin from the junctions to the cytoplasm in ectodermal cells. These data provide molecular insight into the evolution of epithelial structure and distinct cell behaviors in metazoan embryos.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| | - Amber Q Rock
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
| | - Mark Q Martindale
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| |
Collapse
|
8
|
Kenny NJ, de Goeij JM, de Bakker DM, Whalen CG, Berezikov E, Riesgo A. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Mar Genomics 2018; 37:135-147. [DOI: 10.1016/j.margen.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
|