1
|
Xu Y, Wang J, Qin X, Liu J. Advances in the pathogenesis and treatment of pneumococcal meningitis. Virulence 2024; 15:2387180. [PMID: 39192572 PMCID: PMC11364070 DOI: 10.1080/21505594.2024.2387180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Streptococcus pneumoniae is a common pathogen associated with community-acquired bacterial meningitis, characterized by high morbidity and mortality rates. While vaccination reduces the incidence of meningitis, many survivors experience severe brain damage and corresponding sequelae. The pathogenesis of pneumococcal meningitis has not been fully elucidated. Currently, meningitis requires bacterial disruption of the blood - brain barrier, a process that involves the interaction of bacterial surface components with host cells and various inflammatory responses. This review delineates the global prevalence, pathogenesis, and treatment strategies of pneumococcal meningitis. The objective is to enhance the thorough comprehension of the clinical manifestations and biological mechanisms of the disease, thereby enabling more efficient prevention, diagnosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Yiyun Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Ji Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
2
|
Sokkar MF, Mosaad RM, Khalil M, Kamal L. MBL2 gene variants and susceptibility to meningitis in Egyptian patients. Gene 2023; 872:147442. [PMID: 37121343 DOI: 10.1016/j.gene.2023.147442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Meningitis is inflammation of the membranes enclosing the brain and spinal cord. It is a fatal disease with severe morbidity and mortality. Mannose binding lectin (MBL) encoded by MBL2 gene activates complement system through lectin pathway in innate immunity to defense against the infections. OBJECTIVE the current study aimed to investigate the promoter and exon 1 variants of MBL2 gene among Egyptian patients having meningitis to explore their role in disease susceptibility. PATIENTS AND METHODS This case-control study, included 53 patients and 50 sex and age matched controls. MBL2 genotyping was done using Sanger sequencing. RESULTS The frequency of one promoter (c.-290C>G) and four in exon 1 (c.161G>A, c.170G>A, c.154C>T and c.132C>T) as well as another one located in its 5'utranslated part (c.-66C>T) variants were estimated. The incidence of the four individual exonic variants was not significantly different between cases and healthy individuals (all P> 0.05). The promoter variant, c.-290C>G was found in all examined patients (84.9% of the patients in homozygote state and 15.1% of patients in heterozygous state) with a highly significant variance in the prevalence of this variant between cases and control group (p=0.0001). Additionally, UTR variant (c.-66C>T) was also significantly higher in patients than controls (P=0.033).In comparison with clinical outcome, it was found that c.170G>A variant named C allele was associated with favorable outcome in the studied patients (P=0.025). CONCLUSION The results obtained showed that the Promoter (c.-290C>G) and UTR (c.-66 C>T) variants of MBL2 gene may be potential risk factors for disease susceptibility in Egyptian cases with meningitis. Our results also proposed that c.170G>A (C allele and CC genotype) could affect the severity and play a protective role in these patients. The other genetic variants of MBL2 gene, including c.132C>T, c.161G>A (A>B), and c.154C>T (A>D) that were investigated, did not show any association with susceptibility or severity of meningitis.
Collapse
Affiliation(s)
- Mona F Sokkar
- Molecular Genetics and Enzymology department, Human Genetics and Genome Research Institute (HGGR), National Research Centre (NRC), Cairo, Egypt
| | - Rehab M Mosaad
- Infection disease department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Mahmoud Khalil
- Infection disease department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Lamyaa Kamal
- Clinical and chemical pathology department, Elsahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
3
|
Gordon SM, O'Connell AE. Inborn Errors of Immunity in the Premature Infant: Challenges in Recognition and Diagnosis. Front Immunol 2022; 12:758373. [PMID: 35003071 PMCID: PMC8738084 DOI: 10.3389/fimmu.2021.758373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Due to heightened awareness and advanced genetic tools, inborn errors of immunity (IEI) are increasingly recognized in children. However, diagnosing of IEI in premature infants is challenging and, subsequently, reports of IEI in premature infants remain rare. This review focuses on how common disorders of prematurity, such as sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia, can clinically overlap with presenting signs of IEI. We present four recent cases from a single neonatal intensive care unit that highlight diagnostic dilemmas facing neonatologists and clinical immunologists when considering IEI in preterm infants. Finally, we present a conceptual framework for when to consider IEI in premature infants and a guide to initial workup of premature infants suspected of having IEI.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Atkinson JP. President Kennedy's Adrenals and My Brother's Death. Am J Med 2020; 133:876-877. [PMID: 32272098 DOI: 10.1016/j.amjmed.2020.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Affiliation(s)
- John P Atkinson
- Internal Medicine Department/Rheumatology Division, Washington University School of Medicine, St. Louis, Mo.
| |
Collapse
|
5
|
García-Laorden MI, Hernández-Brito E, Muñoz-Almagro C, Pavlovic-Nesic S, Rúa-Figueroa I, Briones ML, Rajas O, Borderías L, Payeras A, Lorente L, Freixinet J, Ferreres J, Obando I, González-Quevedo N, Rodríguez de Castro F, Solé-Violán J, Rodríguez-Gallego C. Should MASP-2 Deficiency Be Considered a Primary Immunodeficiency? Relevance of the Lectin Pathway. J Clin Immunol 2020; 40:203-210. [PMID: 31828694 PMCID: PMC7223972 DOI: 10.1007/s10875-019-00714-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/29/2019] [Indexed: 01/19/2023]
Abstract
Mannose-binding lectin (MBL)-associated serine protease-2 (MASP-2) is an indispensable enzyme for the activation of the lectin pathway of complement. Its deficiency is classified as a primary immunodeficiency associated to pyogenic bacterial infections, inflammatory lung disease, and autoimmunity. In Europeans, MASP-2 deficiency, due to homozygosity for c.359A > G (p.D120G), occurs in 7 to 14/10,000 individuals. We analyzed the presence of the p.D120G mutation in adults (increasing the sample size of our previous studies) and children. Different groups of patients (1495 adults hospitalized with community-acquired pneumonia, 186 adults with systemic lupus erythematosus, 103 pediatric patients with invasive pneumococcal disease) and control individuals (1119 healthy adult volunteers, 520 adult patients without history of relevant infectious diseases, and a pediatric control group of 311 individuals) were studied. Besides our previously reported MASP-2-deficient healthy adults, we found a new p.D120G homozygous individual from the pediatric control group. We also reviewed p.D120G homozygous individuals reported so far: a total of eleven patients with a highly heterogeneous range of disorders and nine healthy controls (including our four MASP-2-deficient individuals) have been identified by chance in association studies. Individuals with complete deficiencies of several pattern recognition molecules of the lectin pathway (MBL, collectin-10 and collectin-11, and ficolin-3) as well as of MASP-1 and MASP-3 have also been reviewed. Cumulative evidence suggests that MASP-2, and even other components of the LP, are largely redundant in human defenses and that individuals with MASP-2 deficiency do not seem to be particularly prone to infectious or autoimmune diseases.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Elisa Hernández-Brito
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carmen Muñoz-Almagro
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Svetlana Pavlovic-Nesic
- Department of Pediatrics, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Iñigo Rúa-Figueroa
- Rheumatology Service, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - M Luisa Briones
- Department of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Olga Rajas
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Luis Borderías
- Department of Respiratory Diseases, Hospital San Jorge, Huesca, Spain
| | - Antoni Payeras
- Department of Internal Medicine, Hospital Son Llatzer, Palma de Mallorca, Spain
| | - Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Spain
| | - Jordi Freixinet
- Department of Thoracic Surgery, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jose Ferreres
- Intensive Care Unit, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Ignacio Obando
- Department of Pediatrics, Hospital Virgen del Rocío, Sevilla, Spain
| | - Nereida González-Quevedo
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.
- University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
6
|
Butters C, Phuong LK, Cole T, Gwee A. Prevalence of Immunodeficiency in Children With Invasive Pneumococcal Disease in the Pneumococcal Vaccine Era: A Systematic Review. JAMA Pediatr 2019; 173:1084-1094. [PMID: 31566672 DOI: 10.1001/jamapediatrics.2019.3203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Despite increasing access to vaccination, invasive pneumococcal disease (IPD) is responsible for approximately 826 000 deaths worldwide in children younger than 5 years each year. To allow early identification and prevention, an improved understanding of risk factors for IPD is needed. OBJECTIVES To review the literature on the prevalence of primary immunodeficiency (PID) in children younger than 18 years presenting with IPD without another predisposing condition and to inform guidelines for immunologic evaluation after the first episode of IPD based on published evidence. EVIDENCE REVIEW A literature search of PubMed, Embase (inception [1974] to February 28, 2019), and MEDLINE (inception [1946] to February 28, 2019) was conducted using the terms Streptococcus pneumonia, Streptococcus pneumoniae, pneumococcal infection, Streptococcus infection, pneumococcal meningitis, immunodeficiency, immune response, immunocompromised, susceptib*, precursor, predispose*, recurren*, newborn, neonat*, infan*, toddler, child, preschooler, adolescen*, and pediatric. Publications reporting original data on immunodeficiency in children with microbiologically confirmed primary or recurrent IPD were included. Strength of clinical data was graded according to the 5-point scale of the Oxford Centre for Evidence-Based Medicine. FINDINGS In 6022 unique children with primary IPD, 5 of 393 (1.3%) to 17 of 162 (10.5%) of all children and 14 of 53 (26.4%) of those older than 2 years had a PID identified. Higher rates of PID, up to 10 of 15 (66.7%), were found in children with recurrent IPD. Antibody deficiency was the most common immunodeficiency, followed by complement deficiency, asplenia, and rarer defects in T-cell signaling. The site of infection was a key indicator for the risk of underlying PID, with the greatest risk of PID in children with meningitis or complicated pneumonia. CONCLUSIONS AND RELEVANCE Results of this study suggest that invasive pneumococcal disease, and particularly recurrent IPD, is an important marker of underlying PID in children without other risk factors. The findings also suggest that children older than 2 years with pneumococcal meningitis or complicated pneumonia and all children with recurrent IPD should be referred for an immune evaluation. TRIAL REGISTRATION PROSPERO identifier: CRD42017075978.
Collapse
Affiliation(s)
- Coen Butters
- Infectious Diseases Unit, The Royal Children's Hospital, Melbourne, Parkville, Australia
| | - Linny Kimly Phuong
- Infectious Diseases Unit, The Royal Children's Hospital, Melbourne, Parkville, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, The Royal Children's Hospital, Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
7
|
de Morais VMS, de Lima ELS, Cahú GGDOM, Lopes TRR, Gonçales JP, Muniz MTC, Coêlho MRCD. MBL2 gene polymorphisms in HHV-8 infection in people living with HIV/AIDS. Retrovirology 2018; 15:75. [PMID: 30482213 PMCID: PMC6260567 DOI: 10.1186/s12977-018-0456-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/16/2018] [Indexed: 02/01/2023] Open
Abstract
Background Host genetic factors such as MBL2 gene polymorphisms cause defects in the polymerization of MBL protein and result in a functional deficiency and/or in low serum levels that can influence susceptibility to various viral infections. The aim of this study was to estimate the frequency of alleles, genotypes and haplotypes related to -550, -221 and exon 1 polymorphisms of the MBL2 gene and investigate their association with HHV-8 in people living with HIV/AIDS (PLWHA), as well as the impacts on CD4 cell count and HIV viral load in HIV/HHV-8 coinfected and HIV monoinfected patients. Results A cross sectional study in PLWHA, with and without HHV-8 infection, exploring associations between different factors, was performed in the outpatient infectious and parasitic diseases clinic at a referral hospital. Genomic DNA extractions from leukocytes were performed using a commercial Wizard®Genomic DNA Purification kit (Promega, Madison, WI). The promoter region (-550 and -221) was genotyped with the TaqMan system (Applied TaqMan Biosystems® genotyping Assays), and the structural region (exon1) was genotyped with Express Sybr Greener Supermix kit (Invitrogen, USA). In total, 124 HIV/HHV-8 coinfected and 213 HIV monoinfected patients were analysed. Median TCD4 counts were significantly lower in HIV/HHV-8 coinfected patients, whereas the mean of the first and last viral load of HIV did not present significant difference. There was no difference in frequency between the LL, YY and AA genotypes between the HIV/HHV-8 coinfected or HIV monoinfected patients. However, in a multivariate analysis, coinfected patients with the intermediate expression haplotype of the MBL2 gene had an odds ratio of 3.1-fold (CI = 1.2–7.6) of their last CD4 cell count being below 350 cells/mm3. Among the coinfected individuals, four developed KS and presented the intermediate expression MBL haplotype, with three being HYA/LXA and one being LYA/LYO. Conclusions Host genetic factors, such as -550, -221 and exon 1 polymorphisms, can be related to the may modify coinfections and/or to the development clinical manifestations caused by HHV-8, especially in HIV/HHV-8 coinfected patients who present the intermediate expression haplotypes of MBL.
Collapse
Affiliation(s)
- Viviane Martha Santos de Morais
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Elker Lene Santos de Lima
- Laboratory of Molecular Biology, Center of Pediatric Oncohematology, Oswaldo Cruz University Hospital, University of Pernambuco, Recife, PE, Brazil
| | - Georgea Gertrudes de Oliveira Mendes Cahú
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Thaisa Regina Rocha Lopes
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Juliana Prado Gonçales
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Maria Tereza Cartaxo Muniz
- Laboratory of Molecular Biology, Center of Pediatric Oncohematology, Oswaldo Cruz University Hospital, University of Pernambuco, Recife, PE, Brazil
| | - Maria Rosângela Cunha Duarte Coêlho
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil. .,Departament of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|