1
|
Gálvez-Navas JM, Molina-Montes E, Rodríguez-Barranco M, Ramírez-Tortosa MC, Gil Á, Sánchez MJ. Molecular Mechanisms Linking Genes and Vitamins of the Complex B Related to One-Carbon Metabolism in Breast Cancer: An In Silico Functional Database Study. Int J Mol Sci 2024; 25:8175. [PMID: 39125744 PMCID: PMC11311893 DOI: 10.3390/ijms25158175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Carcinogenesis is closely related to the expression, maintenance, and stability of DNA. These processes are regulated by one-carbon metabolism (1CM), which involves several vitamins of the complex B (folate, B2, B6, and B12), whereas alcohol disrupts the cycle due to the inhibition of folate activity. The relationship between nutrients related to 1CM (all aforementioned vitamins and alcohol) in breast cancer has been reviewed. The interplay of genes related to 1CM was also analyzed. Single nucleotide polymorphisms located in those genes were selected by considering the minor allele frequency in the Caucasian population and the linkage disequilibrium. These genes were used to perform several in silico functional analyses (considering corrected p-values < 0.05 as statistically significant) using various tools (FUMA, ShinyGO, and REVIGO) and databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO). The results of this study showed that intake of 1CM-related B-complex vitamins is key to preventing breast cancer development and survival. Also, the genes involved in 1CM are overexpressed in mammary breast tissue and participate in a wide variety of biological phenomena related to cancer. Moreover, these genes are involved in alterations that give rise to several types of neoplasms, including breast cancer. Thus, this study supports the role of one-carbon metabolism B-complex vitamins and genes in breast cancer; the interaction between both should be addressed in future studies.
Collapse
Affiliation(s)
- José María Gálvez-Navas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (J.M.G.-N.); (M.-J.S.)
- Cancer Registry of Granada, Andalusian School of Public Health, Campus Universitario de Cartuja, Cuesta del Observatorio 4, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Av. de Madrid, 18012 Granada, Spain;
- Ph.D. Program in Nutrition and Food Sciences, International Postgraduate School, University of Granada, Av. de Madrid 13, 18012 Granada, Spain
| | - Esther Molina-Montes
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (J.M.G.-N.); (M.-J.S.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Av. de Madrid, 18012 Granada, Spain;
- Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18011 Granada, Spain
| | - Miguel Rodríguez-Barranco
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (J.M.G.-N.); (M.-J.S.)
- Cancer Registry of Granada, Andalusian School of Public Health, Campus Universitario de Cartuja, Cuesta del Observatorio 4, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Av. de Madrid, 18012 Granada, Spain;
| | - MCarmen Ramírez-Tortosa
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18011 Granada, Spain;
| | - Ángel Gil
- Instituto de Investigación Biosanitaria ibs. GRANADA, Av. de Madrid, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18011 Granada, Spain;
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - María-José Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (J.M.G.-N.); (M.-J.S.)
- Cancer Registry of Granada, Andalusian School of Public Health, Campus Universitario de Cartuja, Cuesta del Observatorio 4, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Av. de Madrid, 18012 Granada, Spain;
| |
Collapse
|
2
|
Li S, Xu F, Liu L, Ju R, Bergquist J, Zheng QY, Mi J, Lu L, Li X, Tian G. A systems genetics approach to revealing the Pdgfb molecular network of the retina. Mol Vis 2020; 26:459-471. [PMID: 32587457 PMCID: PMC7305692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/17/2020] [Indexed: 11/01/2022] Open
Abstract
Purpose Platelet-derived growth factor (PDGF) signaling is well known to be involved in vascular retinopathies. Among the PDGF family, the subunit B (PDGFB) protein is considered a promising therapeutic target. This study aimed to identify the genes and potential pathways through which PDGFB affects retinal phenotypes by using a systems genetics approach. Methods Gene expression data had been previously generated in a laboratory for the retinas of 75 C57BL/6J(B6) X DBA/2J (BXD) recombinant inbred (RI) strains. Using this data, the genetic correlation method was used to identify genes correlated to Pdgfb. A correlation between intraocular pressure (IOP) and Pdgfb was calculated based on the Pearson correlation coefficient. A gene set enrichment analysis and the STRING database were used to evaluate gene function and to construct protein-protein interaction (PPI) networks. Results Pdgfb was a cis-regulated gene in the retina; its expression had a significant correlation with IOP (r = 0.305; p value = 0.012). The expression levels of 2,477 genes also had significant correlations with Pdgfb expressions (p<0.05), among which Atf4 was the most positively correlated (r = 0.628; p value = 1.29e-10). Thus, Atf4 was highly expressed in the retina and shared the transcription factor (TF) Hnf4a binding site with Pdgfb. Gene Ontology and a pathway analysis revealed that Pdgfb and its covariates were highly involved in mitogen-activated protein kinase (MAPK) and vascular endothelial growth factor (VEGF) pathways. A generated gene network indicated that Pdgfb was directly connected to and interacted with other genes with similar biologic functions. Conclusions A systems genetics analysis revealed that Pdgfb had significant interactions with Atf4 and other genes in MAPK and VEGF pathways, through which Pdgfb was important in maintaining retina function. These findings provided basic information regarding the Pdgfb regulation mechanism and potential therapy for vascular retinopathies.
Collapse
Affiliation(s)
- Shasha Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, China,Department of Genetics, Genomics and informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Fuyi Xu
- Department of Genetics, Genomics and informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Lin Liu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jonas Bergquist
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, China,Analytical Chemistry and Neurochemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Qing Yin Zheng
- Transformative Otology and Neuroscience Center, Case Western Reserve University School of Medicine, Cleveland, OH,Departments of Otolaryngology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Jia Mi
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Lu Lu
- Department of Genetics, Genomics and informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Geng Tian
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
3
|
Théberge ET, Baker JA, Dubose C, Boyle JK, Balce K, Goldowitz D, Hamre KM. Genetic Influences on the Amount of Cell Death in the Neural Tube of BXD Mice Exposed to Acute Ethanol at Midgestation. Alcohol Clin Exp Res 2019; 43:439-452. [PMID: 30589433 DOI: 10.1111/acer.13947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) have a strong genetic component although the genes that underlie this are only beginning to be elucidated. In the present study, one of the most common phenotypes of FASD, cell death within the early developing neural tube, was examined across a genetic reference population in a reverse genetics paradigm with the goal of identifying genetic loci that could influence ethanol (EtOH)-induced apoptosis in the early developing neural tube. METHODS BXD recombinant inbred mice as well as the parental strains were used to evaluate genetic differences in EtOH-induced cell death after exposure on embryonic day 9.5. Dams were given either 5.8 g/kg EtOH or isocaloric maltose-dextrin in 2 doses via intragastric gavage. Embryos were collected 7 hours after the initial exposure and cell death evaluated via TUNEL staining in the brainstem and forebrain. Genetic loci were evaluated using quantitative trait locus (QTL) analysis at GeneNetwork.org. RESULTS Significant strain differences were observed in the levels of EtOH-induced cell death that were due to genetic effects and not confounding variables such as differences in developmental maturity or cell death kinetics. Comparisons between the 2 regions of the developing neural tube showed little genetic correlation with the QTL maps exhibiting no overlap. Significant QTLs were found on murine mid-chromosome 4 and mid-chromosome 14 only in the brainstem. Within these chromosomal loci, a number of interesting candidate genes were identified that could mediate this differential sensitivity including Nfia (nuclear factor I/A) and Otx2 (orthodenticle homeobox 2). CONCLUSIONS These studies demonstrate that the levels of EtOH-induced cell death occur in strain- and region-dependent manners. Novel QTLs on mouse Chr4 and Chr14 were identified that modulate the differential sensitivity to EtOH-induced apoptosis in the embryonic brainstem. The genes underlying these QTLs could identify novel molecular pathways that are critical in this phenotype.
Collapse
Affiliation(s)
- Emilie T Théberge
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Baker
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| | - Candis Dubose
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| | - Julia K Boyle
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina Balce
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan Goldowitz
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
4
|
Zygmunt M, Piechota M, Rodriguez Parkitna J, Korostyński M. Decoding the transcriptional programs activated by psychotropic drugs in the brain. GENES BRAIN AND BEHAVIOR 2018; 18:e12511. [PMID: 30084543 DOI: 10.1111/gbb.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Analysis of drug-induced gene expression in the brain has long held the promise of revealing the molecular mechanisms of drug actions as well as predicting their long-term clinical efficacy. However, despite some successes, this promise has yet to be fulfilled. Here, we present an overview of the current state of understanding of drug-induced gene expression in the brain and consider the obstacles to achieving a robust prediction of the properties of psychoactive compounds based on gene expression profiles. We begin with a comprehensive overview of the mechanisms controlling drug-inducible transcription and the complexity resulting from expression of noncoding RNAs and alternative gene isoforms. Particular interest is placed on studies that examine the associations within drug classes with regard to the effects on gene transcription, alterations in cell signaling and neuropharmacological drug properties. While the ability of gene expression signatures to distinguish specific clinical classes of psychotropic and addictive drugs remains unclear, some reports show that under specific constraints, drug properties can be predicted based on gene expression. Such signatures offer a simple and effective way to classify psychotropic drugs and screen novel psychoactive compounds. Finally, we note that the amount of data regarding molecular programs activated in the brain by drug treatment has grown exponentially in recent years and that future advances may therefore come in large part from integrating the currently available high-throughput data sets.
Collapse
Affiliation(s)
- Magdalena Zygmunt
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
5
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|