1
|
KLUTHCOVSKY LC, JENNIFER M, MERISIO TM, CASTRO JLC, FILHO JRE. Treatment of mammary gland tumors in bitches: effects of sodium dichloroacetate as neoadjuvant therapy. J Vet Med Sci 2024; 86:677-683. [PMID: 38692860 PMCID: PMC11187584 DOI: 10.1292/jvms.23-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Mastectomy is the standard treatment for mammary gland tumors in dogs. In addition to traditional therapy, sodium dichloroacetate (DCA) can act as target therapy, as it may promote autophagy, reduce metastatic potential, and tumor proliferation in mammary tumor cell lines. This study aimed to analyze the effects of DCA as preoperative therapy for mammary tumors in bitches. Nineteen animals were selected, and they received DCA at a dose of 10 mg/kg orally every 12 hr, for 15 days. The periodic evaluation included hematological analysis (complete blood count and biochemical markers), evaluation of gastrointestinal adverse effects, evaluation of tumor volume, histopathological analysis, and immunohistochemical evaluation (Ki67 and cyclooxygenase-2/COX-2 markers). After treatment, there was a significant reduction in hematocrit (P=0.02) and leukocyte (P=0.04) means. Despite the variations for these two hematological parameters, the means remained within the reference range for the species. There were two cases of vomiting and one case of diarrhea. Most cases were classified as carcinoma in mixed tumor (n=7, 36.8%), followed by solid carcinoma (n=6, 31.6%). Nine cases (47.4%) showed reduced tumor volume, nine (47.4%) had stable disease, and one showed progressive disease. While there was no sample with a COX-2 score higher than 6, tumor samples with COX-2 scores 3 and 4 were significantly associated with stable disease or progression. DCA preoperative treatment for bitches with mammary gland tumors showed safety and potential cytoreduction in some cases.
Collapse
Affiliation(s)
- Lucas Cavalli KLUTHCOVSKY
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Megan JENNIFER
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Tassia Mariane MERISIO
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Jorge Luiz Costa CASTRO
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Jair Rodini Engracia FILHO
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| |
Collapse
|
2
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
3
|
Toledo GF, Nagamine MK, Nowosh V, Machado FT, Massoco CO, Souza-Pinto NC, Dagli MLZ. Antineoplastic effects of sodium dichloroacetate and omeprazole, alone or in combination, on canine oral mucosal melanoma cells. Front Vet Sci 2023; 10:1186650. [PMID: 37520008 PMCID: PMC10373870 DOI: 10.3389/fvets.2023.1186650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Oral mucosal melanoma (OMM) is a common neoplasm in canines, although it is rare in humans. Cancer cells present alterations in energetic metabolism, and the Warburg effect states that most cancer cells undergo aerobic glycolysis. This can be reversed by certain drugs, resulting in decreased cell viability and cell death. We sought to evaluate the effects of sodium dichloroacetate (DCA) and omeprazole (OMP) alone or in combination on canine OMM and human melanoma cells. CMGD5 and SK-MEL-28 cell lines were treated with DCA and OMP alone or in combination, and cell viability was assessed using the crystal violet assay. Cell death (apoptosis and necrosis) was assessed by Annexin V and propidium iodide (PI) staining assays using flow cytometry. In addition, the oxygen consumption rate (OCR) was evaluated using a SeaHorse XF assay. Treatment with DCA or OMP alone resulted in a significant, but not dose-dependent, reduction in cell viability in both cell lines; however, the combination of DCA and OMP resulted in a significant and dose-dependent decrease in viability in both cell lines. DCA and OMP, alone or in combination, did not alter OCR at the concentrations tested in either cell line. Since the combination of DCA and OMP potentialized the inhibition of viability and increased cell death in a synergistic manner in melanoma cells, this approach may represent a new repurposing strategy to treat cancer.
Collapse
Affiliation(s)
- Gabriela F. Toledo
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Marcia K. Nagamine
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Victor Nowosh
- Laboratory of Comparative Imuno-Oncology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Felippe T. Machado
- Laboratory of Mitochondrial Genetics, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Cristina O. Massoco
- Laboratory of Comparative Imuno-Oncology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Nadja C. Souza-Pinto
- Laboratory of Mitochondrial Genetics, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria L. Z. Dagli
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Oxidative Glucose Metabolism Promotes Senescence in Vascular Endothelial Cells. Cells 2022; 11:cells11142213. [PMID: 35883656 PMCID: PMC9322806 DOI: 10.3390/cells11142213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular aging is based on the development of endothelial dysfunction, which is thought to be promoted by senescent cells accumulating in aged tissues and is possibly affected by their environment via inflammatory mediators and oxidative stress. Senescence appears to be closely interlinked with changes in cell metabolism. Here, we describe an upregulation of both glycolytic and oxidative glucose metabolism in replicative senescent endothelial cells compared to young endothelial cells by employing metabolic profiling and glucose flux measurements and by analyzing the expression of key metabolic enzymes. Senescent cells exhibit higher glycolytic activity and lactate production together with an enhanced expression of lactate dehydrogenase A as well as increases in tricarboxylic acid cycle activity and mitochondrial respiration. The latter is likely due to the reduced expression of pyruvate dehydrogenase kinases (PDHKs) in senescent cells, which may lead to increased activity of the pyruvate dehydrogenase complex. Cellular and mitochondrial ATP production were elevated despite signs of mitochondrial dysfunction, such as an increased production of reactive oxygen species and extended mitochondrial mass. A shift from glycolytic to oxidative glucose metabolism induced by pharmacological inhibition of PDHKs in young endothelial cells resulted in premature senescence, suggesting that alterations in cellular glucose metabolism may act as a driving force for senescence in endothelial cells.
Collapse
|
5
|
Parkin ET, Hammond JE, Owens L, Hodges MD. The orphan drug dichloroacetate reduces amyloid beta-peptide production whilst promoting non-amyloidogenic proteolysis of the amyloid precursor protein. PLoS One 2022; 17:e0255715. [PMID: 35025874 PMCID: PMC8757967 DOI: 10.1371/journal.pone.0255715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
The amyloid cascade hypothesis proposes that excessive accumulation of amyloid beta-peptides is the initiating event in Alzheimer’s disease. These neurotoxic peptides are generated from the amyloid precursor protein via sequential cleavage by β- and γ-secretases in the ’amyloidogenic’ proteolytic pathway. Alternatively, the amyloid precursor protein can be processed via the ’non-amyloidogenic’ pathway which, through the action of the α-secretase a disintegrin and metalloproteinase (ADAM) 10, both precludes amyloid beta-peptide formation and has the additional benefit of generating a neuroprotective soluble amyloid precursor protein fragment, sAPPα. In the current study, we investigated whether the orphan drug, dichloroacetate, could alter amyloid precursor protein proteolysis. In SH-SY5Y neuroblastoma cells, dichloroacetate enhanced sAPPα generation whilst inhibiting β–secretase processing of endogenous amyloid precursor protein and the subsequent generation of amyloid beta-peptides. Over-expression of the amyloid precursor protein partly ablated the effect of dichloroacetate on amyloidogenic and non-amyloidogenic processing whilst over-expression of the β-secretase only ablated the effect on amyloidogenic processing. Similar enhancement of ADAM-mediated amyloid precursor protein processing by dichloroacetate was observed in unrelated cell lines and the effect was not exclusive to the amyloid precursor protein as an ADAM substrate, as indicated by dichloroacetate-enhanced proteolysis of the Notch ligand, Jagged1. Despite altering proteolysis of the amyloid precursor protein, dichloroacetate did not significantly affect the expression/activity of α-, β- or γ-secretases. In conclusion, dichloroacetate can inhibit amyloidogenic and promote non-amyloidogenic proteolysis of the amyloid precursor protein. Given the small size and blood-brain-barrier permeability of the drug, further research into its mechanism of action with respect to APP proteolysis may lead to the development of therapies for slowing the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Edward T. Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Jessica E. Hammond
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Lauren Owens
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Matthew D. Hodges
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
6
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
The Dog as a Model to Study the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:123-152. [PMID: 34664237 DOI: 10.1007/978-3-030-73119-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.
Collapse
|
8
|
Abramek J, Bogucki J, Ziaja-Sołtys M, Stępniewski A, Bogucka-Kocka A. Effect of sodium dichloroacetate on apoptotic gene expression in human leukemia cell lines. Pharmacol Rep 2018; 71:248-256. [PMID: 30822618 DOI: 10.1016/j.pharep.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sodium dichloroacetate (DCA) is an agent with anticancer properties against solid tumors. DCA also seems to have antileukemic activity. In order to affirm it we investigate the effect of DCA on cell viability and apoptotic gene expression profiles in leukemia cell lines: CEM/C1, CCRF/CEM, HL-60, HL-60/MX2. METHODS Cell viability was assessed by trypan blue staining. The expression of 93 genes involved in the process of apoptosis was determined by real-time PCR method using Taqman Low Density Array (TLDA). RESULTS CEM/C1, CCRF/CEM, HL-60, HL-60/MX2 cells were exposed to DCA for 24 h. The sensitivity of each cell line to DCA is different and depends on the concentration. CEM/C1 was the most sensitive with an half-maximal inhibitory concentration (IC50) value of 30 mM, while HL-60/MX2 was the most resistant with an IC50 value of 75 mM. Exposure of leukemia cells to DCA causes differences in gene expression profiles which cannot indicate that any particular pathway of apoptosis is initiated. However, the presence of 388 statistically significant correlations between expression pattern of gens was determined. CONCLUSION We showed that DCA causes a decrease in viability of leukemia cells. The decline depends on DCA concentration. The induction of any particular apoptosis pathway is not shown in cells after DCA treatment. For that reason, studies on the molecular mechanism of cell death after exposure to DCA should be continued.
Collapse
Affiliation(s)
- Jagoda Abramek
- Chair and Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland.
| | - Jacek Bogucki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland.
| | - Marta Ziaja-Sołtys
- Chair and Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland.
| | | | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|