1
|
Ding E, Chaudhury SN, Prajapati JD, Onuchic JN, Sanbonmatsu KY. Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements. RNA (NEW YORK, N.Y.) 2024; 30:992-1010. [PMID: 38777381 PMCID: PMC11251524 DOI: 10.1261/rna.079767.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure upon binding of the 2'-dG molecule, which terminates transcription. RNA conformations are generally strongly affected by positively charged metal ions (especially Mg2+). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg2+ binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all-atom molecular dynamics simulations (99 μsec aggregate sampling for the study) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments. We show that both ligand and Mg2+ are required for the stabilization of the aptamer domain; however, the two factors act with different modalities. The addition of Mg2+ remodels the energy landscape and reduces its frustration by the formation of additional contacts. In contrast, the binding of 2'-dG eliminates the metastable states by nucleating a compact core for the aptamer domain. Mg2+ ions and ligand binding are required to stabilize the least stable helix, P1 (which needs to unfold to activate the transcription platform), and the riboswitch core formed by the backbone of the P2 and P3 helices. Mg2+ and ligand also facilitate a more compact structure in the three-way junction region.
Collapse
Affiliation(s)
- Erdong Ding
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Susmit Narayan Chaudhury
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
2
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
3
|
Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch. Commun Biol 2022; 5:1120. [PMID: 36273041 PMCID: PMC9588036 DOI: 10.1038/s42003-022-04096-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Riboswitches normally regulate gene expression through structural changes in response to the specific binding of cellular metabolites or metal ions. Taking add adenine riboswitch as an example, we explore the influences of metal ions (especially for K+ and Mg2+ ions) on the structure and dynamics of riboswitch aptamer (with and without ligand) by using molecular dynamic (MD) simulations. Our results show that a two-state transition marked by the structural deformation at the connection of J12 and P1 (CJ12-P1) is not only related to the binding of cognate ligands, but also strongly coupled with the change of metal ion environments. Moreover, the deformation of the structure at CJ12-P1 can be transmitted to P1 directly connected to the expression platform in multiple ways, which will affect the structure and stability of P1 to varying degrees, and finally change the regulation state of this riboswitch. Molecular dynamic simulations are employed to assess the influence of metal ions on riboswitch structure and dynamics, suggesting a conformational control of riboswitch aptamers by metal ions before ligand binding.
Collapse
|
4
|
Gertzen CGW, Gohlke H. Molecular Modeling and Simulations of DNA and RNA: DNAzyme as a Model System. Methods Mol Biol 2022; 2439:153-170. [PMID: 35226321 DOI: 10.1007/978-1-0716-2047-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays, the structural dynamics of DNA and RNA is accessible on an atomistic level on a micro- to millisecond time scale via molecular dynamics simulations. However, as DNA or RNA are highly charged molecules, performing such simulations is challenging as to the representation of intramolecular electrostatic interactions and those to solvent molecules and ions. This is particularly true for DNAzymes, where DNA and RNA backbones can come as close as 2.4 Å with their charged phosphate groups during the catalytic cycle. Here, we present tools to simulate the structural dynamics of a DNAzyme, with a focus on detailed instructions for the Amber suite of programs. Furthermore, we will show how to analyze metal ion binding within the DNAzyme.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Institute of Bio- and Geoscences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
5
|
Unraveling RNA dynamical behavior of TPP riboswitches: a comparison between Escherichia coli and Arabidopsis thaliana. Sci Rep 2019; 9:4197. [PMID: 30862893 PMCID: PMC6414600 DOI: 10.1038/s41598-019-40875-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
Riboswitches are RNA sensors that affect post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch class is the most widespread riboswitch occurring in all three domains of life. Even though it controls different genes involved in the synthesis or transport of thiamine and its phosphorylated derivatives in bacteria, archaea, fungi, and plants, the TPP aptamer has a conserved structure. In this study, we aimed at understanding differences in the structural dynamics of TPP riboswitches from Escherichia coli and Arabidopsis thaliana, based on their crystallographic structures (TPPswec and TPPswat, respectively) and dynamics in aqueous solution, both in apo and holo states. A combination of Molecular Dynamics Simulations and Network Analysis empowered to find out slight differences in the dynamical behavior of TPP riboswitches, although relevant for their dynamics in bacteria and plants species. Our results suggest that distinct interactions in the microenvironment surrounding nucleotide U36 of TPPswec (and U35 in TPPswat) are related to different responses to TPP. The network analysis showed that minor structural differences in the aptamer enable enhanced intramolecular communication in the presence of TPP in TPPswec, but not in TPPswat. TPP riboswitches of plants present subtler and slower regulation mechanisms than bacteria do.
Collapse
|
6
|
Padhi S, Pradhan M, Bung N, Roy A, Bulusu G. TPP riboswitch aptamer: Role of Mg 2+ ions, ligand unbinding, and allostery. J Mol Graph Model 2019; 88:282-291. [PMID: 30818079 DOI: 10.1016/j.jmgm.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/23/2023]
Abstract
Riboswitches are non-coding RNAs that regulate gene expression in response to the binding of metabolites. Their abundance in bacteria makes them ideal drug targets. The prokaryotic thiamine pyrophosphate (TPP) riboswitch regulates gene expression in a wide range of bacteria by undergoing conformational changes in response to the binding of TPP. Although an experimental structure for the aptamer domain of the riboswitch is now available, details of the conformational changes that occur during the binding of the ligand, and the factors that govern these conformational changes, are still not clear. This study employs microsecond-scale molecular dynamics simulations to provide insights into the functioning of the riboswitch aptamer in atomistic detail. A mechanism for the transmission of conformational changes from the ligand-binding site to the P1 switch helix is proposed. Mg2+ ions in the binding site play a critical role in anchoring the ligand to the riboswitch. Finally, modeling the egress of TPP from the binding site reveals a two-step mechanism for TPP unbinding. Findings from this study can motivate the design of future studies aimed at modulating the activity of this drug target.
Collapse
Affiliation(s)
- Siladitya Padhi
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India
| | - Meenakshi Pradhan
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India
| | - Navneet Bung
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India
| | - Arijit Roy
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, 500081, India.
| |
Collapse
|
7
|
Hanke CA, Gohlke H. Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site. J Chem Inf Model 2017; 57:2822-2832. [DOI: 10.1021/acs.jcim.7b00567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian A. Hanke
- Mathematisch-Naturwissenschaftliche
Fakultät, Institut für Pharmazeutische und Medizinische
Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche
Fakultät, Institut für Pharmazeutische und Medizinische
Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|