1
|
Fuadah YN, Qauli AI, Marcellinus A, Pramudito MA, Lim KM. Machine learning approach to evaluate TdP risk of drugs using cardiac electrophysiological model including inter-individual variability. Front Physiol 2023; 14:1266084. [PMID: 37860622 PMCID: PMC10584148 DOI: 10.3389/fphys.2023.1266084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction: Predicting ventricular arrhythmia Torsade de Pointes (TdP) caused by drug-induced cardiotoxicity is essential in drug development. Several studies used single biomarkers such as qNet and Repolarization Abnormality (RA) in a single cardiac cell model to evaluate TdP risk. However, a single biomarker may not encompass the full range of factors contributing to TdP risk, leading to divergent TdP risk prediction outcomes, mainly when evaluated using unseen data. We addressed this issue by utilizing multi-in silico features from a population of human ventricular cell models that could capture a representation of the underlying mechanisms contributing to TdP risk to provide a more reliable assessment of drug-induced cardiotoxicity. Method: We generated a virtual population of human ventricular cell models using a modified O'Hara-Rudy model, allowing inter-individual variation. IC 50 and Hill coefficients from 67 drugs were used as input to simulate drug effects on cardiac cells. Fourteen features (dVm dt repol , dVm dt max , Vm peak , Vm resting , APD tri , APD 90 , APD 50 , Ca peak , Ca diastole , Ca tri , CaD 90 , CaD 50 , qNet, qInward) could be generated from the simulation and used as input to several machine learning models, including k-nearest neighbor (KNN), Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN). Optimization of the machine learning model was performed using a grid search to select the best parameter of the proposed model. We applied five-fold cross-validation while training the model with 42 drugs and evaluated the model's performance with test data from 25 drugs. Result: The proposed ANN model showed the highest performance in predicting the TdP risk of drugs by providing an accuracy of 0.923 (0.908-0.937), sensitivity of 0.926 (0.909-0.942), specificity of 0.921 (0.906-0.935), and AUC score of 0.964 (0.954-0.975). Discussion and conclusion: According to the performance results, combining the electrophysiological model including inter-individual variation and optimization of machine learning showed good generalization ability when evaluated using the unseen dataset and produced a reliable drug-induced TdP risk prediction system.
Collapse
Affiliation(s)
- Yunendah Nur Fuadah
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
- School of Electrical Engineering, Telkom University, Bandung, Indonesia
| | - Ali Ikhsanul Qauli
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
- Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Jawa Timur, Indonesia
| | - Aroli Marcellinus
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Muhammad Adnan Pramudito
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
- Computational Medicine Lab, Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
- Meta Heart Co., Ltd., Gumi, Republic of Korea
| |
Collapse
|
2
|
Shiti A, Arbil G, Shaheen N, Huber I, Setter N, Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J Mol Cell Cardiol 2023; 183:42-53. [PMID: 37579942 PMCID: PMC10589759 DOI: 10.1016/j.yjmcc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.
Collapse
Affiliation(s)
- Assad Shiti
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Arbil
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Naim Shaheen
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irit Huber
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Setter
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Cardiolology Department, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
3
|
Li Y, Wan R, Liu J, Liu W, Ma L, Zhang H. In silico mechanisms of arsenic trioxide-induced cardiotoxicity. Front Physiol 2022; 13:1004605. [PMID: 36589437 PMCID: PMC9798418 DOI: 10.3389/fphys.2022.1004605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
It has been found that arsenic trioxide (ATO) is effective in treating acute promyelocytic leukemia (APL). However, long QT syndrome was reported in patients receiving therapy using ATO, which even led to sudden cardiac death. The underlying mechanisms of ATO-induced cardiotoxicity have been investigated in some biological experiments, showing that ATO affects human ether-à-go-go-related gene (hERG) channels, coding rapid delayed rectifier potassium current (I Kr ), as well as L-type calcium (I CaL ) channels. Nevertheless, the mechanism by which these channel reconstitutions induced the arrhythmia in ventricular tissue remains unsolved. In this study, a mathematical model was developed to simulate the effect of ATO on ventricular electrical excitation at cellular and tissue levels by considering ATO's effects on I Kr and I CaL . The ATO-dose-dependent pore block model was incorporated into the I Kr model, and the enhanced degree of ATO to I CaL was based on experimental data. Simulation results indicated that ATO extended the action potential duration of three types of ventricular myocytes (VMs), including endocardial cells (ENDO), midmyocardial cells (MCELL), and epicardial cells (EPI), and exacerbated the heterogeneity among them. ATO could also induce alternans in all three kinds of VMs. In a cable model of the intramural ventricular strand, the effects of ATO are reflected in a prolonged QT interval of simulated pseudo-ECG and a wide vulnerable window, thus increasing the possibility of spiral wave formation in ventricular tissue. In addition to showing that ATO prolonged QT, we revealed that the heterogeneity caused by ATO is also an essential hazard factor. Based on this, a pharmacological intervention of ATO toxicity by resveratrol was undertaken. This study provides a further understanding of ATO-induced cardiotoxicity, which may help to improve the treatment for APL patients.
Collapse
Affiliation(s)
- Yacong Li
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Weichao Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| | - Lei Ma
- Beijing Academy of Artificial Intelligence, Beijing, China,National Biomedical Imaging Center, Peking University, Beijing, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom,*Correspondence: Jun Liu, ; Weichao Liu, ; Henggui Zhang,
| |
Collapse
|
4
|
Jiang H, Zhang S, Lu W, Yang F, Bi X, Ma W, Wei Z. In silico assessment of pharmacotherapy for carbon monoxide induced arrhythmias in healthy and failing human hearts. Front Physiol 2022; 13:1018299. [DOI: 10.3389/fphys.2022.1018299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Carbon monoxide (CO) is gaining increased attention in air pollution-induced arrhythmias. The severe cardiotoxic consequences of CO urgently require effective pharmacotherapy to treat it. However, existing evidence demonstrates that CO can induce arrhythmias by directly affecting multiple ion channels, which is a pathway distinct from heart ischemia and has received less concern in clinical treatment.Objective: To evaluate the efficacy of some common clinical antiarrhythmic drugs for CO-induced arrhythmias, and to propose a potential pharmacotherapy for CO-induced arrhythmias through the virtual pathological cell and tissue models.Methods: Two pathological models describing CO effects on healthy and failing hearts were constructed as control baseline models. After this, we first assessed the efficacy of some common antiarrhythmic drugs like ranolazine, amiodarone, nifedipine, etc., by incorporating their ion channel-level effects into the cell model. Cellular biomarkers like action potential duration and tissue-level biomarkers such as the QT interval from pseudo-ECGs were obtained to assess the drug efficacy. In addition, we also evaluated multiple specific IKr activators in a similar way to multi-channel blocking drugs, as the IKr activator showed great potency in dealing with CO-induced pathological changes.Results: Simulation results showed that the tested seven antiarrhythmic drugs failed to rescue the heart from CO-induced arrhythmias in terms of the action potential and the ECG manifestation. Some of them even worsened the condition of arrhythmogenesis. In contrast, IKr activators like HW-0168 effectively alleviated the proarrhythmic effects of CO.Conclusion: Current antiarrhythmic drugs including the ranolazine suggested in previous studies did not achieve therapeutic effects for the cardiotoxicity of CO, and we showed that the specific IKr activator is a promising pharmacotherapy for the treatment of CO-induced arrhythmias.
Collapse
|
5
|
Zhang S, Lu W, Yang F, Li Z, Wang S, Jiang M, Wang X, Wei Z. Computational analysis of arrhythmogenesis in KCNH2 T618I mutation-associated short QT syndrome and the pharmacological effects of quinidine and sotalol. NPJ Syst Biol Appl 2022; 8:43. [PMID: 36333337 PMCID: PMC9636227 DOI: 10.1038/s41540-022-00254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Short QT syndrome (SQTS) is a rare but dangerous genetic disease. In this research, we conducted a comprehensive in silico investigation into the arrhythmogenesis in KCNH2 T618I-associated SQTS using a multi-scale human ventricle model. A Markov chain model of IKr was developed firstly to reproduce the experimental observations. It was then incorporated into cell, tissue, and organ models to explore how the mutation provided substrates for ventricular arrhythmias. Using this T618I Markov model, we explicitly revealed the subcellular level functional alterations by T618I mutation, particularly the changes of ion channel states that are difficult to demonstrate in wet experiments. The following tissue and organ models also successfully reproduced the changed dynamics of reentrant spiral waves and impaired rate adaptions in hearts of T618I mutation. In terms of pharmacotherapy, we replicated the different effects of a drug under various conditions using identical mathematical descriptions for drugs. This study not only simulated the actions of an effective drug (quinidine) at various physiological levels, but also elucidated why the IKr inhibitor sotalol failed in SQT1 patients through profoundly analyzing its mutation-dependent actions.
Collapse
Affiliation(s)
- Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| | - Weigang Lu
- Department of Educational Technology, Ocean University of China, Qingdao, 266100, China.
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| | - Fei Yang
- School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai, 264200, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjian Jiang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | | | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
6
|
Krahn AD, Tfelt-Hansen J, Tadros R, Steinberg C, Semsarian C, Han HC. Latent Causes of Sudden Cardiac Arrest. JACC Clin Electrophysiol 2022; 8:806-821. [PMID: 35738861 DOI: 10.1016/j.jacep.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
Inherited arrhythmia syndromes are a common cause of apparently unexplained cardiac arrest or sudden cardiac death. These include long QT syndrome and Brugada syndrome, with a well-recognized phenotype in most patients with sufficiently severe disease to lead to cardiac arrest. Less common and typically less apparent conditions that may not be readily evident include catecholaminergic polymorphic ventricular tachycardia, short QT syndrome and early repolarization syndrome. In cardiac arrest patients whose extensive testing does not reveal an underlying etiology, a diagnosis of idiopathic ventricular fibrillation or short-coupled ventricular fibrillation is assigned. This review summarizes our current understanding of the less common inherited arrhythmia syndromes and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec (IUCPQ-UL), Laval University, Inherited Arrhythmia Services, Départment of Cardiology and Cardiac Surgery, Québec, Canada
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Fan X, Yang G, Kowitz J, Duru F, Saguner AM, Akin I, Zhou X, El-Battrawy I. Preclinical short QT syndrome models: studying the phenotype and drug-screening. Europace 2021; 24:481-493. [PMID: 34516623 DOI: 10.1093/europace/euab214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5-10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype-phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype-phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome.
Collapse
Affiliation(s)
- Xuehui Fan
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, Hospital (T.CM.) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.,Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Akin
- University of Mannheim, University of Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Ibrahim El-Battrawy
- University of Mannheim, University of Heidelberg, Germany.,Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Hwang M, Lim CH, Leem CH, Shim EB. In silico models for evaluating proarrhythmic risk of drugs. APL Bioeng 2020; 4:021502. [PMID: 32548538 PMCID: PMC7274812 DOI: 10.1063/1.5132618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Safety evaluation of drugs requires examination of the risk of generating Torsade de Pointes (TdP) because it can lead to sudden cardiac death. Until recently, the QT interval in the electrocardiogram (ECG) has been used in the evaluation of TdP risk because the QT interval is known to be associated with the development of TdP. Although TdP risk evaluation based on QT interval has been successful in removing drugs with TdP risk from the market, some safe drugs may have also been affected due to the low specificity of QT interval-based evaluation. For more accurate evaluation of drug safety, the comprehensive in vitro proarrhythmia assay (CiPA) has been proposed by regulatory agencies, industry, and academia. Although the CiPA initiative includes in silico evaluation of cellular action potential as a component, attempts to utilize in silico simulation in drug safety evaluation are expanding, even to simulating human ECG using biophysical three-dimensional models of the heart and torso under the effects of drugs. Here, we review recent developments in the use of in silico models for the evaluation of the proarrhythmic risk of drugs. We review the single cell, one-dimensional, two-dimensional, and three-dimensional models and their applications reported in the literature and discuss the possibility of utilizing ECG simulation in drug safety evaluation.
Collapse
Affiliation(s)
- Minki Hwang
- SiliconSapiens Inc., Seoul 06097, South Korea
| | - Chul-Hyun Lim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, South Korea
| | - Chae Hun Leem
- Department of Physiology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, South Korea
| | | |
Collapse
|
9
|
Luo C, Whittaker DG, Liu T, Wang K, Li Y, He Y, Zhang H. Pharmacotherapeutic Effects of Quinidine on Short QT Syndrome by Using Purkinje-Ventricle Model: A Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2856-2859. [PMID: 31946488 DOI: 10.1109/embc.2019.8857134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Short QT syndrome (SQTS) arises due to gene mutations leading to accelerated ventricular repolarization, and increased risk of cardiac arrhythmias and sudden cardiac death (SCD). The SQT1, SQT2 and SQT3 variants of the SQTS result from inherited gain-of-function mutations (e.g. N588K, V307L and D172N, respectively) to potassium channels. However, the effective management of SQTS remains a challenge, and is incompletely understood. In this study, computational modelling was used to investigate pharmacotherapeutic effects of selected class I drug quinidine on SQT1, SQT2 and SQT3 variants. METHODS AND RESULTS The biophysically-detailed Stewart et al. model of Purkinje fibre cell action potentials and the ten Tusscher et al. model of ventricular cell action potentials were coupled together into a heterogeneous two-dimensional (2D) tissue model. Previously validated IKr, IKs and IK1 channel formulations for SQT1, SQT2 and SQT3 were incorporated in ventricular cell and tissue models. The channel-blocking effects of quinidine on ionic currents were modelled by using Hill coefficient and IC50 values from the literature. At the 10 μM concentration tested in this study, quinidine effectively prolonged the action potential duration (APD) under all the SQT1, SQT2 and SQT3 conditions. In 2D simulations, quinidine prolonged the ventricular repolarization process and prolonged the QT intervals under all SQTS variants conditions. CONCLUSIONS Our findings provide a rational basis for the pursuit of pharmacotherapeutic agent quinidine in the treatment of all SQTS variants.
Collapse
|
10
|
Luo C, Wang K, Liu T, Zhang H. Computational Analysis of the Action of Chloroquine on Short QT Syndrome Variant 1 and Variant 3 in Human Ventricles. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5462-5465. [PMID: 30441573 DOI: 10.1109/embc.2018.8513572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIMS The short QT syndrome (SQTS) is a rare genetic disorder associated with arrhythmias and sudden cardiac death (SCD). The SQTI and SQT3, SQTS variants, result from gain-of-function mutations (N588K and D172N, respectively) in the KCNH2-encoded and KCNJ2-encoded potassium channels, in which treatment with potassium channel blocking agents has demonstrated some efficacy. This study used in silico modelling to gain mechanistic insights into the actions of anti-malarial drug chloroquine (CQ) in the setting of SQTI and SQT3. METHODS AND RESULTS The ten Tusscher et al. human ventricle model was modified to a Markov chain formulation of $I_{J}$<r and a Hodgkin-Huxley formulation of $I_{J}$<1 describing SQTI and SQT3 mutant conditions, respectively. Cell models were incorporated into heterogeneous one-dimensional (ID) transmural ventricular strand model to assess prolongation of the QT intervals. The blocking effects of CQ on $I_{J}$<1 and $I_{J}$<r were modelled by using Hill coefficient and IC50 from literatures. At the single cells, CQ prolonged the AP duration (APD) under both the SQTI and SQT3 conditions; at the multi-cell strand level, CQ prolonged the QT intervals and declined the T-wave amplitude under both conditions. CONCLUSIONS This computational study provides novel insights into the efficacy of CQ in the setting of SQTI and SQT3 variants, and indicates that CQ is a useful drug in the treatment of SQTS.
Collapse
|
11
|
Hancox JC, Whittaker DG, Du C, Stuart AG, Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert Opin Ther Targets 2018; 22:439-451. [DOI: 10.1080/14728222.2018.1470621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Dominic G Whittaker
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - A. Graham Stuart
- Cardiology, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Abstract
Short QT syndrome (SQTS) is a myocardial conduction disorder characterized by a short QT interval on electrocardiogram and predisposition to familial atrial fibrillation and/or sudden cardiac death. Genetic SQTS is primarily caused by one or more cardiac ion channelopathies, in which either impaired depolarization currents, or enhanced repolarization currents, shorten cardiac action potential duration. Given that QT interval duration is not always predictive of arrhythmia burden and risk of death in SQTS, there is a need to understand the molecular mechanisms of the condition to improve risk prognostication and potential pharmacologic treatment. In the last decade, several computational advances and in vitro preclinical studies have provided insight into the molecular mechanisms underlying congenital SQTS. In this review, we discuss recent findings in SQTS molecular mechanisms and correlate these advances with clinical guidelines for SQTS diagnosis and treatment.
Collapse
Affiliation(s)
- Srikanth Perike
- Department of Medicine, Section of Cardiology, Department of Bioengineering, Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark D McCAULEY
- Department of Medicine, Section of Cardiology, Department of Bioengineering, Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
13
|
Mazzanti A, Maragna R, Vacanti G, Kostopoulou A, Marino M, Monteforte N, Bloise R, Underwood K, Tibollo V, Pagan E, Napolitano C, Bellazzi R, Bagnardi V, Priori SG. Hydroquinidine Prevents Life-Threatening Arrhythmic Events in Patients With Short QT Syndrome. J Am Coll Cardiol 2017; 70:3010-3015. [DOI: 10.1016/j.jacc.2017.10.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/14/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
|
14
|
Modelling the effects of chloroquine on KCNJ2-linked short QT syndrome. Oncotarget 2017; 8:106511-106526. [PMID: 29290967 PMCID: PMC5739752 DOI: 10.18632/oncotarget.22490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
A gain-of-function KCNJ2 D172N mutation in KCNJ2-encoded Kir2.1 channels underlies one form of short QT syndrome (SQT3), which is associated with increased susceptibility to arrhythmias and sudden death. Anti-malarial drug chloroquine was reported as an effective inhibitor of Kir2.1 channels. Using biophysically-detailed human ventricle computer models, this study assessed the effects of chloroquine on SQT3. The ten Tusscher et al. model of human ventricular cell action potential was modified to recapitulate functional changes in the inward rectifier K+ current (IK1) due to heterozygous and homozygous forms of the D172N mutation. Mutant formulations were incorporated into multi-scale models. The blocking effects of chloroquine on ionic currents were modelled using IC50 and Hill coefficient values from literatures. Effects of chloroquine on action potential duration (APD), effective refractory period (ERP) and pseudo-ECGs were quantified. It was shown that chloroquine caused a dose-dependent reduction in IK1, prolonged APD, and decreased the maximum voltage heterogeneity. Chloroquine prolonged QT interval and declined the T-wave amplitude. Although chloroquine reduced tissue’s temporal vulnerability, it increased the minimum substrate size necessary for sustaining re-entry. The actions of chloroquine decreased arrhythmia risk, due to the reduced tissue vulnerability, prolonged ERP and wavelength of re-entrant excitation waves, which in combination prevented and terminated re-entry in the tissue models. In conclusion, the results of this study provide new evidence that the anti-arrhythmic effects of chloroquine on SQT3 and, by extension, to the possibility that chloroquine may be a potential therapeutic agent for SQT3 treatment.
Collapse
|
15
|
Whittaker DG, Ni H, Benson AP, Hancox JC, Zhang H. Computational Analysis of the Mode of Action of Disopyramide and Quinidine on hERG-Linked Short QT Syndrome in Human Ventricles. Front Physiol 2017; 8:759. [PMID: 29085299 PMCID: PMC5649182 DOI: 10.3389/fphys.2017.00759] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
The short QT syndrome (SQTS) is a rare cardiac disorder associated with arrhythmias and sudden death. Gain-of-function mutations to potassium channels mediating the rapid delayed rectifier current, IKr, underlie SQTS variant 1 (SQT1), in which treatment with Na+ and K+ channel blocking class Ia anti-arrhythmic agents has demonstrated some efficacy. This study used computational modeling to gain mechanistic insights into the actions of two such drugs, disopyramide and quinidine, in the setting of SQT1. The O'Hara-Rudy (ORd) human ventricle model was modified to incorporate a Markov chain formulation of IKr describing wild type (WT) and SQT1 mutant conditions. Effects of multi-channel block by disopyramide and quinidine, including binding kinetics and altered potency of IKr/hERG channel block in SQT1 and state-dependent block of sodium channels, were simulated on action potential and multicellular tissue models. A one-dimensional (1D) transmural ventricular strand model was used to assess prolongation of the QT interval, effective refractory period (ERP), and re-entry wavelength (WL) by both drugs. Dynamics of re-entrant excitation waves were investigated using a 3D human left ventricular wedge model. In the setting of SQT1, disopyramide, and quinidine both produced a dose-dependent prolongation in (i) the QT interval, which was primarily due to IKr block, and (ii) the ERP, which was mediated by a synergistic combination of IKr and INa block. Over the same range of concentrations quinidine was more effective in restoring the QT interval, due to more potent block of IKr. Both drugs demonstrated an anti-arrhythmic increase in the WL of re-entrant circuits. In the 3D wedge, disopyramide and quinidine at clinically-relevant concentrations decreased the dominant frequency of re-entrant excitations and exhibited anti-fibrillatory effects; preventing formation of multiple, chaotic wavelets which developed in SQT1, and could terminate arrhythmias. This computational modeling study provides novel insights into the clinical efficacy of disopyramide and quinidine in the setting of SQT1; it also dissects ionic mechanisms underlying QT and ERP prolongation. Our findings show that both drugs demonstrate efficacy in reversing the SQT1 phenotype, and indicate that disopyramide warrants further investigation as an alternative to quinidine in the treatment of SQT1.
Collapse
Affiliation(s)
- Dominic G Whittaker
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Alan P Benson
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom.,Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Jules C Hancox
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,School of Physiology, Pharmacology and Neuroscience, Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,Space Institute of Southern China, Shenzhen, China
| |
Collapse
|