1
|
Timmers AC, Nuyttens J, de Wolf MA. Endovascular Fiducial Placement in Splenic Metastatic Disease as a Novel Option for Radiotherapy: A Case Report. Cureus 2025; 17:e77186. [PMID: 39925551 PMCID: PMC11806911 DOI: 10.7759/cureus.77186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Splenic metastases are rare but difficult-to-treat entities, especially if they recur after initial surgery or ablation. They are particularly difficult to treat with radiation therapy due to their subdiaphragmatic location and the presence of respiratory excursions. This report describes a case in which an endovascular fiducial placement approach was used to mark the splenic metastasis prior to radiation therapy. We present a 77-year-old male with an extensive history of colorectal metastatic disease. After hemicolectomy, the patient showed metastases - first in the spleen and then in the liver. These were treated with locoregional therapy, including radiofrequency ablation (RFA) for the spleen metastasis and RFA and microwave ablation (MWA) for the liver metastases. Contrast-enhanced computed tomography (CT) imaging, eight years after initial therapy, showed two new liver metastases and a recurrent metastasis in the spleen. Percutaneous ablation of the splenic metastasis was deemed too dangerous because of the subdiaphragmatic location of the spleen and the presence of respiratory motion, and the multidisciplinary tumor board, therefore, opted for radiotherapy. To guide radiotherapy, the interventional radiologist chose to place three microcoil fiducial markers (FMs) around the splenic lesion via an endovascular transradial approach. Radiotherapy was successful, and no recurrence of splenic metastasis has been observed during follow-up. In summary, transradial endovascular FM placement in splenic metastatic disease is technically possible from both an interventional radiological and a radiotherapy standpoint.
Collapse
Affiliation(s)
- Adriana C Timmers
- Radiology and Nuclear Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, NLD
| | - Joost Nuyttens
- Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, NLD
| | - Mark A de Wolf
- Radiology and Nuclear Medicine, Erasmus Medical Center Cancer Institute, Rotterdam, NLD
| |
Collapse
|
2
|
Horibe A, Ohta K, Shoji J, Hatano M, Shiotani Y, Anan K, Nomura K, Iwata H, Ogino H. CT-Guided Fiducial Marker Implantation with Ultra-fine 25-Gauge Needle Prior to Proton Therapy for Liver Malignancies. Cardiovasc Intervent Radiol 2024; 47:1287-1293. [PMID: 39174792 DOI: 10.1007/s00270-024-03808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Proton therapy is highly effective for liver malignancies, and to increase its accuracy, placement of fiducial markers in the liver is preferred. We retrospectively evaluated the safety and feasibility of CT-guided fiducial marker implantation using ultra-fine 25-gauge needles before proton therapy for liver malignancies. MATERIALS AND METHODS Between May 2016 and April 2021, 334 cases were investigated. All of procedures were performed without anesthesia. Technical success was defined as the completion of implantation at the intended site. Tumor-marker distance and possibility of synchronization between tumors and markers were evaluated and compared with Mann-Whitney U test. Complications were evaluated using the Common Terminology Criteria for Adverse Events, version 4.0. RESULTS Technical success rate was 97.3%. Tumor-marker distance was 19.1 mm (median, range 0-96) in the group in which the implanted marker was synchronized with tumor (n = 315), while it was 34.5 mm (median, range 6-94) in the group in which the implanted marker was not synchronized (n = 13) (p value = 0.011 < 0.05). The complication rate was 2.4%, 2 were classified as grade 4 and 5 as grade 1, and 1 as grade 2. There were no grade 3 or higher complications that seemed to be related to the procedure. CONCLUSION CT-guided marker implantation using a 25-gauge needle achieved a satisfactory success rate with few complications and was useful for the image-guided and respiratory-synchronized proton therapy. LEVEL OF EVIDENCE 3: Local non-random sample.
Collapse
Affiliation(s)
- Akihiro Horibe
- Department of Diagnostic Radiology, Nagoya City University West Medical Center, Nagoya, Japan
| | - Kengo Ohta
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| | - Jumpei Shoji
- Department of Diagnostic Radiology, Nagoya City University West Medical Center, Nagoya, Japan
| | - Mototaka Hatano
- Department of Diagnostic Radiology, Nagoya City University West Medical Center, Nagoya, Japan
| | - Yujiro Shiotani
- Department of Radiology, Toyokawa City Hospital, Toyokawa, Japan
| | - Kumiko Anan
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Kento Nomura
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| |
Collapse
|
3
|
Soliman Y, Antony F, Vivian M, Venkatraman S, Nashed M. Cardiac migration of an implanted hepatic fiducial marker used for stereotactic body radiation therapy - A case report. J Cancer Res Ther 2024; 20:1628-1631. [PMID: 38261456 DOI: 10.4103/jcrt.jcrt_2654_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 01/25/2024]
Abstract
ABSTRACT Stereotactic body radiation therapy (SBRT) has been increasingly used to treat liver malignancies because large doses of radiation can be delivered precisely to the target with a rapid dose falloff. Real-time tracking of implanted fiducial markers (FMs), combined with respiratory gating, further improves the accuracy of treatment delivery and reduces the dose to critical structures. There have been reports of migration of the FMs after implantation for SBRT. Calypso beacons, which use the electromagnetic wave reflections for the image guidance, have recently been used for image-guided liver SBRT. In the literature, there are no reports on the migration of Calypso beacons to the heart after implantation in the liver. In this report, we detail the first case of such migration. Respiratory-gated SBRT guided by the Calypso system was planned for our patient, who developed liver metastases in segments 6 and 5/4B shortly after the completion of radical chemoradiotherapy for anal squamous cell carcinoma. One of the three Calypso beacons inserted in the liver under computed tomography (CT) guidance was found to have migrated to the right ventricle, as seen in CT simulation images. SBRT was delivered with respiratory gating using the remaining two beacons. A fluoroscopic imaging performed during treatment confirmed the migrated marker to the right ventricle. Patient denied any cardiac symptoms and SBRT were delivered uneventfully. Ten months later, the patient died of disease progression.
Collapse
Affiliation(s)
- Youstina Soliman
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Febin Antony
- Department of Radiation Oncology, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Mark Vivian
- Department of Radiology, Health Science Centre, Winnipeg, MB, Canada
| | - Sankar Venkatraman
- Department of Radiation Oncology, Health Science Centre, Winnipeg, MB, Canada
| | - Maged Nashed
- Department of Radiation Oncology, Health Science Centre, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Pierrard J, Deheneffe S, Dechambre D, Sterpin E, Geets X, Van Ooteghem G. Markerless liver online adaptive stereotactic radiotherapy: feasibility analysisCervantes. Phys Med Biol 2024; 69:095015. [PMID: 38565128 DOI: 10.1088/1361-6560/ad39a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Objective. Radio-opaque markers are recommended for image-guided radiotherapy in liver stereotactic ablative radiotherapy (SABR), but their implantation is invasive. We evaluate in thisin-silicostudy the feasibility of cone-beam computed tomography-guided stereotactic online-adaptive radiotherapy (CBCT-STAR) to propagate the target volumes without implanting radio-opaque markers and assess its consequence on the margin that should be used in that context.Approach. An emulator of a CBCT-STAR-dedicated treatment planning system was used to generate plans for 32 liver SABR patients. Three target volume propagation strategies were compared, analysing the volume difference between the GTVPropagatedand the GTVConventional, the vector lengths between their centres of mass (lCoM), and the 95th percentile of the Hausdorff distance between these two volumes (HD95). These propagation strategies were: (1) structure-guided deformable registration with deformable GTV propagation; (2) rigid registration with rigid GTV propagation; and (3) image-guided deformable registration with rigid GTV propagation. Adaptive margin calculation integrated propagation errors, while interfraction position errors were removed. Scheduled plans (PlanNon-adaptive) and daily-adapted plans (PlanAdaptive) were compared for each treatment fraction.Main results.The image-guided deformable registration with rigid GTV propagation was the best propagation strategy regarding tolCoM(mean: 4.3 +/- 2.1 mm), HD95 (mean 4.8 +/- 3.2 mm) and volume preservation between GTVPropagatedand GTVConventional. This resulted in a planning target volume (PTV) margin increase (+69.1% in volume on average). Online adaptation (PlanAdaptive) reduced the violation rate of the most important dose constraints ('priority 1 constraints', 4.2 versus 0.9%, respectively;p< 0.001) and even improved target volume coverage compared to non-adaptive plans (PlanNon-adaptive).Significance. Markerless CBCT-STAR for liver tumours is feasible using Image-guided deformable registration with rigid GTV propagation. Despite the cost in terms of PTV volumes, daily adaptation reduces constraints violation and restores target volumes coverage.
Collapse
Affiliation(s)
- Julien Pierrard
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Stéphanie Deheneffe
- Radiation Oncology Department, CHU-UCL-Namur, Site Sainte-Elisabeth, B-5000 Namur, Belgium
| | - David Dechambre
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Edmond Sterpin
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
| | - Xavier Geets
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), B-1200 Brussels, Belgium
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| |
Collapse
|
5
|
Breazeale A, Rahmani R, Gallagher K, Nabavizadeh N. Liver stereotactic body radiation therapy without fiducial or retained ethiodized oil guidance warrants greater than 5 mm planning target volumes. J Med Radiat Sci 2024; 71:110-113. [PMID: 37712320 PMCID: PMC10920930 DOI: 10.1002/jmrs.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION For liver stereotactic body radiation therapy (SBRT), the placement of fiducial markers or retained ethiodized oil by transarterial chemoembolisation (TACE) provides a landmark for consistent target localisation. TACE and fiducial markers are invasive procedures that harbour additional risks. We hypothesise that liver SBRT can be accurately delivered without the use of these invasive surrogate markers. METHODS We retrospectively identified 50 consecutive patients who underwent liver SBRT with respiratory motion management to a single lesion which exhibited retained ethiodized oil per prior TACE delivery. For each SBRT fraction, two manual rigid image registrations were performed by the treating physician. One using the liver contour as a surrogate for the target and second aligning only to the radio-opaque retained ethiodized oil of the treated lesion. The magnitude of the displacement vector between the two registration methods was used to assess the accuracy of target localisation if ethiodized oil was not present. RESULTS For the 50 patients, a total of 244 analysable cone-beam CTs (CBCTs) were included (six CBCTs excluded due to poor ethiodized oil visualisation). Respiratory motion management techniques consisted of active breathing control for 13 and abdominal compression for 37 patients. Forty-two patients had peripheral lesions and eight had central lesions (<2 cm from left and right portal veins). The average target localisation offset between the two registration methods (i.e. liver contour vs. retained ethiodized oil alignment) for patients with a single peripheral or central liver lesion was 5.8 and 5.3 mm, respectively. CONCLUSIONS Across all patients, the average change in target position exceeded 5 mm for image registration methods based on the liver contour alone versus the retained ethiodized oil region. This suggests that margins greater than 5 mm may be required for respiratory motion-managed liver SBRT treatments in patients who do not undergo prior TACE or fiducial placement.
Collapse
Affiliation(s)
- Alec Breazeale
- Department of Radiation MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Ramtin Rahmani
- Department of Radiation MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Kyle Gallagher
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Nima Nabavizadeh
- Department of Radiation MedicineOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
6
|
Uchinami Y, Miyamoto N, Abo D, Morita R, Ogawa K, Kakisaka T, Suzuki R, Miyazaki T, Taguchi H, Katoh N, Aoyama H. Real-time tumor-tracking radiotherapy with SyncTraX for primary liver tumors requiring isocenter shift†. JOURNAL OF RADIATION RESEARCH 2024; 65:92-99. [PMID: 37996094 PMCID: PMC10803168 DOI: 10.1093/jrr/rrad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Indexed: 11/25/2023]
Abstract
The SyncTraX series enables real-time tumor-tracking radiotherapy through the real-time recognition of a fiducial marker using fluoroscopic images. In this system, the isocenter should be located within approximately 5-7.5 cm from the marker, depending on the version, owing to the limited field of view. If the marker is placed away from the tumor, the isocenter should be shifted toward the marker. This study aimed to investigate stereotactic body radiotherapy (SBRT) outcomes of primary liver tumors treated with SyncTraX in cases where the isocenter was shifted marginally or outside the planning target volume (PTV). Twelve patients with 13 liver tumors were included in the analysis. Their isocenter was shifted toward the marker and was placed marginally or outside the PTV. The prescribed doses were generally 40 Gy in four fractions or 48 Gy in eight fractions. The overall survival (OS) and local control (LC) rates were calculated using the Kaplan-Meier method. All patients completed the scheduled SBRT. The median distance between the fiducial marker and PTV centroid was 56.0 (interquartile range [IQR]: 52.7-66.7) mm. By shifting the isocenter toward the marker, the median distance between the marker and isocenter decreased to 34.0 (IQR: 33.4-39.7) mm. With a median follow-up period of 25.3 (range: 6.9-70.0) months, the 2-year OS and LC rates were 100.0% (95% confidence interval: 100-100). An isocenter shift makes SBRT with SyncTraX feasible in cases where the fiducial marker is distant from the tumor.
Collapse
Affiliation(s)
- Yusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
- Division of Applied Quantum Science and Engineering, Hokkaido University Faculty of Engineering, North 13 West 8, Kita-ku, Sapporo 060-8628, Japan
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Ryo Morita
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Tomohiko Miyazaki
- Department of Radiation Oncology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
7
|
Tallet A, Boher JM, Tyran M, Mailleux H, Piana G, Benkreira M, Fau P, Salem N, Gonzague L, Petit C, Darréon J. Is MRI-Linac helpful in SABR treatments for liver cancer? Front Oncol 2023; 13:1130490. [PMID: 37007109 PMCID: PMC10061121 DOI: 10.3389/fonc.2023.1130490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveTo determine the MRI-Linac added value over conventional image-guided radiation therapy (IGRT) in liver tumors Stereotactic ablative radiation therapy (SABR).Materials and methodsWe retrospectively compared the Planning Target Volumes (PTVs), the spared healthy liver parenchyma volumes, the Treatment Planning System (TPS) and machine performances, and the patients’ outcomes when using either a conventional accelerator (Versa HD®, Elekta, Utrecht, NL) with Cone Beam CT as the IGRT tool or an MR-Linac system (MRIdian®, ViewRay, CA).ResultsFrom November 2014 to February 2020, 59 patients received a SABR treatment (45 and 19 patients in the Linac and MR-Linac group, respectively) for 64 primary or secondary liver tumors. The mean tumor size was superior in the MR-Linac group (37,91cc vs. 20.86cc). PTV margins led to a median 74%- and 60% increase in target volume in Linac-based and MRI-Linac-based treatments, respectively. Liver tumor boundaries were visible in 0% and 72% of the cases when using CBCT and MRI as IGRT tools, respectively. The mean prescribed dose was similar in the two patient groups. Local tumor control was 76.6%, whereas 23.4% of patients experienced local progression (24.4% and 21.1% of patients treated on the conventional Linac and the MRIdian system, respectively). SABR was well tolerated in both groups, and margins reduction and the use of gating prevented ulcerous disease occurrence.ConclusionThe use of MRI as IGRT allows for the reduction of the amount of healthy liver parenchyma irradiated without any decrease of the tumor control rate, which would be helpful for dose escalation or subsequent liver tumor irradiation if needed.
Collapse
Affiliation(s)
- Agnès Tallet
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
- Centre de Recherche en Cancérologie de Marseille, Unité Mixte de Recherche (UMR1068), Marseille, France
- *Correspondence: Agnès Tallet, ; Julien Darréon,
| | - Jean-Marie Boher
- Department of Biostatistics, Institut Paoli-Calmettes, Marseille, France
| | - Marguerite Tyran
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Hugues Mailleux
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
| | - Gilles Piana
- Department of Radiology, Institut Paoli-Calmettes, Marseille, France
| | - Mohamed Benkreira
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
| | - Pierre Fau
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
| | - Naji Salem
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Laurence Gonzague
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Claire Petit
- Department of Oncology Radiation Therapy, Institut Paoli-Calmettes, Marseille, France
| | - Julien Darréon
- Department of Medical Physics, Institut Paoli-Calmettes, Marseille, France
- *Correspondence: Agnès Tallet, ; Julien Darréon,
| |
Collapse
|
8
|
Akasaka H, Mizonobe K, Oki Y, Uehara K, Nakayama M, Tamura S, Munetomo Y, Kawaguchi H, Ishida J, Harada A, Ishihara T, Kubota H, Kawaguchi H, Sasaki R, Mayahara H. Fiducial marker position affects target volume in stereotactic lung irradiation. J Appl Clin Med Phys 2022; 23:e13596. [PMID: 35377962 PMCID: PMC9195037 DOI: 10.1002/acm2.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Purpose Real‐time tracking systems of moving respiratory targets such as CyberKnife, Radixact, or Vero4DRT are an advanced robotic radiotherapy device used to deliver stereotactic body radiotherapy (SBRT). The internal target volume (ITV) of lung tumors is assessed through a fiducial marker fusion using four‐dimensional computed tomography (CT). It is important to minimize the ITV to protect normal lung tissue from exposure to radiation and the associated side effects post SBRT. However, the ITV may alter if there is a change in the position of the fiducial marker with respect to the tumor. This study investigated the relationship between fiducial marker position and the ITV in order to prevent radiation exposure of normal lung tissue, and correct target coverage. Materials and methods This study retrospectively reviewed 230 lung cancer patients who received a fiducial marker for SBRT between April 2015 and September 2021. The distance of the fiducial marker to the gross tumor volume (GTV) in the expiratory (dex) and inspiratory (din) CT, and the ratio of the ITV/V(GTVex), were investigated. Results Upon comparing each lobe, although there was no significant difference in the ddiff and the ITV/V(GTVex) between all lobes for dex < 10 mm, there was significant difference in the ddiff and the ITV/V(GTVex) between the lower and upper lobes for dex ≥ 10 mm (p < 0.05). Moreover, there was significant difference in the ddiff and the ITV/V(GTVex) between dex ≥10 mm and dex < 10 mm in all lung regions (p < 0.05). Conclusion The ITV that had no margin from GTVs increased when dex was ≥10 mm for all lung regions (p < 0.05). Furthermore, the increase in ITV tended to be greater in the lower lung lobe. These findings can help decrease the possibility of adverse events post SBRT, and correct target coverage.
Collapse
Affiliation(s)
- Hiroaki Akasaka
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan.,Division of Radiation Oncology, Kobe University Graduate School of Medicine, Chuo-ku Kobe, Hyogo, Japan
| | - Kazufusa Mizonobe
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Yuya Oki
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Kazuyuki Uehara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Chuo-ku Kobe, Hyogo, Japan.,Division of Radiation Therapy, Kita-Harima Medical Center, Hyogo, Japan
| | - Shuhei Tamura
- Division of Radiological Technology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Yoshiki Munetomo
- Division of Radiological Technology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Haruna Kawaguchi
- Department of Radiology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Jun Ishida
- Department of Radiology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Aya Harada
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Hiroki Kawaguchi
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Hiroshi Mayahara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Masuda S, Tsukiyama T, Minagawa Y, Koizumi K, Kako M, Kinbara T, Haruki U. Hepatocellular carcinoma effective stereotactic body radiotherapy using Gold Anchor and the Synchrony system: Two case reports and review of literature. World J Clin Cases 2022; 10:2591-2603. [PMID: 35434047 PMCID: PMC8968590 DOI: 10.12998/wjcc.v10.i8.2591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radiotherapy for hepatocellular carcinoma (HCC) is considered to have limited efficacy because of treatment intensity considering that the irradiated area includes the liver, which is highly radiosensitive. In this report, we present two cases in which tumor control by surgical resection, radiofrequency ablation, transcatheter arterial chemoembolization (TACE), and lenvatinib administration was difficult, but stereotactic body radiotherapy (SBRT) using the Synchrony system by Radixact™ and Gold Anchor® (GA) was effective.
CASE SUMMARY A 60-year-old man had a single 10-cm HCC in the right lobe. Viable lesions remained after TACE, and levels of alpha-fetoprotein and protein induced by vitamin K antagonists II (PIVKA-II) decreased and quickly re-elevated. We performed SBRT with GA. Three weeks after implantation, localized radiotherapy (SBRT; 40 Gy/5 fractions) was performed using the Synchrony system by Radixact™. Four weeks later, the viable lesion had disappeared, and the PIVKA-II levels decreased. A 77-year-old man had a single 12-cm HCC in the right lobe. The patient experienced recurrence after hepatectomy. Further recurrence occurred after TACE, and we performed SBRT with GA. Because of the proximity of the HCC to the gastrointestinal tract, localized radiotherapy (SBRT; 39 Gy/13 fractions) to the HCC was performed 3 wk after implantation using the Synchrony system by Radixact™. Four weeks later, the viable lesion had disappeared on computed tomography, and the PIVKA-Ⅱ levels decreased.
CONCLUSION SBRT using the Synchrony system and GA can deliver a large dose accurately and safely, and could have a high therapeutic effect.
Collapse
Affiliation(s)
- Sakue Masuda
- Department of Gastroenterology, Shonankamakura General Hospital, Kanagawa 247-8533, Japan
| | - Toshitaka Tsukiyama
- Department of Interventional Radiology Center, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Yumiko Minagawa
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Kazuya Koizumi
- Department of Gastroenterology, Shonankamakura General Hospital, Kanagawa 247-8533, Japan
| | - Makoto Kako
- Department of Gastroenterology, Shonankamakura General Hospital, Kanagawa 247-8533, Japan
| | - Takeshi Kinbara
- Department of Gastroenterology, Shonankamakura General Hospital, Kanagawa 247-8533, Japan
| | - Uojima Haruki
- Department of Gastroenterology, Shonankamakura General Hospital, Kanagawa 247-8533, Japan
| |
Collapse
|
10
|
Hybrid 3D T1-weighted gradient-echo sequence for fiducial marker detection and tumor delineation via magnetic resonance imaging in liver stereotactic body radiation therapy. Phys Med 2022; 95:9-15. [DOI: 10.1016/j.ejmp.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
|
11
|
Technical feasibility and clinical evaluation of 4D-MRI guided liver SBRT on the MR-linac. Radiother Oncol 2022; 167:285-291. [PMID: 35033603 DOI: 10.1016/j.radonc.2022.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE Image-guided stereotactic body radiation therapy (SBRT) is an important local treatment for liver metastases. MRI-guidance enables direct tumor visualization, eliminating fiducial marker implantation. The purpose of this study was to test technical feasibility of our 4D-MRI guided liver SBRT workflow. Additionally, intra-fraction target motion and consequent target-coverage were studied. MATERIALS&METHODS Patients with liver metastases were included in this sub-study of the prospective UMBRELLA clinical trial. Patients received mid-position (midP) SBRT. The daily adapt-to-position workflow included localization, verification and intra-fraction tumor midP monitoring using 4D-MRI. Technical feasibility was established based on persistence of the treatment protocol, treatment time ≤1 hour, no geographical miss and no unexpected acute toxicity grade >3. All 4D-MRIs were registered to the planning midP-CT and tumor midP and amplitude were calculated. Additionally, delivered target dose was accumulated incorporating the 4D-MRI intra-fraction tumor motion and evaluated with Monte-Carlo error simulations. RESULTS 20 patients with liver metastases were included and treated with 4D-MRI guided SBRT. Feasibility criteria were met in all-but-one patient. No grade ≥3 acute toxicity was observed. Group mean (M), systematic and random midP-drifts were 2.4mm, 2.6mm and 3.1mm in CC-direction. 4D-MRI tumor CC-amplitudes were reduced compared to the simulation 4D-CT (M=-1.9mm) and decreased during treatment (M=-1.4mm). Dose accumulation showed adquate target-coverage on a population level. CONCLUSION We successfully demonstrated technical feasibility of 4D-MRI guided SBRT in a cohort of 20 patients with liver metastases. However, substantial midposition drifts occurred which stress the need for intra-fraction motion management strategies to further increase the precision of treatment delivery.
Collapse
|
12
|
Kibe Y, Takeda A, Tsurugai Y, Eriguchi T, Oku Y, Kimura Y, Nakamura N. Feasibility of marker-less stereotactic body radiotherapy for hepatocellular carcinoma. Acta Oncol 2022; 61:104-110. [PMID: 34788194 DOI: 10.1080/0284186x.2021.2001566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The feasibility of marker-less stereotactic body radiotherapy (SBRT) for hepatocellular carcinoma (HCC) has not yet been established, and, thus, was examined in the present study. MATERIAL AND METHODS We retrospectively investigated patients who received marker-less SBRT for locally untreated HCC tumors between July 2005 and December 2018. Radiotherapy planning CT was performed under fixation with vacuum cushions and abdominal compression. The clinical target volume (CTV) was equivalent to the gross tumor volume (GTV). The internal target volume (ITV) margin to CTV was determined from calculations based on the motion of the diaphragm. The planning target volume (PTV) margin to ITV was 5-6 mm. In the set-up, radiotherapy planning CT and linac-integrated cone-beam CT performed in the same imaging and fixation settings were merged by referring to the anatomical components surrounding target tumors. The primary endpoint was the 3-year cumulative local tumor progression rate. The upper limit of the 95% confidence interval for the 3-year cumulative local tumor progression rate was less than 7.0%, which was interpreted as favorable local control and feasible for marker-less SBRT. Local tumor progression was assessed by mRECIST. RESULTS We reviewed 180 patients treated with 35-40 Gy/5 fractions. The median follow-up time for the local tumor progression of censored tumors was 32.3 months (range, 0.3-104). The 3-year cumulative local tumor progression rate was 3.0% (95% CI, 1.1-6.5%). The 3-year overall survival rate was 71.6% (95% CI, 63.5-78.2%). Regarding acute hematologic toxicities, grade 3 hypoalbuminemia and thrombocytopenia were detected in 1 (0.6%) and 5 (2.9%) patients, respectively. Treatment-related death from SBRT was not observed. SBRT was initiated within 7 days after radiotherapy planning CT for 84% (152/180) of patients. CONCLUSIONS Marker-less SBRT for HCC achieved favorable local control that fulfilled the threshold. This result suggests that marker-less SBRT with appropriate settings is a feasible treatment strategy.
Collapse
Affiliation(s)
- Yuichi Kibe
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
- Radiation Oncology Division, St. Marianna University School of Medicine Hospital, Kawasaki, Kanagawa, Japan
| | - Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Takahisa Eriguchi
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yohei Oku
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yuto Kimura
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Naoki Nakamura
- Radiation Oncology Division, St. Marianna University School of Medicine Hospital, Kawasaki, Kanagawa, Japan
| |
Collapse
|
13
|
Kord M, Kluge A, Kufeld M, Kalinauskaite G, Loebel F, Stromberger C, Budach V, Gebauer B, Acker G, Senger C. Risks and Benefits of Fiducial Marker Placement in Tumor Lesions for Robotic Radiosurgery: Technical Outcomes of 357 Implantations. Cancers (Basel) 2021; 13:cancers13194838. [PMID: 34638321 PMCID: PMC8508340 DOI: 10.3390/cancers13194838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Robotic radiosurgery (RRS) allows for the accurate treatment of primary tumors or metastases with high single doses. However, organ motion during or between fractions can lead to imprecise irradiation. We sought to evaluate the risks and advantages of fiducial marker (FM) implantation regarding clinical complications, marker migration, and motion amplitude. Complications were most common in Synchrony®-tracked lesions affected by respiratory motion, particularly lung lesions. Pneumothoraces and pulmonary bleeding were the most common complications. An increased complication rate was associated with concomitant biopsy sampling and FM implantation. Most FM migration observed in this study occurred after CT-guided placements and clinical FM insertions. The largest motion amplitudes were observed in hepatic and lower lung lobe lesions. This study highlights the benefits of marker implantation, especially in lesions with a large motion amplitude, including hepatic lesions and lesions of the lower lobe of the lung located >100.0 mm from the spine. Abstract Fiducial markers (FM) inserted into tumors increase the precision of irradiation during robotic radiosurgery (RRS). This retrospective study evaluated the clinical complications, marker migration, and motion amplitude of FM implantations by analyzing 288 cancer patients (58% men; 63.1 ± 13.0 years) who underwent 357 FM implantations prior to RRS with CyberKnife, between 2011 and 2019. Complications were classified according to the Society of Interventional Radiology (SIR) guidelines. The radial motion amplitude was calculated for tumors that moved with respiration. A total of 725 gold FM was inserted. SIR-rated complications occurred in 17.9% of all procedures. Most complications (32.0%, 62/194 implantations) were observed in Synchrony®-tracked lesions affected by respiratory motion, particularly in pulmonary lesions (46.9% 52/111 implantations). Concurrent biopsy sampling was associated with a higher complication rate (p = 0.001). FM migration occurred in 3.6% after CT-guided and clinical FM implantations. The largest motion amplitudes were observed in hepatic (20.5 ± 11.0 mm) and lower lung lobe (15.4 ± 10.5 mm) lesions. This study increases the awareness of the risks of FM placement, especially in thoracic lesions affected by respiratory motion. Considering the maximum motion amplitude, FM placement remains essential in hepatic and lower lung lobe lesions located >100.0 mm from the spine.
Collapse
Affiliation(s)
- Melina Kord
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (A.K.); (G.K.); (C.S.); (V.B.)
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
| | - Anne Kluge
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (A.K.); (G.K.); (C.S.); (V.B.)
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
| | - Markus Kufeld
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
| | - Goda Kalinauskaite
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (A.K.); (G.K.); (C.S.); (V.B.)
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
| | - Franziska Loebel
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Carmen Stromberger
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (A.K.); (G.K.); (C.S.); (V.B.)
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (A.K.); (G.K.); (C.S.); (V.B.)
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
| | - Bernhard Gebauer
- Department of Radiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
| | - Gueliz Acker
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, BIH Acadamy, Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Carolin Senger
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (A.K.); (G.K.); (C.S.); (V.B.)
- Charité CyberKnife Center, Augustenburger Platz 1, 13353 Berlin, Germany; (M.K.); (F.L.); (G.A.)
- Correspondence: ; Tel.: +49-30-450-557221
| |
Collapse
|
14
|
Gaspard D, Boujaoude Z, Kubicek G, Abouzgheib W. Transthoracic placement of fiducials with ultrasound or electronic navigational bronchoscopy needle guidance by the interventional pulmonologist: A case series. Respirol Case Rep 2021; 9:e0818. [PMID: 34336221 PMCID: PMC8319654 DOI: 10.1002/rcr2.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 11/11/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) has become one of the main options for treatment of thoracic malignancies, leading to the need for more fiducial marker placement. We report cases where these fiducials were placed transthoracically by interventional pulmonologists using ultrasound (US) and electronic navigational bronchoscopy (ENB) needle guidance. Six cases were identified in the Cooper University Hospital medical records where such procedures were performed, alone or in combination with other interventions. All six patients underwent successful placement of fiducials. Concomitant bronchoscopic procedures were performed in four cases. All patients proceeded to SBRT without the need for further interventions. The overall retention rate of fiducials was 80%. No complications were noted. Fiducials' placement by interventional pulmonologists using US or ENB needle guidance is safe and effective, and may be combined with other procedures in a single setting.
Collapse
Affiliation(s)
- Dany Gaspard
- Division of Pulmonary and Critical Care MedicineCooper University HospitalCamdenNew JerseyUSA
| | - Ziad Boujaoude
- Division of Pulmonary and Critical Care MedicineCooper University HospitalCamdenNew JerseyUSA
| | - Gregory Kubicek
- Division of Radiation OncologyCooper University HospitalCamdenNew JerseyUSA
| | - Wissam Abouzgheib
- Division of Pulmonary and Critical Care MedicineCooper University HospitalCamdenNew JerseyUSA
| |
Collapse
|
15
|
Tokunaga K, Furuta A, Iizuka Y, Isoda H, Togashi K. Utility of real-time image fusion technology in ultrasonography-guided fiducial marker implantation for stereotactic body radiation therapy for liver tumors. Acta Radiol 2021; 62:567-573. [PMID: 32586122 DOI: 10.1177/0284185120934479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ultrasonography (US) is useful when implanting fiducial markers in the liver. However, the implant position is sometimes lost. Recently, real-time image fusion technology (Volume Navigation [V-navi]; GE Healthcare, Milwaukee, WI, USA) has been introduced as a technique for using images from different modalities, and its utility for fiducial marker implantation has been hypothesized. PURPOSE To evaluate the utility of US-guided fiducial marker implantation in the liver using V-navi compared to conventional US. MATERIAL AND METHODS We retrospectively reviewed 35 patients who underwent fiducial marker implantation for stereotactic body radiation therapy of liver tumors in 2013-2018. To avoid artifacts obscuring the tumor, the target point of implantation was set 10 mm cranial or caudal to the tumor. Marker implantation was then performed using US alone (US group, n = 24) or V-navi with computed tomography (CT) or magnetic resonance imaging (V-navi group, n = 11). Postprocedural CT was evaluated to determine technical success, distances between marker and either tumor surface or target point, and whether marker-induced artifacts obscured the tumor. Complications were also evaluated. Results were compared between groups. RESULTS Technical success was obtained in 33 patients. Distance between the tumor and marker showed no significant difference between groups. Distance between target point and marker was shorter in the V-navi group (P = 0.0093). Tumor-obscuring artifacts were seen in 12 patients (V-navi group, n = 1; US group, n = 11; P = 0.055). The only complication was minor bleeding in the US group (n = 1). CONCLUSION V-navi appears useful for US-guided fiducial marker implantation in the liver compared with conventional US.
Collapse
Affiliation(s)
- Koji Tokunaga
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Furuta
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Iizuka
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Khullar K, Dhawan ST, Nosher J, Jabbour SK. Fiducial marker migration following computed tomography-guided placement in the liver: a case report. AME Case Rep 2021; 5:15. [PMID: 33912804 DOI: 10.21037/acr-20-153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Radiation therapy for liver tumors has been shown to provide a local control and overall survival benefit in patients with primary or oligometastatic liver tumors. However, accurate delineation of the target volume in intraabdominal tumors can be limited by diaphragmatic motion. In addition to image guidance during radiation therapy, computed tomography (CT)-guided fiducial marker placement can improve the accuracy of radiation treatment and optimize tumor control. Fiducial marker placement is often indicated in stereotactic body radiation therapy (SBRT) due to the ablative doses used as well as in proton therapy given that these markers are clearly visible on orthogonal kV image guidance and studies have suggested that their placement in liver tumors offers improved local control. However, fiducial marker migration is a rare risk associated with fiducial placement for which literature remains scarce. We report two separate cases of fiducial marker migrations from the liver into the inferior vena cava and right atrium which occurred following CT-guided placement without any resultant toxicity. Imaging using contrast-enhanced or volume navigation ultrasound techniques during fiducial marker deployment may mitigate the risk of fiducial marker migration and potential end-organ injury. Alternative techniques for motion management such as inspiratory or expiratory breath hold or use of residual lipiodol on imaging in patients who have undergone transarterial chemoembolization (TACE) should be considered as well to avoid potential complications from fiducial marker placement.
Collapse
Affiliation(s)
- Karishma Khullar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | | | - John Nosher
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Jose M, Pottikyal GS, Sasidharan A, Reddy SK, Haridas AE, Dutta D. Unusual presentation of an extrahepatic migration of a fiducial implanted for stereotactic body radiotherapy. JOURNAL OF RADIOSURGERY AND SBRT 2021; 7:257-260. [PMID: 33898091 PMCID: PMC8055242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Meenu Jose
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, Kerala, India
| | | | - Ajay Sasidharan
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, Kerala, India
| | - Sruthi K Reddy
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, Kerala, India
| | | | - Debnarayan Dutta
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, Kerala, India
| |
Collapse
|
18
|
Gani C, Boeke S, McNair H, Ehlers J, Nachbar M, Mönnich D, Stolte A, Boldt J, Marks C, Winter J, Künzel LA, Gatidis S, Bitzer M, Thorwarth D, Zips D. Marker-less online MR-guided stereotactic body radiotherapy of liver metastases at a 1.5 T MR-Linac - Feasibility, workflow data and patient acceptance. Clin Transl Radiat Oncol 2021; 26:55-61. [PMID: 33319073 PMCID: PMC7723999 DOI: 10.1016/j.ctro.2020.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Stereotactic body radiotherapy (SBRT) is an established ablative treatment for liver tumors with excellent local control rates. Magnetic resonance imaging guided radiotherapy (MRgRT) provides superior soft tissue contrast and may therefore facilitate a marker-less liver SBRT workflow. The goal of the present study was to investigate feasibility, workflow parameters, toxicity and patient acceptance of MRgSBRT on a 1.5 T MR-Linac. METHODS Ten consecutive patients with liver metastases treated on a 1.5 T MR-Linac were included in this prospective trial. Tumor delineation was performed on four-dimensional computed tomography scans and both exhale triggered and free-breathing T2 MRI scans from the MR-Linac. An internal target volume based approach was applied. Organ at risk constraints were based on the UKSABR guidelines (Version 6.1). Patient acceptance regarding device specific aspects was assessed and toxicity was scored according to the common toxicity criteria of adverse events, version 5. RESULTS Nine of ten tumors were clearly visible on the 1.5 T MR-Linac. No patient had fiducial markers placed for treatment. All patients were treated with three or five fractions. Median dose to 98% of the gross tumor volume was 38.5 Gy. The median time from "patient identity check" until "beam-off" was 31 min. Median beam on time was 9.6 min. Online MRgRT was well accepted in general and no treatment had to be interrupted on patient request. No event of symptomatic radiation induced liver disease was observed after a median follow-up of ten month (range 3-17 months). CONCLUSION Our early experience suggests that online 1.5 T MRgSBRT of liver metastases represents a promising new non-invasive marker-free treatment modality based on high image quality, clinically reasonable in-room times and high patient acceptance. Further studies are necessary to assess clinical outcome, to validate advanced motion management and to explore the benefit of online response adaptive liver SBRT.
Collapse
Affiliation(s)
- Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S. Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H. McNair
- Department of Radiotherapy, The Royal Marsden Hospital NHS Foundation Trust, United Kingdom
| | - J. Ehlers
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - M. Nachbar
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - D. Mönnich
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - A. Stolte
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - J. Boldt
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - C. Marks
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - J. Winter
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Luise A. Künzel
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - S. Gatidis
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Eberhard Karls University, Tübingen, Germany
| | - M. Bitzer
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology and Infectious Diseases, Eberhard Karls University, Tübingen, Germany
| | - D. Thorwarth
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - D. Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Dutta D, Kataki KJ, George S, Reddy SK, Sashidharan A, Kannan R, Madhavan R, Nair H, Tatineni T, Holla R. Prospective evaluation of fiducial marker placement quality and toxicity in liver CyberKnife stereotactic body radiotherapy. Radiat Oncol J 2020; 38:253-261. [PMID: 33249803 PMCID: PMC7785839 DOI: 10.3857/roj.2020.00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Evaluate morbidities and “quality” of fiducial marker placement in primary liver tumours (hepatocellular carcinoma [HCC]) for CyberKnife. Materials and Methods Thirty-six HCC with portal vein thrombosis (PVT) were evaluated for “quality” of fiducial placement, placement time, pain score, complications, recovery time and factors influencing placement. Results One hundred eight fiducials were placed in 36 patients. Fiducial placement radiation oncologist score was “good” in 24 (67%), “fair” in 4 (11%), and “poor” in 3(8%) patients. Concordance with radiologist score in “poor”, “fair”, and “good” score was 2/2 (100%), 4/5 (80%), and 24/27 (89%), respectively (p=0.001). Child-Pugh score (p=0.080), performance status (PS) (p=0.014) and accrued during “learning curve” (p=0.013) affected placement score. Mean placement time (p=0.055), recovery time (p=0.025) was longer and higher major complications (p=0.009) with poor PS. Liver segment involved (p=0.484) and the Barcelona Clinic Liver Cancer (BCLC) stage did not influence placement score. “Good” placement score was 30% in first cohort whereas 93% in last cohort (p=0.023). Time for placement was 42.2 and 14.3 minutes, respectively (p=0.069). Post-fiducial pain score 0–1 in 26 patients (72%) and pain score 3–4 was in 2 (6%). Five patients (14%) admitted in “day-care” (2 mild pneumothorax, 3 pain). Mortality in 1 patient (3%) admitted for hemothorax. Conclusion Fiducial placement is safe and in experienced hands, “quality” of placement is “good” in majority. Major complications and admission after fiducial placement are rare. Complications, fiducial placement time, recovery time is more during the “learning curve”. Poor Child-Pugh score, extensive liver involvement, poor PS have higher probability of complications.
Collapse
Affiliation(s)
- Debnarayan Dutta
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, India
| | | | - Shibu George
- Department of Radiology, Amrita Institute of Medical Science, Kochi, India
| | - Sruthi K Reddy
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, India
| | - Ajay Sashidharan
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, India
| | - Rajesh Kannan
- Department of Radiology, Amrita Institute of Medical Science, Kochi, India
| | - Ram Madhavan
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, India
| | - Haridas Nair
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, India
| | - Tushar Tatineni
- Department of Radiation Oncology, Amrita Institute of Medical Science, Kochi, India
| | - Raghavendra Holla
- Department of Medical Physics, Amrita Institute of Medical Science, Kochi, India
| |
Collapse
|
20
|
|
21
|
Morita R, Abo D, Sakuhara Y, Soyama T, Katoh N, Miyamoto N, Uchinami Y, Shimizu S, Shirato H, Kudo K. Percutaneous insertion of hepatic fiducial true-spherical markers for real-time adaptive radiotherapy. MINIM INVASIV THER 2019; 29:334-343. [DOI: 10.1080/13645706.2019.1663217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ryo Morita
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Sakuhara
- Department of Diagnostic Radiology, Tonan Hospital, Sapporo, Japan
| | - Takeshi Soyama
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Naoki Miyamoto
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Shimizu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroki Shirato
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Scher N, Bollet M, Bouilhol G, Tannouri R, Khemiri I, Vouillaume A, Sellami N, Von Eyben R, Vannetzel JM, Darmon I, Rotenberg L, Lamallem H, Bauduceau O, Foster D, Toledano A. Safety and efficacy of fiducial marker implantation for robotic stereotactic body radiation therapy with fiducial tracking. Radiat Oncol 2019; 14:167. [PMID: 31519194 PMCID: PMC6743112 DOI: 10.1186/s13014-019-1373-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose The purpose of this study was to assess the feasibility, efficacy and toxicity of fiducial marker implantation and tracking in CyberKnife® stereotactic radiation therapy (SBRT) applied to extracranial locations. Materials and method This is a retrospective, single-centre, observational study to collect the data of all patients treated by stereotactic radiation therapy with fiducial marker tracking at extracranial locations, conducted between June 2014 and November 2017. Information regarding the implantation procedure, the types of toxicity related to marker implantation and the number of markers implanted/tracked during treatment were collected. Complication rates were evaluated using the CTCAE v4 [Common Terminology Criteria for Adverse Events] scale. The technical success rate was based on the ability to optimally track the tumor throughout all treatment fractions. Results Out of 2505 patients treated by stereotactic radiation therapy, 25% received treatment with fiducial marker tracking. The total number of implantation procedures was 616 and 1543 fiducial markers were implanted. The implantation-related complication rate was 3%, with 16 Grade 1 events and 4 Grade 2 events. The number of treated patients and the number of implanted markers has gradually increased since the technique was first implemented. The median treatment time was 27 min (range 10–76). 1295 fiducials were effectively tracked throughout all treatment fractions, corresponding to a technical success rate of 84%. The difference between the number of fiducials implanted and those tracked during treatment decreased significantly as the site’s experience increased. Conclusion Fiducial marker implantation and tracking is feasible, well-tolerated, and technically effective technique in SBRT for extracranial tumors.
Collapse
Affiliation(s)
- Nathaniel Scher
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France.
| | - Marc Bollet
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France.,Rafael Institute, Center for Predictive Medicine, 3 boulevard Bineau, Levallois-Perret, France
| | - Gauthier Bouilhol
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Remi Tannouri
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Imane Khemiri
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Aurelie Vouillaume
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Noura Sellami
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Rie Von Eyben
- Department of Statistical Analysis, Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, California, USA
| | - Jean-Michel Vannetzel
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Ilan Darmon
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Luc Rotenberg
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Hanah Lamallem
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France.,Rafael Institute, Center for Predictive Medicine, 3 boulevard Bineau, Levallois-Perret, France
| | - Olivier Bauduceau
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France.,Rafael Institute, Center for Predictive Medicine, 3 boulevard Bineau, Levallois-Perret, France
| | - Denis Foster
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France
| | - Alain Toledano
- Hartmann Radiotherapy Institute, Levallois-Perret, 4 rue Kleber, Levallois-Perret, France.,Rafael Institute, Center for Predictive Medicine, 3 boulevard Bineau, Levallois-Perret, France
| |
Collapse
|
23
|
[Liver stereotactic body radiotherapy: Clinical features and technical consequences, results. Which treatment machine in which situation?]. Cancer Radiother 2019; 23:636-650. [PMID: 31444078 DOI: 10.1016/j.canrad.2019.07.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
Abstract
Liver stereotactic body radiotherapy is a developing technique for the treatment of primary tumours and metastases. Its implementation is complex because of the particularities of the treated organ and the comorbidities of the patients. However, this technique is a treatment opportunity for patients otherwise in therapeutic impasse. The scientific evidence of liver stereotactic body radiotherapy has been considered by the French health authority as insufficient for its widespread use outside specialized and experienced centers, despite a growing and important number of retrospective and prospective studies, but few comparative data. This article focuses on the specific features of stereotactic body radiotherapy for liver treatments and the results of published studies of liver stereotactic body radiotherapy performed with classic linear accelerators and dedicated radiosurgery units.
Collapse
|
24
|
Nakayama M, Uehara K, Nishimura H, Tamura S, Munetomo Y, Tsudou S, Mayahara H, Mukumoto N, Geso M, Sasaki R. Retrospective assessment of a single fiducial marker tracking regimen with robotic stereotactic body radiation therapy for liver tumours. Rep Pract Oncol Radiother 2019; 24:383-391. [PMID: 31297039 DOI: 10.1016/j.rpor.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/22/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022] Open
Abstract
Aim To investigate tumour motion tracking uncertainties in the CyberKnife Synchrony system with single fiducial marker in liver tumours. Background In the fiducial-based CyberKnife real-time tumour motion tracking system, multiple fiducial markers are generally used to enable translation and rotation corrections during tracking. However, sometimes a single fiducial marker is employed when rotation corrections are not estimated during treatment. Materials and methods Data were analysed for 32 patients with liver tumours where one fiducial marker was implanted. Four-dimensional computed tomography (CT) scans were performed to determine the internal target volume (ITV). Before the first treatment fraction, the CT scans were repeated and the marker migration was determined. Log files generated by the Synchrony system were obtained after each treatment and the correlation model errors were calculated. Intra-fractional spine rotations were examined on the spine alignment images before and after each treatment. Results The mean (standard deviation) ITV margin was 4.1 (2.3) mm, which correlated weakly with the distance between the fiducial marker and the tumour. The mean migration distance of the marker was 1.5 (0.7) mm. The overall mean correlation model error was 1.03 (0.37) mm in the radial direction. The overall mean spine rotations were 0.27° (0.31), 0.25° (0.22), and 0.23° (0.26) for roll, pitch, and yaw, respectively. The treatment time was moderately associated with the correlation model errors and weakly related to spine rotation in the roll and yaw planes. Conclusions More caution and an additional safety margins are required when tracking a single fiducial marker.
Collapse
Key Words
- AP, anterior–posterior
- CTV, clinical target volume
- CyberKnife
- Fiducial marker tracking
- GTV, gross tumour volume
- ITV, internal target volume
- LED, light-emitting diode
- LR, left–right
- Liver tumour
- PTV, planning target volume
- SBRT, stereotactic body radiation therapy
- SD, standard deviation
- SI, superior–inferior
- Synchrony system
- XST, Xsight Spine Tracking
Collapse
Affiliation(s)
- Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan.,Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Kazuyuki Uehara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Hideki Nishimura
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan
| | - Shuhei Tamura
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Yoshiki Munetomo
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Shinji Tsudou
- Department of Radiation Oncology, Hyogo Cancer Center, 13-70 Kitaojicho, Akashi City, Hyogo 637-8558, Japan
| | - Hiroshi Mayahara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, 8-5-1 Minatojima-nakamachi, Chuou-ku, Kobe City, Hyogo 650-0046, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan
| | - Moshi Geso
- Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe City, Hyogo 650-0017, Japan
| |
Collapse
|
25
|
Soni PD, Palta M. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: Current State and Future Opportunities. Dig Dis Sci 2019; 64:1008-1015. [PMID: 30868409 DOI: 10.1007/s10620-019-05539-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma is a rising cause of morbidity and mortality in the USA and around the world. Surgical resection and liver transplantation are the preferred management strategies; however, less than 30% of patients are eligible for surgery. Stereotactic body radiation therapy is a promising local treatment option for non-surgical candidates. Local control rates between 95 and 100% have been reported at 1-2 years post-treatment, and classical radiation-induced liver disease described with conventional radiation is an unlikely complication from stereotactic radiotherapy. Enrollment in randomized trials will be essential in establishing the role of stereotactic radiation in treatment paradigms for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Payal D Soni
- Radiation Oncology Service, Hunter Holmes McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA, 23249, USA.
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
26
|
Evaluation of Hepatic Toxicity after Repeated Stereotactic Body Radiation Therapy for Recurrent Hepatocellular Carcinoma using Deformable Image Registration. Sci Rep 2018; 8:16224. [PMID: 30385839 PMCID: PMC6212421 DOI: 10.1038/s41598-018-34676-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
This study aimed to evaluate hepatic toxicity after repeated stereotactic body radiation therapy (SBRT) for recurrent hepatocellular carcinoma (HCC) using deformable image registration (DIR). Between January 2007 and December 2015, 85 patients who underwent two sessions of SBRT for HCC treatment were retrospectively analyzed. A DIR technique was used to calculate the cumulative dose of the first and second SBRT to the normal liver by matching two computed tomography simulation images. The Dice similarity coefficient (DSC) index was calculated to evaluate DIR accuracy. Before the first and second SBRT, 6 (7.1%) and 12 (14.1%) patients were Child-Pugh class B, respectively. Median tumor size was 1.7 cm before both SBRT treatments. Mean DSC index value was 0.93, being >0.9 in 79 (92.9%) registrations. Median cumulative mean liver dose (MLD) was 9.3 Gy (interquartile range, 7.6–11.7). Radiation-induced liver disease developed in three patients, and two of them, with Child-Pugh class B, experienced irreversible liver function deterioration following the second SBRT. The DIR method provided reliable information regarding cumulative doses to the liver. In patients with Child-Pugh class A liver function, repeated SBRT for small recurrent HCC could be safely performed with acceptable hepatic toxicity.
Collapse
|
27
|
Park J, Jung J, Kim D, Jung IH, Park JH, Kim JH, Lee SW, Yoon SM. Long-term outcomes of the 2-week schedule of hypofractionated radiotherapy for recurrent hepatocellular carcinoma. BMC Cancer 2018; 18:1040. [PMID: 30367606 PMCID: PMC6203968 DOI: 10.1186/s12885-018-4953-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background The 2-week schedule of hypofractionated radiotherapy as a salvage treatment for hepatocellular carcinoma (HCC) has previously exhibited promising results; this study aimed to assess its long-term clinical outcomes in patients with recurrent HCC ineligible for curative treatments. Methods We retrospectively enrolled 77 patients (84 lesions) with HCC who were treated with hypofractionated radiotherapy between December 2008 and July 2013. Primary inclusion criteria were HCC unsuitable for curative treatments and HCC located within 2 cm of a critical normal organ. We administered 3.5–5 Gy/fraction for 2 weeks, resulting in a total dose of 35–50 Gy. Results The median follow-up period was 33.6 (range, 4.8–78.3) months. The 3- and 5-year overall survival rates were 52.3% and 40.9%, respectively, and local control rates were 79.5% and 72.6% in all treated lesions, respectively. The 5-year local control rate was better in the higher radiation dose group than in the lower radiation dose group (50 Gy: 79.7% vs. < 50 Gy: 66.1%); however, the difference was not statistically significant (P = 0.493). We observed grade ≥ 3 hepatic toxicity in 2 (2.6%) patients and grade 3 gastrointestinal bleeding in 1 (1.3%) patient. However, grade ≥ 4 toxicity was not observed after hypofractionated radiotherapy. Conclusions The 2-week schedule of hypofractionated radiotherapy for recurrent HCC exhibited good local control and acceptable treatment-related toxicity during the long-term follow-up period. Thus, this fractionation schedule can be a potential salvage treatment option for recurrent HCC, particularly for tumors located close to a radiosensitive gastrointestinal organ. Electronic supplementary material The online version of this article (10.1186/s12885-018-4953-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jongmoo Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.,Department of Radiation Oncology, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea
| | - Jinhong Jung
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Daegeun Kim
- University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - In-Hye Jung
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jin-Hong Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jong Hoon Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Min Yoon
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
28
|
van de Lindt T, Sonke JJ, Nowee M, Jansen E, van Pelt V, van der Heide U, Fast M. A Self-Sorting Coronal 4D-MRI Method for Daily Image Guidance of Liver Lesions on an MR-LINAC. Int J Radiat Oncol Biol Phys 2018; 102:875-884. [PMID: 30054104 DOI: 10.1016/j.ijrobp.2018.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Novel hybrid MR-LINAC devices provide MRI's superior soft-tissue contrast in the treatment room and thus have the potential to increase accuracy of liver stereotactic body radiation therapy (SBRT). Requirements for daily position verification using 4-dimensional MRI include tumor visibility and short acquisition-reconstruction time (preferably <5 min). The proposed method provides fast acquisition-reconstruction time and the flexibility to vary T1- and T2-weighting, using standard imaging sequences for straightforward implementation on an MR-LINAC. METHODS AND MATERIALS Images were acquired using a coronal 2-dimensional, multislice, single-shot turbo spin-echo (TSE) and turbo field-echo (TFE) sequence, which were repeated 30 times. An image-based self-sorting signal (ImS) was extracted from the data, and rigid registration of the diaphragm per slice position was performed and corrected for amplitude variation in the anteroposterior direction. Data were sorted into 10 bins according to amplitude and phase. ImS was validated in 4 healthy volunteers against a navigator signal. Positional variations within bins, missing data, and smoothness of the liver dome were compared between amplitude and phase binning in 10 volunteers. Tumor contrast and registration were investigated in 3 patients. RESULTS Each ImS was found to be in excellent agreement with the navigator signal with a correlation coefficient of >0.95 and binning differences of <1 bin. Better liver dome smoothness per bin in case of amplitude binning compared with that in phase binning (2.0-2.6 mm vs 2.4-3.7 mm, respectively) is a tradeoff for more missing data (3.5%-17.5% vs 3.5%-4.7%, respectively). Liver lesions were visible in almost all coronal TSE and TFE images, but the lesion boundary was better defined in the TSE images. Rigid registrations could be performed on the tumor area. CONCLUSIONS An efficient self-sorted 4-dimensional MRI method was developed and validated using standard sequences and fast reconstruction on a LINAC-integrated MRI scanner providing good tumor visibility for daily image-guided liver stereotactic body radiation therapy.
Collapse
Affiliation(s)
- Tessa van de Lindt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Marlies Nowee
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Edwin Jansen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vivian van Pelt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Uulke van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martin Fast
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Shibata S, Takamatsu S, Yamamoto K, Mizuhata M, Bou S, Sato Y, Kawamura M, Asahi S, Tameshige Y, Maeda Y, Sasaki M, Kumano T, Kobayashi S, Tamamura H, Gabata T. Proton Beam Therapy without Fiducial Markers Using Four-Dimensional CT Planning for Large Hepatocellular Carcinomas. Cancers (Basel) 2018; 10:E71. [PMID: 29538310 PMCID: PMC5876646 DOI: 10.3390/cancers10030071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
We evaluated the effectiveness and toxicity of proton beam therapy (PBT) for hepatocellular carcinomas (HCC) >5 cm without fiducial markers using four-dimensional CT (4D-CT) planning. The subjects were 29 patients treated at our hospital between March 2011 and March 2015. The median total dose was 76 Cobalt Gray Equivalents (CGE) in 20 fractions (range; 66-80.5 CGE in 10-32 fractions). Therapy was delivered with end-expiratory phase gating. An internal target volume (ITV) margin was added through the analysis of respiratory movement with 4D-CT. Patient age ranged from 38 to 87 years (median, 71 years). Twenty-four patients were Child-Pugh class A and five patients were class B. Tumor size ranged from 5.0 to 13.9 cm (median, 6.9 cm). The follow-up period ranged from 2 to 72 months (median; 27 months). All patients completed PBT according to the treatment protocol without grade 4 (CTCAE v4.03 (draft v5.0)) or higher adverse effects. The two-year local tumor control (LTC), progression-free survival (PFS), and overall survival (OS) rates were 95%, 22%, and 61%, respectively. The LTC was not inferior to that of previous reports using fiducial markers. Respiratory-gated PBT with 4D-CT planning without fiducial markers is a less invasive and equally effective treatment for large HCCs as PBT with fiducial markers.
Collapse
Affiliation(s)
- Satoshi Shibata
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Shigeyuki Takamatsu
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
- Department of Radiotherapy, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan.
| | - Kazutaka Yamamoto
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Miu Mizuhata
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Sayuri Bou
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Yoshitaka Sato
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan.
| | - Satoko Asahi
- Department of Radiology, University of Fukui Hospital, Eiheiji, Fukui 910-1193, Japan.
| | - Yuji Tameshige
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Yoshikazu Maeda
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Makoto Sasaki
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Tomoyasu Kumano
- Department of Radiotherapy, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan.
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8641, Japan.
| | - Hiroyasu Tamamura
- Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan.
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8641, Japan.
| |
Collapse
|