1
|
Liu L, Li Y, Yang H, Wang F, Huang Q. Molecular characterization of a Minus-C odorant-binding protein from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Front Physiol 2025; 16:1586738. [PMID: 40352151 PMCID: PMC12061717 DOI: 10.3389/fphys.2025.1586738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Odorant-binding proteins (OBPs) are important for insects to discriminate, bind and transport odorants, such as pheromones and host plant volatiles. Herein, the Minus-C OBP (CbuqOBP1) was characterized from Cyrtotrachelus buqueti, one of the most important pests in bamboo plantations. CbuqOBP1 showed significantly higher transcription levels in the adult stage and was most highly expressed in the head of both sexes, the thorax and antenna of the male, indicating that it plays important roles in chemosensory behavior of adults and may also function in other biological processes. Fluorescence competitive binding assays showed that CbuqOBP1 displayed broad binding capabilities and strong affinities to phenol (K i = 10.49 μM) and benzothiazole (K i = 11.11 μM) among 8 C. buqueti volatiles. CbuqOBP1 also showed high binding affinity to the main volatile of the host plant Neosinocalamus affinis (linalool, K i = 13.41 μM). The docking results indicated that hydrophobic interactions were the prevailing forces between CbuqOBP1 with these three ligands. Additionally, several amino acid residues were significantly overlapped and contributed to the interactions with the ligands. The combined results suggest that CbuqOBP1 may play dual roles in binding volatile compounds from the host plant and the same species and will be helpful to developing new pest-control strategies.
Collapse
Affiliation(s)
| | | | - Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | | | | |
Collapse
|
2
|
Fu C, Yang T, Liao H, Huang Y, Wang H, Long W, Jiang N, Yang Y. Genome-wide identification and molecular evolution of elongation family of very long chain fatty acids proteins in Cyrtotrachelus buqueti. BMC Genomics 2024; 25:758. [PMID: 39095734 PMCID: PMC11297609 DOI: 10.1186/s12864-024-10658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
To reveal the molecular function of elongation family of very long chain fatty acids(ELO) protein in Cyrtotrachelus buqueti, we have identified 15 ELO proteins from C.buqueti genome. 15 CbuELO proteins were located on four chromosomes. Their isoelectric points ranged from 9.22 to 9.68, and they were alkaline. These CbuELO proteins were stable and hydrophobic. CbuELO proteins had transmembrane movement, and had multiple phosphorylation sites. The secondary structure of CbuELO proteins was mainly α-helix. A total of 10 conserved motifs were identified in CbuELO protein family. Phylogenetic analysis showed that molecular evolutionary relationships of ELO protein family between C. buqueti and Tribolium castaneum was the closest. Developmental transcriptome analysis indicated that CbuELO10, CbuELO13 and CbuELO02 genes were key enzyme genes that determine the synthesis of very long chain fatty acids in pupae and eggs, CbuELO6 and CbuELO7 were that in the male, and CbuELO8 and CbuELO11 were that in the larva. Transcriptome analysis under different temperature conditions indicated that CbuELO1, CbuELO5, CbuELO12 and CbuELO14 participated in regulating temperature stress responses. Transcriptome analysis at different feeding times showed CbuELO12 gene expression level in all feeding time periods was significant downregulation. The qRT-PCR experiment verified expression level changes of CbuELO gene family under different temperature and feeding time conditions. Protein-protein interaction analysis showed that 9 CbuELO proteins were related to each other, CbuELO1, CbuELO4 and CbuELO12 had more than one interaction relationship. These results lay a theoretical foundation for further studying its molecular function during growth and development of C. buqueti.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - Ting Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Hong Liao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YuLing Huang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - HanYu Wang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - WenCong Long
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| |
Collapse
|
3
|
Yang H, Liu L, Wang F, Yang W, Huang Q, Wang N, Hu H. The Molecular and Functional Characterization of Sensory Neuron Membrane Protein 1b (SNMP1b) from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). INSECTS 2024; 15:111. [PMID: 38392530 PMCID: PMC10889769 DOI: 10.3390/insects15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Sensory neuron membrane proteins (SNMPs) play important roles in insect chemoreception and SNMP1s have been reported to be essential in detecting sex pheromones in Drosophila and some lepidopteran species. However, SNMPs for Cyrtotrachelus buqueti (Coleoptera: Curculionidae), a major insect pest of bamboo plantations, remain uncharacterized. In this study, a novel SNMP gene, CbuqSNMP1b, from C. buqueti was functionally characterized. The expression of CbuqSNMP1b was significantly higher in antennae than in other tissues of both sexes and the expression level was significantly male-biased. Additionally, CbuqSNMP1b showed significantly higher transcription levels in the adult stage and very low transcription levels in other stages, suggesting that CbuqSNMP1b is involved in the process of olfaction. Fluorescence binding assays indicated that CbuqSNMP1b displayed the strongest binding affinity to dibutyl phthalate (Ki = 9.03 μM) followed by benzothiazole (Ki = 11.59 μM) and phenol (Ki = 20.95 μM) among fourteen C. buqueti volatiles. Furthermore, molecular docking revealed key residues in CbuqSNMP1b that interact with dibutyl phthalate, benzothiazole, and phenol. In conclusion, these findings will lay a foundation to further understand the olfactory mechanisms of C. buqueti and promote the development of novel methods for controlling this pest.
Collapse
Affiliation(s)
- Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Nanxi Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongling Hu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Liu L, Wang F, Yang W, Yang H, Huang Q, Yang C, Hui W. Molecular and Functional Characterization of Pheromone Binding Protein 2 from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Int J Mol Sci 2023; 24:16925. [PMID: 38069247 PMCID: PMC10706763 DOI: 10.3390/ijms242316925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Pheromone-binding proteins (PBPs) play important roles in binding and transporting sex pheromones. However, the PBP genes identified in coleopteran insects and their information sensing mechanism are largely unknown. Cyrtotrachelus buqueti (Coleoptera: Curculionidae) is a major insect pest of bamboo plantations. In this study, a novel PBP gene, CbuqPBP2, from C. buqueti was functionally characterized. CbuqPBP2 was more abundantly expressed in the antennae of both sexes than other body parts, and its expression level was significantly male-biased. Fluorescence competitive binding assays showed that CbuqPBP2 exhibited the strongest binding affinity to dibutyl phthalate (Ki = 6.32 μM), followed by styrene (Ki = 11.37 μM), among twelve C. buqueti volatiles. CbuqPBP2, on the other hand, showed high binding affinity to linalool (Ki = 10.55), the main volatile of host plant Neosinocalamus affinis. Furthermore, molecular docking also demonstrated the strong binding ability of CbuqPBP2 to dibutyl phthalate, styrene, and linalool, with binding energy values of -5.7, -6.6, and -6.0 kcal/mol, respectively, and hydrophobic interactions were the prevailing forces. The knockdown of CbuqPBP2 expression via RNA interference significantly reduced the electroantennography (EAG) responses of male adults to dibutyl phthalate and styrene. In conclusion, these results will be conducive to understanding the olfactory mechanisms of C. buqueti and promoting the development of novel strategies for controlling this insect pest.
Collapse
Affiliation(s)
| | | | | | - Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (F.W.); (W.Y.); (Q.H.); (C.Y.); (W.H.)
| | | | | | | |
Collapse
|
5
|
Ahmad S, Jamil M, Jaworski CC, Luo Y. Comparative transcriptomics of the irradiated melon fly ( Zeugodacus cucurbitae) reveal key developmental genes. Front Physiol 2023; 14:1112548. [PMID: 36733910 PMCID: PMC9887199 DOI: 10.3389/fphys.2023.1112548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Irradiation can be used as an insect pest management technique to reduce post-harvest yield losses. It causes major physiological changes, impairing insect development and leading to mortality. This technique is used to control the melon fly Zeugodacus cucurbitae, a major pest of Cucurbitaceae in Asia. Here, we applied irradiation to melon fly eggs, and the larvae emerged from irradiated eggs were used to conduct comparative transcriptomics and thereby identify key genes involved in the development and survival. We found 561 upregulated and 532 downregulated genes in irradiated flies compared to non-irradiated flies. We also observed abnormal small-body phenotypes in irradiated flies. By screening the 532 downregulated genes, we selected eight candidate genes putatively involved in development based in described functions in public databases and in the literature. We first established the expression profile of each candidate gene. Using RNA interference (RNAi), we individually knocked down each gene in third instar larvae and measured the effects on development. The knockdown of ImpE2 ecdysone-inducible gene controlling life stage transitions-led to major body size reductions in both pupae and adults. The knockdown of the tyrosine-protein kinase-like tok (Tpk-tok) caused severe body damage to larvae, characterized by swollen and black body parts. Adults subject to knockdown of the eclosion hormone (Eh_1) failed to shed their old cuticle which remained attached to their bodies. However, no obvious developmental defects were observed following the knockdown of the heat shock protein 67B1-like (Hsp67), the insulin receptor (Insr), the serine/threonine-protein kinase Nek4 (Nek4), the tyrosine-protein kinase transmembrane receptor Ror (Ror_1) and the probable insulin-like peptide 1 (Insp_1). We argue that irradiation can be successfully used not only as a pest management technique but also for the screening of essential developmental genes in insects via comparative transcriptomics. Our results demonstrate that ImpE2 and Eh_1 are essential for the development of melon fly and could therefore be promising candidates for the development of RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Momana Jamil
- School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Coline C. Jaworski
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, Nice, France,Beijing Academy of Agriculture and Forestry, Institute of Plant and Environment Protection, Beijing, China
| | - Yanping Luo
- School of Plant Protection, Hainan University, Haikou, Hainan, China,*Correspondence: Yanping Luo,
| |
Collapse
|
6
|
Isolation, Identification, and Bioinformatic Analysis of Antibacterial Proteins and Peptides from Immunized Hemolymph of Red Palm Weevil Rhynchophorus ferrugineus. Biomolecules 2021; 11:biom11010083. [PMID: 33440876 PMCID: PMC7826645 DOI: 10.3390/biom11010083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/09/2023] Open
Abstract
Red palm weevil (Rhynchophorus ferrugineus Olivier, 1791, Coleoptera: Curculionidae) is a destructive pest of palms, rapidly extending its native geographical range and causing large economic losses worldwide. The present work describes isolation, identification, and bioinformatic analysis of antibacterial proteins and peptides from the immunized hemolymph of this beetle. In total, 17 different bactericidal or bacteriostatic compounds were isolated via a series of high-pressure liquid chromatography steps, and their partial amino acid sequences were determined by N-terminal sequencing or by mass spectrometry. The bioinformatic analysis of the results facilitated identification and description of corresponding nucleotide coding sequences for each peptide and protein, based on the recently published R. ferrugineus transcriptome database. The identified compounds are represented by several well-known bactericidal factors: two peptides similar to defensins, one cecropin-A1-like peptide, and one attacin-B-like protein. Interestingly, we have also identified some unexpected compounds comprising five isoforms of pheromone-binding proteins as well as seven isoforms of odorant-binding proteins. The particular role of these factors in insect response to bacterial infection needs further investigation.
Collapse
|
7
|
Liu SH, Xia YD, Zhang Q, Li W, Li RY, Liu Y, Chen EH, Dou W, Stelinski LL, Wang JJ. Potential targets for controlling Bactrocera dorsalis using cuticle- and hormone-related genes revealed by a developmental transcriptome analysis. PEST MANAGEMENT SCIENCE 2020; 76:2127-2143. [PMID: 31951094 DOI: 10.1002/ps.5751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important agricultural pest and has developed resistance to many insecticides. To investigate vital genes participating in metamorphosis for development of additional control strategies, a comprehensive transcriptome analysis covering ten developmental stages of B. dorsalis was performed. RESULTS There were 2132, 952, 1062, 2301 and 1333 differentially expressed genes identified during hatching, 1st-instar larval molting, 2nd-instar larval molting, pupariation and emergence, respectively. Further expression analyses indicated that genes in hormone- (20-hydroxyecdysone and juvenile hormone) and cuticle- (chitin and cuticle protein) related pathways were essential for metamorphosis in B. dorsalis. Among chitinase (Cht) genes, BdCht-5, -8 and -10 were differentially expressed during larval-larval, larval-pupal and pupal-adult moltings. However, BdCht7 was differentially expressed during egg-larval and larval-larval moltings. Knockdown of BdCht7 at the 1st-instar larval stage disrupted normal development of larvae and was lethal to B. dorsalis. Among cuticle protein (CP) genes, 15 genes (BdCPLCG-1, BdCPLCP-2, BdCPAP1-B2, BdRR1-21, BdRR1-31, BdRR2-15, BdRR2-26, BdRR2-30, BdRR2-32, BdTweedle-9, BdTweedle-24, BdRR2-10, BdCPAP3-C1, BdRR1-34 and BdRR1-41) were differentially expressed during four of five types of moltings. Among hormone-relative genes, BdJHBP-4, -9 and -13 were differentially expressed during all five types of moltings, whereas BdJHBP-5, -12 and BdHR4 were differentially expressed during four of five types of moltings. CONCLUSION This study reveals critical genes involved in development and metamorphosis of B. dorsaslis, and BdCht7 is dispensable for larval survival. It also provides comprehensive transcriptome information for finding more molecular targets to control this pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying-Dan Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Run-Yan Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Yang H, Liu YL, Tao YY, Yang W, Yang CP, Zhang J, Qian LZ, Liu H, Wang ZY. Bioinformatic and biochemical analysis of the key binding sites of the pheromone binding protein of Cyrtotrachelus buqueti Guerin-Meneville (Coleoptera: Curculionidea). PeerJ 2019; 7:e7818. [PMID: 31632851 PMCID: PMC6796961 DOI: 10.7717/peerj.7818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
The bamboo snout beetle Cyrtotrachelus buqueti is a widely distributed wood-boring pest found in China, and its larvae cause significant economic losses because this beetle targets a wide range of host plants. A potential pest management measure of this beetle involves regulating olfactory chemoreceptors. In the process of olfactory recognition, pheromone-binding proteins (PBPs) play an important role. Homology modeling and molecular docking were conducted in this study for the interaction between CbuqPBP1 and dibutyl phthalate to better understand the relationship between PBP structures and their ligands. Site-directed mutagenesis and binding experiments were combined to identify the binding sites of CbuqPBP1 and to explore its ligand-binding mechanism. The 3D structural model of CbuqPBP1 has six a-helices. Five of these a-helices adopt an antiparallel arrangement to form an internal ligand-binding pocket. When docking dibutyl phthalate within the active site of CbuqPBP1, a CH-π interaction between the benzene ring of dibutyl phthalate and Phe69 was observed, and a weak hydrogen bond formed between the ester carbonyl oxygen and His53. Thus, Phe69 and His53 are predicted to be important residues of CbuqPBP1 involved in ligand recognition. Site-directed mutagenesis and fluorescence assays with a His53Ala CbuqPBP1 mutant showed no affinity toward ligands. Mutation of Phe69 only affected binding of CbuqPBP1 to cedar camphor. Thus, His53 (Between α2 and α3) of CbuqPBP1 appears to be a key binding site residue, and Phe69 (Located at α3) is a very important binding site for particular ligand interactions.
Collapse
Affiliation(s)
- Hua Yang
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/ College of Forestry, Chengdu, Sichuan, China
| | - Yan-Lin Liu
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/ College of Forestry, Chengdu, Sichuan, China
| | - Yuan-Yuan Tao
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/ College of Forestry, Chengdu, Sichuan, China
| | - Wei Yang
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/ College of Forestry, Chengdu, Sichuan, China
| | - Chun-Ping Yang
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/ College of Forestry, Chengdu, Sichuan, China
| | - Jing Zhang
- Provincial Key Laboratory of Agricultural Environmental Engineering, Sichuan Agricultural University, Chengdu, China
| | - Li-Zhi Qian
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/ College of Forestry, Chengdu, Sichuan, China
| | - Hao Liu
- Sichuan Agricultural University, Key Laboratory of Ecological Forestry Engineering of Sichuan Province/ College of Forestry, Chengdu, Sichuan, China
| | - Zhi-Yong Wang
- Key Laboratory of Control and Resource Development of Bamboo Pest of Sichuan Province, Leshan, China
| |
Collapse
|
9
|
Noriega DD, Arias PL, Barbosa HR, Arraes FBM, Ossa GA, Villegas B, Coelho RR, Albuquerque EVS, Togawa RC, Grynberg P, Wang H, Vélez AM, Arboleda JW, Grossi-de-Sa MF, Silva MCM, Valencia-Jiménez A. Transcriptome and gene expression analysis of three developmental stages of the coffee berry borer, Hypothenemus hampei. Sci Rep 2019; 9:12804. [PMID: 31488852 PMCID: PMC6728347 DOI: 10.1038/s41598-019-49178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Coffee production is a global industry valued at approximately 173 billion US dollars. One of the main challenges facing coffee production is the management of the coffee berry borer (CBB), Hypothenemus hampei, which is considered the primary arthropod pest of coffee worldwide. Current control strategies are inefficient for CBB management. Although biotechnological alternatives, including RNA interference (RNAi), have been proposed in recent years to control insect pests, characterizing the genetics of the target pest is essential for the successful application of these emerging technologies. In this study, we employed RNA-seq to obtain the transcriptome of three developmental stages of the CBB (larva, female and male) to increase our understanding of the CBB life cycle in relation to molecular features. The CBB transcriptome was sequenced using Illumina Hiseq and assembled de novo. Differential gene expression analysis was performed across the developmental stages. The final assembly produced 29,434 unigenes, of which 4,664 transcripts were differentially expressed. Genes linked to crucial physiological functions, such as digestion and detoxification, were determined to be tightly regulated between the reproductive and nonreproductive stages of CBB. The data obtained in this study help to elucidate the critical roles that several genes play as regulatory elements in CBB development.
Collapse
Affiliation(s)
- Daniel D Noriega
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil.
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
| | - Paula L Arias
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Helena R Barbosa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Gustavo A Ossa
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Bernardo Villegas
- Departamento de Producción Agropecuaria, Universidad de Caldas, Manizales, Colombia
| | - Roberta R Coelho
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Haichuan Wang
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Ana M Vélez
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Jorge W Arboleda
- Centro de Investigaciones en Medio Ambiente y Desarrollo - CIMAD, Universidad de Manizales, Manizales, Caldas, Colombia
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
- Catholic University of Brasília - Postgraduate Program in Genomic Sciences and Biotechnology, Brasília-DF, Brazil.
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
10
|
Luo C, Li Y, Chen Y, Fu C, Long W, Xiao X, Liao H, Yang Y. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:70. [PMID: 30976320 PMCID: PMC6442426 DOI: 10.1186/s13068-019-1411-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Gut symbiotic microbiota plays a critical role in nutrient supply, digestion, and absorption. The bamboo snout beetle, Cyrtotrachelus buqueti, a common pest of several bamboo species, exhibits high lignocellulolytic enzyme activity and contains various CAZyme genes. However, to date, no studies have evaluated the role of gut symbiotic microbiota of the snout beetle on bamboo lignocellulose degradation. Therefore, the present study investigated the role of gut symbiotic microbiota of C. buqueti on bamboo lignocellulose degradation. RESULTS Gut symbiotic microbiota of female (CCJ), male (XCJ), and larvae (YCJ) beetles was used to treat bamboo shoot particles (BSPs) in vitro for 6 days. Scanning electron microscopy (SEM) revealed significant destruction of the lignocellulose structure after treatment, which was consistent with the degradation efficiencies of CCJ, XCJ, and YCJ for cellulose (21.11%, 17.58% and 18.74%, respectively); hemicellulose (22.22%, 27.18% and 34.20%, respectively); and lignin (19.83%, 24.30% and 32.97%, respectively). Gut symbiotic microbiota of adult and larvae beetles was then identified using 16sRNA sequencing, which revealed that four microbes: Lactococcus, Serratia, Dysgonomonas and Enterococcus, comprise approximately 84% to 94% of the microbiota. Moreover, the genomes of 45 Lactococcus, 72 Serratia, 86 Enterococcus and 4 Dysgonomonas microbes were used to analyse resident CAZyme genes. These results indicated that gut symbiotic microbiota of adult and larvae C. buqueti is involved in the lignocellulose degradation traits shown by the host. CONCLUSIONS This study shows that the gut symbiotic microbiota of C. buqueti participates in bamboo lignocellulose degradation, providing innovative findings for bamboo lignocellulose bioconversion. Furthermore, the results of this study will allow us to further isolate lignocellulose-degrading microbiota for use in bamboo lignocellulose bioconversion.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Ying Chen
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Chun Fu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
| | - Wencong Long
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
| | - Ximeng Xiao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039 Sichuan China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 Sichuan China
| |
Collapse
|
11
|
Li Z, Meng M, Li S, Deng B. The transcriptome analysis of Protaetia brevitarsis Lewis larvae. PLoS One 2019; 14:e0214001. [PMID: 30897120 PMCID: PMC6428405 DOI: 10.1371/journal.pone.0214001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/05/2019] [Indexed: 12/26/2022] Open
Abstract
Larvae of the pest Protaetia brevitarsis are used to treat infections in traditional Chinese medicine. However, genomic information about this non-model species is currently lacking. To better understand the fundamental biology of this non-model species, its transcriptome was obtained using next generation sequencing and then analyzed. A total of 7.62 Gb of clean reads were obtained, which were assembled into 169,087 transcripts corresponding to 142,000 annotated unigenes. These unigenes were functionally classified according to Gene Ontology (GO), euKaryotic Ortholog Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. A total of 41,921 unigenes were assigned to 56 GO terms, 21,454 unigenes were divided among 26 KOG categories, and 16,368 unigenes were assigned to 32 KEGG pathways. In addition, 19,144 simple sequence repeats (SSRs) were identified. Furthermore, several kinds of natural antimicrobial peptides and proteins, 4 histones with potential antimicrobial activity, and 41 potential antimicrobial peptide sequences were identified. These data are the first reported whole transcriptome sequence of P. brevitarsis larvae, which represents a valuable genomic resource for studying this species, thus promoting the utilization of its medical potential.
Collapse
Affiliation(s)
- Zhongjie Li
- Medical College, Henan University of Science and Technology, Luoyang, PR China
- * E-mail:
| | - Miaomiao Meng
- Medical College, Henan University of Science and Technology, Luoyang, PR China
| | - Shasha Li
- Medical College, Henan University of Science and Technology, Luoyang, PR China
| | - Bo Deng
- Medical College, Henan University of Science and Technology, Luoyang, PR China
| |
Collapse
|
12
|
Wang J, Wang F, Wang R, Zhang J, Zhao X, Yang H, Yang W, Yang C, Wang Z, Li A. Modeling the effects of bioclimatic characteristics and distribution on the occurrence of Cyrtotrachelus buqueti in the Sichuan Basin. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Luo C, Li Y, Chen Y, Fu C, Nong X, Yang Y. Degradation of bamboo lignocellulose by bamboo snout beetle Cyrtotrachelus buqueti in vivo and vitro: efficiency and mechanism. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:75. [PMID: 30976325 PMCID: PMC6442404 DOI: 10.1186/s13068-019-1406-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/12/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND As an important biomass raw material, the lignocellulose in bamboo is of significant value in energy conversion. The conversion of bamboo lignocellulose into fermentable reducing sugar, i.e. the degradation of bamboo lignocellulose, is an important step in lignocellulose conversion. However, little research has focussed on excavating the enzymes and microbes that are related to the degradation of bamboo lignocellulose, which is important for its utilisation. This study used Cyrtotrachelus buqueti (bamboo snout beetle) to evaluate the efficiency of bamboo lignocellulose degradation. RESULTS RNA sequencing was conducted to sequence the transcriptome of the insect before and after feeding on bamboo shoots. The expression levels of genes encoding several carbohydrate-active enzymes, such as endoglucanase (evgtrinloc27093t1 and evgtrinloc16407t0) and laccase (evgtrinloc15173t0 and evgtrinloc11252t0), were found to be upregulated after feeding. Faecal component analysis showed that the degradation efficiencies of cellulose, hemicellulose and lignin were 61.82%, 87.65% and 69.05%, respectively. After 6 days of co-culture with crude enzymes in vitro, the degradation efficiencies of cellulose, hemicellulose and lignin in bamboo shoot particles (BSPs) were 24.98%, 37.52% and 26.67%, respectively. These results indicated that lignocellulosic enzymes and related enzymes within the insect itself co-degraded bamboo lignocellulose. These finding can potentially be used for the pre-treatment and enzymatic hydrolysis of bamboo lignocellulose. CONCLUSION Our results showed that intestinal digestive enzymes from C. buqueti degraded bamboo shoot lignocellulose both in vivo and in vitro. In addition, the expression levels of many carbohydrate-active enzyme (CAZyme) genes were upregulated in the transcriptome, including those for cellulase, xylanase and ligninase genes. Therefore, we proposed a scheme for applying the lignocellulolytic enzymes from C. buqueti to degrade bamboo lignocellulose using genetic, enzymatic and fermentation engineering techniques to overexpress the lignocellulolytic enzymes genes in vitro and obtain large quantities of enzymes that could efficiently degrade bamboo lignocellulose and be used for lignocellulose bioconversion.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039 China
| | - Ying Chen
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039 China
| | - Chun Fu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Xiang Nong
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| |
Collapse
|
14
|
Luo C, Li Y, Liao H, Yang Y. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:292. [PMID: 30386429 PMCID: PMC6204003 DOI: 10.1186/s13068-018-1291-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The bamboo weevil Cyrtotrachelus buqueti, which is considered a pest species, damages bamboo shoots via its piercing-sucking mode of feeding. C. buqueti is well known for its ability to transform bamboo shoot biomass into nutrients and energy for growth, development and reproduction with high specificity and efficacy of bioconversion. Woody bamboo is a perennial grass that is a potential feedstock for lignocellulosic biomass because of its high growth rate and lignocellulose content. To verify our hypothesis that C. buqueti efficiently degrades bamboo lignocellulose, we assessed the bamboo lignocellulose-degrading ability of this insect through RNA sequencing for identifying a potential route for utilisation of bamboo biomass. RESULTS Analysis of carbohydrate-active enzyme (CAZyme) family genes in the developmental transcriptome of C. buqueti revealed 1082 unigenes, including 55 glycoside hydrolases (GH) families containing 309 GHs, 51 glycosyltransferases (GT) families containing 329 GTs, 8 carbohydrate esterases (CE) families containing 174 CEs, 6 polysaccharide lyases (PL) families containing 11 PLs, 8 auxiliary activities (AA) families containing 131 enzymes with AAs and 17 carbohydrate-binding modules (CBM) families containing 128 CBMs. We used weighted gene co-expression network analysis to analyse developmental RNA sequencing data, and 19 unique modules were identified in the analysis. Of these modules, the expression of MEyellow module genes was unique and the module included numerous CAZyme family genes. CAZyme genes in this module were divided into two groups depending on whether gene expression was higher in the adult/larval stages or in the egg/pupal stages. Enzyme assays revealed that cellulase activity was highest in the midgut whereas lignin-degrading enzyme activity was highest in the hindgut, consistent with findings from intestinal gene expression studies. We also analysed the expression of CAZyme genes in the transcriptome of C. buqueti from two cities and found that several genes were also assigned to CAZyme families. The insect had genes and enzymes associated with lignocellulose degradation, the expression of which differed with developmental stage and intestinal region. CONCLUSION Cyrtotrachelus buqueti exhibits lignocellulose degradation-related enzymes and genes, most notably CAZyme family genes. CAZyme family genes showed differences in expression at different developmental stages, with adults being more effective at cellulose degradation and larvae at lignin degradation, as well as at different regions of the intestine, with the midgut being more cellulolytic than the hindgut. This degradative system could be utilised for the bioconversion of bamboo lignocellulosic biomass.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| |
Collapse
|
15
|
Paula DP, Togawa RC, do Carmo Costa MM, Grynberg P, Martins NF, Andow DA. Systemic and sex-biased regulation of OBP expression under semiochemical stimuli. Sci Rep 2018; 8:6035. [PMID: 29662070 PMCID: PMC5902564 DOI: 10.1038/s41598-018-24297-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 11/12/2022] Open
Abstract
Constitutive expression of Odorant-Binding Proteins (OBPs) in antennae and other body parts has been examined mainly to infer their involvement in insect olfaction, while their regulation in response to semiochemical stimuli has remained poorly known. Previous studies of semiochemical response were basically done using electrophysiology, which integrates the response of the set of OBPs present in an antenna or sensillum, without revealing the regulation of OBPs or which ones might be involved. In this study we used boll weevil as a model and mined its OBPs by RNA-Seq to study their simultaneous antennal expression by qPCR under controlled semiochemical stimuli with aggregation pheromone and plant volatiles. In the absence of a semiochemical stimulus, 23 of 24 OBPs were constitutively expressed in the antenna in both sexes. Semiochemicals changed systemically the expression of OBPs in both sexes. There were different patterns of up- and down-regulation in female antennae for each semiochemical stimulus, consistent with female chemical ecology. On the other hand, the only response in males was down-regulation of some OBPs. We suggest that these systemic changes in OBP expression might be related to enhancing detection of the semiochemical stimuli and/or priming the olfactory system to detect other environmental chemicals.
Collapse
Affiliation(s)
- Débora Pires Paula
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil.
| | - Roberto Coiti Togawa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - Marcos Mota do Carmo Costa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - Natália Florêncio Martins
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil
| | - David Alan Andow
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN, 55108, USA
| |
Collapse
|
16
|
Antony B, Johny J, Aldosari SA. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol. Front Physiol 2018; 9:252. [PMID: 29618982 PMCID: PMC5871713 DOI: 10.3389/fphys.2018.00252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
In insects, perception of the environment-food, mates, and prey-is mainly guided by chemical signals. The dynamic process of signal perception involves transport to odorant receptors (ORs) by soluble secretory proteins, odorant binding proteins (OBPs), which form the first stage in the process of olfactory recognition and are analogous to lipocalin family proteins in vertebrates. Although OBPs involved in the transport of pheromones to ORs have been functionally identified in insects, there is to date no report for Coleoptera. Furthermore, there is a lack of information on olfactory perception and the molecular mechanism by which OBPs participate in the transport of aggregation pheromones. We focus on the red palm weevil (RPW) Rhynchophorus ferrugineus, the most devastating quarantine pest of palm trees worldwide. In this work, we constructed libraries of all OBPs and selected antenna-specific and highly expressed OBPs for silencing through RNA interference. Aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferruginone), and a kairomone, ethyl acetate, were then sequentially presented to individual RPWs. The results showed that antenna-specific RferOBP1768 aids in the capture and transport of ferrugineol to ORs. Silencing of RferOBP1768, which is responsible for pheromone binding, significantly disrupted pheromone communication. Study of odorant perception in palm weevil is important because the availability of literature regarding the nature and role of olfactory signaling in this insect may reveal likely candidates representative of animal olfaction and, more generally, of molecular recognition. Knowledge of OBPs recognizing the specific pheromone ferrugineol will allow for designing biosensors for the detection of this key compound in weevil monitoring in date palm fields.
Collapse
Affiliation(s)
- Binu Antony
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jibin Johny
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Aldosari
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Yang H, Cai Y, Zhuo Z, Yang W, Yang C, Zhang J, Yang Y, Wang B, Guan F. Transcriptome analysis in different developmental stages of Batocera horsfieldi (Coleoptera: Cerambycidae) and comparison of candidate olfactory genes. PLoS One 2018; 13:e0192730. [PMID: 29474419 PMCID: PMC5825065 DOI: 10.1371/journal.pone.0192730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
The white-striped longhorn beetle Batocera horsfieldi (Coleoptera: Cerambycidae) is a polyphagous wood-boring pest that causes substantial damage to the lumber industry. Moreover olfactory proteins are crucial components to function in related processes, but the B. horsfieldi genome is not readily available for olfactory proteins analysis. In the present study, developmental transcriptomes of larvae from the first instar to the prepupal stage, pupae, and adults (females and males) from emergence to mating were built by RNA sequencing to establish a genetic background that may help understand olfactory genes. Approximately 199 million clean reads were obtained and assembled into 171,664 transcripts, which were classified into 23,380, 26,511, 22,393, 30,270, and 87, 732 unigenes for larvae, pupae, females, males, and combined datasets, respectively. The unigenes were annotated against NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot, Gene Ontology (GO), Pfam, Clusters of Eukaryotic Orthologous Groups (KOG), and KEGG Orthology (KO) databases. A total of 43,197 unigenes were annotated into 55 sub-categories under the three main GO categories; 25,237 unigenes were classified into 26 functional KOG categories, and 25,814 unigenes were classified into five functional KEGG Pathway categories. RSEM software identified 2,983, 3,097, 870, 2,437, 5,161, and 2,882 genes that were differentially expressed between larvae and males, larvae and pupae, larvae and females, males and females, males and pupae, and females and pupae, respectively. Among them, genes encoding seven candidate odorant binding proteins (OBPs) and three chemosensory proteins (CSPs) were identified. RT-PCR and RT-qPCR analyses showed that BhorOBP3, BhorCSP2, and BhorOBPC1/C3/C4 were highly expressed in the antenna of males, indicating these genes may may play key roles in foraging and host-orientation in B. horsfieldi. Our results provide valuable molecular information about the olfactory system in B. horsfieldi and will help guide future functional studies on olfactory genes.
Collapse
Affiliation(s)
- Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Cai
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihang Zhuo
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| | - Chunping Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jin Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baoxin Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Fengrong Guan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Yang WJ, Yang DX, Xu KK, Cao Y, Meng YL, Wu Y, Li GY, Zhang GZ, Wang YW, Li C. Complete mitochondrial genome of the bamboo snout beetle, Cyrotrachelus buqueti (Coleoptera: Curculionidae). Mitochondrial DNA B Resour 2018; 3:88-89. [PMID: 33474076 PMCID: PMC7800430 DOI: 10.1080/23802359.2017.1422411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 11/16/2022] Open
Abstract
The bamboo snout beetle Cyrotrachelus buqueti (Coleoptera: Curculionidae) is a destructive forest pest and distributed widely in Southeast Asia. The 15,035 bp complete mitochondrial genome of the species consists of 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 21 transfer RNA genes (tRNAs) and a control region (GenBank accession no. MG674390). The trnl gene was not found in the C. buqueti mitogenome. The gene order and the orientation of C. buqueti were similar to those found in other Coleoptera species. The nucleotide composition was significantly biased (A, G, C, and T was 38.18%, 10.10%, 16.16%, and 35.56%, respectively) with A + T contents of 73.74%. ATG, ATA, ATT, AAT, and TTG were initiation codons and TAA, TAG, and T were termination codons. All the 21 tRNAs displayed a typical cloverleaf secondary structure, except for trnS1 which lacked the dihydrouridine arm. Phylogenetic analysis was performed using 13 PCGs with 14 other beetles showed that C. buqueti is closely related to Eucryptorhynchus brandti, which agree with the traditional classification.
Collapse
Affiliation(s)
- Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Da-Xing Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yu Cao
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yong-Lu Meng
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Guo-Zhou Zhang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Ya-Wei Wang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|