1
|
Pyle JD, Lund SR, O'Toole KH, Saleh L. Virus-encoded glycosyltransferases hypermodify DNA with diverse glycans. Cell Rep 2024; 43:114631. [PMID: 39154342 DOI: 10.1016/j.celrep.2024.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.
Collapse
Affiliation(s)
- Jesse D Pyle
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Sean R Lund
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Katherine H O'Toole
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Lana Saleh
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
2
|
Liu T, Wei W, Xu M, Ren Q, Liu M, Pan X, Feng F, Han T, Gou L. The Restriction Activity Investigation of Rv2528c, an Mrr-like Modification-Dependent Restriction Endonuclease from Mycobacterium tuberculosis. Microorganisms 2024; 12:1456. [PMID: 39065224 PMCID: PMC11279042 DOI: 10.3390/microorganisms12071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), as a typical intracellular pathogen, possesses several putative restriction-modification (R-M) systems, which restrict exogenous DNA's entry, such as bacterial phage infection. Here, we investigate Rv2528c, a putative Mrr-like type IV restriction endonuclease (REase) from Mtb H37Rv, which is predicted to degrade methylated DNA that contains m6A, m5C, etc. Rv2528c shows significant cytotoxicity after being expressed in Escherichia coli BL21(DE3)pLysS strain. The Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay indicates that Rv2528c cleaves genomic DNA in vivo. The plasmid transformation efficiency of BL21(DE3)pLysS strain harboring Rv2528c gene was obviously decreased after plasmids were in vitro methylated by commercial DNA methyltransferases such as M.EcoGII, M.HhaI, etc. These results are consistent with the characteristics of type IV REases. The in vitro DNA cleavage condition and the consensus cleavage/recognition site of Rv2528c still remain unclear, similar to that of most Mrr-family proteins. The possible reasons mentioned above and the potential role of Rv2528c for Mtb were discussed.
Collapse
Affiliation(s)
- Tong Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Wei Wei
- Centers for Disease Control and Prevention of He Xi District, Tianjin 300210, China;
| | - Mingyan Xu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Qi Ren
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Meikun Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Xuemei Pan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Fumin Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Tiesheng Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
3
|
Omics-guided bacterial engineering of Escherichia coli ER2566 for recombinant protein expression. Appl Microbiol Biotechnol 2023; 107:853-865. [PMID: 36539564 PMCID: PMC9767853 DOI: 10.1007/s00253-022-12339-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The goal of bacterial engineering is to rewire metabolic pathways to generate high-value molecules for various applications. However, the production of recombinant proteins is constrained by the complexity of the connections between cellular physiology and recombinant protein synthesis. Here, we used a rational and highly efficient approach to improve bacterial engineering. Based on the complete genome and annotation information of the Escherichia coli ER2566 strain, we compared the transcriptomic profiles of the strain under leaky expression and low temperature-induced stress. Combining the gene ontology (GO) enrichment terms and differentially expressed genes (DEGs) with higher expression, we selected and knocked out 36 genes to determine the potential impact of these genes on protein production. Deletion of bluF, cydA, mngR, and udp led to a significant decrease in soluble recombinant protein production. Moreover, at low-temperature induction, 4 DEGs (gntK, flgH, flgK, flgL) were associated with enhanced expression of the recombinant protein. Knocking out several motility-related DEGs (ER2666-ΔflgH-ΔflgL-ΔflgK) simultaneously improved the protein yield by 1.5-fold at 24 °C induction, and the recombinant strain had the potential to be applied in the expression studies of different exogenous proteins, aiming to improve the yields of soluble form to varying degrees in comparison to the ER2566 strain. Totally, this study focused on the anabolic and stress-responsive hub genes of the adaptation of E. coli to recombinant protein overexpression on the transcriptome level and constructs a series of engineering strains increasing the soluble protein yield of recombinant proteins which lays a solid foundation for the engineering of bacterial strains for recombinant technological advances. KEY POINTS: • Comparative transcriptome analysis shows host responses with altered induction stress. • Deletion of bluF, cydA, mngR, and udp genes was identified to significantly decrease the soluble recombinant protein productions. • Synchronal knockout of flagellar genes in E. coli can enhance recombinant protein yield up to ~ 1.5-fold at 24 °C induction. • Non-model bacterial strains can be re-engineered for recombinant protein expression.
Collapse
|
4
|
Xu SY, Zemlyanskaya EV, Gonchar DA, Sun Z, Weigele P, Fomenkov A, Degtyarev SK, Roberts RJ. Characterization of BisI Homologs. Front Microbiol 2021; 12:689929. [PMID: 34276622 PMCID: PMC8281217 DOI: 10.3389/fmicb.2021.689929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
BisI is a sequence-specific and 5-methylcytosine (m5C)-dependent restriction endonuclease (REase), that cleaves the modified DNA sequence Gm5CNGC (G indicates that the cytosine opposite to G is modified). We expressed and purified a number of BisI homologs from sequenced bacterial genomes and used Illumina sequencing to determine the Pam7902I (Esp638I-like) cleavage sites in phage Xp12 DNA. One BisI homolog KpnW2I is EcoBLMcrX-like, cleaving GCNGC/RCNGY/RCNRC sites with m5C. We also cloned and expressed three BisI homologs from metagenome sequences derived from thermophilic sources. One enzyme EsaTMI is active at 37 to 65°C. EsaHLI cleaves GCNGC sites with three to four m5C and is active up to 50°C. In addition, we determined the number and position of m5C in BisI sites for efficient cleavage. BisI cleavage efficiency of GCNGC site is as following: Gm5CNGC (two internal m5C) > Gm5CNGC (one internal m5C) > GCNGm5C (one external m5C) > > GCNGC (unmodified). Three or four m5C in GCNGC site also supports BisI cleavage although partial inhibition was observed on duplex oligos with four m5C. BisI can be used to partially cleave a desired GCNGC site targeted with a complementary oligonucleotide (hemi-methylated). The m5C-dependent BisI variants will be useful for epigenetic research.
Collapse
Affiliation(s)
| | | | | | - Zhiyi Sun
- New England Biolabs, Inc., Ipswich, MA, United States
| | - Peter Weigele
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | | | | |
Collapse
|
5
|
Zhou L, Yu H, Wang K, Chen T, Ma Y, Huang Y, Li J, Liu L, Li Y, Kong Z, Zheng Q, Wang Y, Gu Y, Xia N, Li S. Genome re-sequencing and reannotation of the Escherichia coli ER2566 strain and transcriptome sequencing under overexpression conditions. BMC Genomics 2020; 21:407. [PMID: 32546194 PMCID: PMC7296898 DOI: 10.1186/s12864-020-06818-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Escherichia coli ER2566 strain (NC_CP014268.2) was developed as a BL21 (DE3) derivative strain and had been widely used in recombinant protein expression. However, like many other current RefSeq annotations, the annotation of the ER2566 strain was incomplete, with missing gene names and miscellaneous RNAs, as well as uncorrected annotations of some pseudogenes. Here, we performed a systematic reannotation of the ER2566 genome by combining multiple annotation tools with manual revision to provide a comprehensive understanding of the E. coli ER2566 strain, and used high-throughput sequencing to explore how the strain adapted under external pressure. RESULTS The reannotation included noteworthy corrections to all protein-coding genes, led to the exclusion of 190 hypothetical genes or pseudogenes, and resulted in the addition of 237 coding sequences and 230 miscellaneous noncoding RNAs and 2 tRNAs. In addition, we further manually examined all 194 pseudogenes in the Ref-seq annotation and directly identified 123 (63%) as coding genes. We then used whole-genome sequencing and high-throughput RNA sequencing to assess mutational adaptations under consecutive subculture or overexpression burden. Whereas no mutations were detected in response to consecutive subculture, overexpression of the human papillomavirus 16 type capsid led to the identification of a mutation (position 1,094,824 within the 3' non-coding region) positioned 19-bp away from the lacI gene in the transcribed RNA, which was not detected at the genomic level by Sanger sequencing. CONCLUSION The ER2566 strain was used by both the general scientific community and the biotechnology industry. Reannotation of the E. coli ER2566 strain not only improved the RefSeq data but uncovered a key site that might be involved in the transcription and translation of genes encoding the lactose operon repressor. We proposed that our pipeline might offer a universal method for the reannotation of other bacterial genomes with high speed and accuracy. This study might facilitate a better understanding of gene function for the ER2566 strain under external burden and provided more clues to engineer bacteria for biotechnological applications.
Collapse
Affiliation(s)
- Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Kaihang Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tingting Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yue Ma
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiajia Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Liqin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuqian Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhibo Kong
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
6
|
Complete Genome Sequences and Methylome Analysis of Two Environmental Spirochaetes. Microbiol Resour Announc 2020; 9:9/15/e00236-20. [PMID: 32273363 PMCID: PMC7380536 DOI: 10.1128/mra.00236-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the finished closed genomes of two environmental bacteria, Oceanispirochaeta crateria K2 and Thiospirochaeta perfilievii P (formally known as Spirochaeta perfilievii P). In addition, we provide methylation data and the associated enzymes predicted and confirmed to be responsible for each modified motif.
Collapse
|
7
|
Kisiala M, Copelas A, Czapinska H, Xu SY, Bochtler M. Crystal structure of the modification-dependent SRA-HNH endonuclease TagI. Nucleic Acids Res 2019; 46:10489-10503. [PMID: 30202937 PMCID: PMC6212794 DOI: 10.1093/nar/gky781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
TagI belongs to the recently characterized SRA-HNH family of modification-dependent restriction endonucleases (REases) that also includes ScoA3IV (Sco5333) and TbiR51I (Tbis1). Here, we present a crystal structure of dimeric TagI, which exhibits a DNA binding site formed jointly by the nuclease domains, and separate binding sites for modified DNA bases in the two protomers. The nuclease domains have characteristic features of HNH/ββα-Me REases, and catalyze nicks or double strand breaks, with preference for /RY and RYN/RY sites, respectively. The SRA domains have the canonical fold. Their pockets for the flipped bases are spacious enough to accommodate 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC), but not glucosyl-5-hydroxymethylcytosine (g5hmC). Such preference is in agreement with the biochemical determination of the TagI modification dependence and the results of phage restriction assays. The ability of TagI to digest plasmids methylated by Dcm (C5mCWGG), M.Fnu4HI (G5mCNGC) or M.HpyCH4IV (A5mCGT) suggests that the SRA domains of the enzyme are tolerant to different sequence contexts of the modified base.
Collapse
Affiliation(s)
- Marlena Kisiala
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Alyssa Copelas
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Affiliation(s)
- Paul D. Riggs
- New England Biolabs, Inc., Research; Ipswich Massachusetts
| |
Collapse
|
9
|
Krefft D, Papkov A, Prusinowski M, Zylicz-Stachula A, Skowron PM. Randomized DNA libraries construction tool: a new 3-bp 'frequent cutter' TthHB27I/sinefungin endonuclease with chemically-induced specificity. BMC Genomics 2018; 19:361. [PMID: 29751745 PMCID: PMC5948728 DOI: 10.1186/s12864-018-4748-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Acoustic or hydrodynamic shearing, sonication and enzymatic digestion are used to fragment DNA. However, these methods have several disadvantages, such as DNA damage, difficulties in fragmentation control, irreproducibility and under-representation of some DNA segments. The DNA fragmentation tool would be a gentle enzymatic method, offering cleavage frequency high enough to eliminate DNA fragments distribution bias and allow for easy control of partial digests. Only three such frequently cleaving natural restriction endonucleases (REases) were discovered: CviJI, SetI and FaiI. Therefore, we have previously developed two artificial enzymatic specificities, cleaving DNA approximately every ~ 3-bp: TspGWI/sinefungin (SIN) and TaqII/SIN. Results In this paper we present the third developed specificity: TthHB27I/SIN(SAM) - a new genomic tool, based on Type IIS/IIC/IIG Thermus-family REases-methyltransferases (MTases). In the presence of dimethyl sulfoxide (DMSO) and S-adenosyl-L-methionine (SAM) or its analogue SIN, the 6-bp cognate TthHB27I recognition sequence 5’-CAARCA-3′ is converted into a combined 3.2–3.0-bp ‘site’ or its statistical equivalent, while a cleavage distance of 11/9 nt is retained. Protocols for various modes of limited DNA digestions were developed. Conclusions In the presence of DMSO and SAM or SIN, TthHB27I is transformed from rare 6-bp cutter to a very frequent one, approximately 3-bp. Thus, TthHB27I/SIN(SAM) comprises a new tool in the very low-represented segment of such prototype REases specificities. Moreover, this modified TthHB27I enzyme is uniquely suited for controlled DNA fragmentation, due to partial DNA cleavage, which is an inherent feature of the Thermus-family enzymes. Such tool can be used for quasi-random libraries generation as well as for other DNA manipulations, requiring high frequency cleavage and uniform distribution of cuts along DNA. Electronic supplementary material The online version of this article (10.1186/s12864-018-4748-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria Krefft
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Aliaksei Papkov
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Maciej Prusinowski
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|