1
|
Guo H, Wang Y, Li G, Du S. Effects of Rainfall Exclusion Treatment on Photosynthetic Characteristics of Black Locust in the Sub-Humid Region of the Loess Plateau, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:704. [PMID: 38475549 DOI: 10.3390/plants13050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The mesic-origin species Robinia pseudoacacia L. (black locust) is widely planted in the semiarid and sub-humid areas of the Loess Plateau for the reforestation of vegetation-degraded land. Under the scenario of changing precipitation patterns, exploring the response of photosynthesis to drought allows us to assess the risk to sustainable development of these plantations. In this study, paired plots were established including the control and a treatment of 30% exclusion of throughfall (since 2018). The photosynthetic characteristics were investigated using a portable photosynthesis system for four periods in the full-leaf growing season of 2021-2022, the fourth and fifth years, on both treated and controlled sampling trees. Leaf gas exchange parameters derived from diurnal changing patterns, light response curves, and CO2 response curves showed significant differences except for period II (9-11 September 2021) between the two plots. The photosynthetic midday depression was observed in 2022 in the treated plot. Meanwhile, the decline of net photosynthetic rate in the treated plot was converted from stomatal limitation to non-stomatal limitation. Furthermore, we observed that black locust adapted to long-term water deficiency by reducing stomatal conductance, increasing water use efficiency and intrinsic water use efficiency. The results demonstrate that reduction in precipitation would cause photosynthesis decrease, weaken the response sensitivity to light and CO2, and potentially impair photosynthetic resilience of the plantations. They also provide insights into the changes in photosynthetic functions under global climate change and a reference for management of plantations.
Collapse
Affiliation(s)
- Haining Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiran Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guoqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Wang Y, Jia B, Ren H, Feng Z. Ploidy level enhances the photosynthetic capacity of a tetraploid variety of Acer buergerianum Miq. PeerJ 2022; 9:e12620. [PMID: 35003928 PMCID: PMC8684723 DOI: 10.7717/peerj.12620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background Polyploidy plays an important role in plant breeding and has widespread effects on photosynthetic capacity. To determine the photosynthetic capacity of the tetraploid variety Acer buergerianum Miq. ‘Xingwang’, we compared the gas exchange parameters, chloroplast structure, chlorophyll contents, and chlorophyll fluorescence parameters between the tetraploid Acer buergerianum ‘Xingwang’ and the diploid ‘S4’. To evaluate the effects of genome duplication on the photosynthetic capacity of Acer buergerianum ‘Xingwang’, the transcriptomes of the autotetraploid ‘Xingwang’ and the diploid ‘S4’ of A. buergerianum were compared. Methods The ploidy of Acer buergerianum ‘Xingwang’ was identified by flow cytometry and the chromosome counting method. An LI-6800 portable photosynthesis system analyzer was used to assess the gas exchange parameters of the tetraploid variety ‘Xingwang’ and diploid variety ‘S4’ of A. buergerianum. We used a BioMate 3S ultraviolet-visible spectrophotometer and portable modulated fluorometer to measure the chlorophyll contents and chlorophyll fluorescence parameters, respectively, of ‘Xingwang’ and ‘S4’. Illumina high-throughput sequencing technology was used to identify the differences in the genes involved in the photosynthetic differences and determine their expression characteristics. Results The single-cell DNA content and chromosome number of the tetraploid ‘Xingwang’ were twice those found in the normal diploid ‘S4’. In terms of gas exchange parameters, the change in stomatal conductance, change in intercellular CO2 concentration, transpiration rate and net photosynthetic rate of ‘Xingwang’ were higher than those of the diploid ‘S4’. The chlorophyll contents, the maximal photochemical efficiency of PSII and the potential photochemical efficiency of PSII in ‘Xingwang’ were higher than those of ‘S4’. The chloroplasts of ‘Xingwang’ contained thicker thylakoid lamellae. By the use of Illumina sequencing technology, a total of 51,807 unigenes were obtained; they had an average length of 1,487 nt, and the average N50 was 2,034 nt. The lengths of most of the unigenes obtained ranged from 200–300 bp, with an average value of 5,262, followed by those longer than 3,000 bp, with an average value of 4,791. The data revealed numerous differences in gene expression between the two transcriptomes. In total, 24,221 differentially expressed genes were screened, and the percentage of differentially expressed genes was as high as 46.75% (24,224/51,807), of which 10,474 genes were upregulated and 13,747 genes were downregulated. We analyzed the key genes in the photosynthesis pathway and the porphyrin and chlorophyll metabolism pathway; the upregulation of HemB may promote an increase in the chlorophyll contents of ‘Xingwang’, and the upregulation of related genes in PSII and PSI may enhance the light harvesting of ‘Xingwang’, increasing its light energy conversion efficiency.
Collapse
Affiliation(s)
- Yi Wang
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China.,Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Bingyu Jia
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China.,Forestry Bureau of Huguan County, Changzhi, Shanxi Province, China
| | - Hongjian Ren
- Forestry Protection and Development Center of Ningyang County, Ningyang, Tai'an, Shandong Province, China
| | - Zhen Feng
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
| |
Collapse
|
3
|
Faralli M, Williams K, Corke F, Li M, Doonan JH, Varotto C. Interspecific and intraspecific phenotypic diversity for drought adaptation in bioenergy Arundo species. GLOBAL CHANGE BIOLOGY. BIOENERGY 2021; 13:753-769. [PMID: 33777185 PMCID: PMC7986115 DOI: 10.1111/gcbb.12810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/11/2021] [Indexed: 05/29/2023]
Abstract
Biomass crops are commonly grown in low-grade land and selection of drought-tolerant accessions is of major importance to sustain productivity. In this work, we assess phenotypic variation under different environmental scenarios in a series of accessions of Arundo donax, and contrast it with two closely related species, Arundo donaciformis and Arundo plinii. Gas-exchange and stomatal anatomy analysis showed an elevated photosynthetic capacity in A. plinii compared to A. donax and A. donaciformis with a significant intraspecific variation in A. donax. The three species showed significantly contrasting behaviour of transpiration under developing water stress and increasing vapour pressure deficit (VPD), with A. donax being the most conservative while A. plinii showed an elevated degree of insensitivity to environmental cues. Under optimal conditions, A. donax had the highest estimated leaf area (projected leaf area) and plant dry weight although a significant reduction under water stress was observed for A. donax and A. donaciformis accessions while no differences were recorded for A. plinii between optimal growing conditions (well-watered [WW]) and reduced soil water availability (water-stressed [WS]). A. donax displayed a markedly conservative water use behaviour but elevated sensitivity of biomass accumulation under stress conditions. By contrast, in A. plinii, biomass and transpiration were largely insensitive to WS and increasing VPD, though biomass dry weight under optimal conditions was significantly lower than A. donax. We provide evidence of interspecific phenotypic variation within the Arundo genus while the intraspecific phenotypic plasticity may be exploited for further selection of superior clones under disadvantageous environmental conditions. The extensive trade-off between water use and biomass accumulation present in the three species under stress conditions provides a series of novel traits to be exploited in the selection of superior clones adapted to different environmental scenarios. Non-destructive approaches are provided to screen large populations for water-stress-tolerant A. donax clones.
Collapse
Affiliation(s)
- Michele Faralli
- Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all'Adige (TN)Italy
| | - Kevin Williams
- National Plant Phenomics Centre (NPPC)IBERSAberystwyth UniversityWalesUK
| | - Fiona Corke
- National Plant Phenomics Centre (NPPC)IBERSAberystwyth UniversityWalesUK
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all'Adige (TN)Italy
| | - John H. Doonan
- National Plant Phenomics Centre (NPPC)IBERSAberystwyth UniversityWalesUK
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all'Adige (TN)Italy
| |
Collapse
|
4
|
Chen Y, Xu H, He T, Gao R, Guo G, Lu R, Chen Z, Liu C. Comparative Analysis of Morphology, Photosynthetic Physiology, and Transcriptome Between Diploid and Tetraploid Barley Derived From Microspore Culture. FRONTIERS IN PLANT SCIENCE 2021; 12:626916. [PMID: 33747007 PMCID: PMC7970760 DOI: 10.3389/fpls.2021.626916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/05/2021] [Indexed: 06/01/2023]
Abstract
Polyploids play an important role in the breeding of plant for superior characteristics, and many reports have focused on the effects upon photosynthesis from polyploidization in some plant species recently, yet surprisingly little of this is known for barley. In this study, homozygous diploid and tetraploid plants, derived from microspore culturing of the barley cultivar "H30," were used to assess differences between them in their cellular, photosynthetic, and transcriptomic characteristics. Our results showed that tetraploid barley has the distinct characteristics of polyploids, namely thicker and heavier leaves, enlarged stomata size or stomatal guard cell size, and more photosynthetic pigments and improved photosynthesis (especially under high light intensity). This enhanced photosynthesis of tetraploid barley was confirmed by several photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP), maximum RuBP saturated rate carboxylation (Vcmax), and maximum rate of electron transport (Jmax). Transcriptomic analyses revealed that just ~2.3% of all detected genes exhibited differential expression patterns [i.e., differentially expressed genes (DEGs)], and that most of these - 580 of 793 DEGs in total - were upregulated in the tetraploid barley. The follow-up KEGG analysis indicated that the most enriched pathway was related to photosynthesis-antenna proteins, while the downregulation of DEGs was related mainly to the light-harvesting cholorophyII a/b-binding protein (Lhcb1) component, both validated by quantitative PCR (qPCR). Taken together, our integrated analysis of morphology, photosynthetic physiology, and transcriptome provides evidences for understanding of how polyploidization enhances the photosynthetic capacity in tetraploids of barley.
Collapse
Affiliation(s)
- Yunyun Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Hongwei Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Ting He
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Runhong Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Guimei Guo
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| |
Collapse
|
5
|
Ruiz M, Oustric J, Santini J, Morillon R. Synthetic Polyploidy in Grafted Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:540894. [PMID: 33224156 PMCID: PMC7674608 DOI: 10.3389/fpls.2020.540894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
Synthetic polyploids have been extensively studied for breeding in the last decade. However, the use of such genotypes at the agronomical level is still limited. Polyploidization is known to modify certain plant phenotypes, while leaving most of the fundamental characteristics apparently untouched. For this reason, polyploid breeding can be very useful for improving specific traits of crop varieties, such as quality, yield, or environmental adaptation. Nevertheless, the mechanisms that underlie polyploidy-induced novelty remain poorly understood. Ploidy-induced phenotypes might also include some undesired effects that need to be considered. In the case of grafted or composite crops, benefits can be provided both by the rootstock's adaptation to the soil conditions and by the scion's excellent yield and quality. Thus, grafted crops provide an extraordinary opportunity to exploit artificial polyploidy, as the effects can be independently applied and explored at the root and/or scion level, increasing the chances of finding successful combinations. The use of synthetic tetraploid (4x) rootstocks may enhance adaptation to biotic and abiotic stresses in perennial crops such as apple or citrus. However, their use in commercial production is still very limited. Here, we will review the current and prospective use of artificial polyploidy for rootstock and scion improvement and the implications of their combination. The aim is to provide insight into the methods used to generate and select artificial polyploids and their limitations, the effects of polyploidy on crop phenotype (anatomy, function, quality, yield, and adaptation to stresses) and their potential agronomic relevance as scions or rootstocks in the context of climate change.
Collapse
Affiliation(s)
- Marta Ruiz
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Julie Oustric
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Jérémie Santini
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Raphaël Morillon
- CIRAD, UMR AGAP, Equipe SEAPAG, F-97170 Petit-Bourg, Guadeloupe, France - AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|