1
|
Gryganskyi AP, Hajek AE, Voloshchuk N, Idnurm A, Eilenberg J, Manfrino RG, Bushley KE, Kava L, Kutovenko VB, Anike F, Nie Y. Potential for Use of Species in the Subfamily Erynioideae for Biological Control and Biotechnology. Microorganisms 2024; 12:168. [PMID: 38257994 PMCID: PMC10820730 DOI: 10.3390/microorganisms12010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA;
| | - Nataliya Voloshchuk
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine; (N.V.); (L.K.)
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jørgen Eilenberg
- Department of Plant & Environmental Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark;
| | - Romina G. Manfrino
- CEPAVE—Center for Parasitological & Vector Studies, CONICET-National Scientific & Technical Research Council, UNLP-National University of La Plata, La Plata 1900, Buenos Aires, Argentina;
| | | | - Liudmyla Kava
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine; (N.V.); (L.K.)
| | - Vira B. Kutovenko
- Agrobiological Faculty of Plant Protection, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine;
| | - Felicia Anike
- Department of Natural Resources & Environmental Design, North Carolina Agricultural & Technical State University, Greensboro, NC 27401, USA;
| | - Yong Nie
- School of Civil Engineering & Architecture, Anhui University of Technology, Ma’anshan 243002, China;
| |
Collapse
|
2
|
Identification of RT-qPCR reference genes suitable for gene function studies in the pitaya canker disease pathogen Neoscytalidium dimidiatum. Sci Rep 2022; 12:22357. [PMID: 36572711 PMCID: PMC9792573 DOI: 10.1038/s41598-022-27041-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Neoscytalidium dimidiatum is the main causal agent of pitaya canker. Most studies of virulence and pathogenicity genes have measured expression levels using real-time quantitative polymerase chain reaction (RT-qPCR). Suitable reference genes are essential for ensuring that estimates of gene expression levels by RT-qPCR are accurate. However, no reference genes can be robustly applied across all contexts and species. No studies to date have evaluated the most effective reference genes for normalizing gene expression levels estimated by RT-qPCR in N. dimidiatum. In this study, RT-qPCR data for individual candidate reference genes were analyzed using four different methods: the delta Ct method and the geNorm, NormFinder, and BestKeeper algorithms. We evaluated the utility of eight candidate reference genes (18S rRNA, Actin (1), Actin (2), Actin, GAPDH (1), GAPDH (2), UBQ, and Tubulin) for normalizing expression levels estimated by RT-qPCR in N. dimidiatum at different developmental stages, at different temperatures, and during interaction with pitaya. All candidate reference genes were suitable for gene expression analysis except for Actin (2). Tubulin and Actin (1) were the most stably expressed reference genes under different temperatures. Actin (1) and Actin were the most stably expressed reference genes in N. dimidiatum at different developmental stages. Tubulin and UBQ were the most stably expressed reference genes during interaction with pitaya. Actin and 18s rRNA were the most stably expressed across all experimental conditions. Subsequently, Tubulin and UBQ were further investigated in analyses of pectinase expression during the pitaya-N. dimidiatum interaction. Our results provide insights that will aid future RT-qPCR studies of gene expression in N. dimidiatum.
Collapse
|
3
|
OuYang Q, Duan X, Li L, Tao N. Cinnamaldehyde Exerts Its Antifungal Activity by Disrupting the Cell Wall Integrity of Geotrichum citri-aurantii. Front Microbiol 2019; 10:55. [PMID: 30761105 PMCID: PMC6364577 DOI: 10.3389/fmicb.2019.00055] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
Abstract
Our previous study showed that cinnamaldehyde (CA) significantly inhibited the mycelial growth of Geotrichum citri-aurantii, one of the main postharvest pathogens in citrus fruits. This study investigated the antifungal mechanism of CA against G. citri-aurantii. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that CA treatment led to clear morphological changes in the cell walls and membranes of G. citri-aurantii. However, the membrane integrity, total lipids and ergosterol contents were not apparently affected by CA treatment. Notably, the extracellular alkaline phosphatase (AKP) activity was increased after CA treatment, suggesting impairment in cell wall permeability. A weakened fluorescence in the cell wall, a decrease in the chitin contents, and changes of ten genes involved in cell wall integrity were also observed. These results suggested that CA may exhibit its antifungal activity against G. citri-aurantii by interfering the build of cell wall and therefore lead to the damage of cell wall permeability and integrity.
Collapse
Affiliation(s)
| | | | | | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|