1
|
Fort-Casamartina E, Pernas S, Otero S, Mate P, Gonzalo N, Narváez S, Rigo-Bonnin R, Padró-Miquel A, Teulé À, Garcia del Muro X, Peiró I, Arribas L, Esteve A, Gonzalez A, Rey M, Clopés A, Fontanals S, Muñoz C. Everolimus Through Plasmatic Concentrations in Cancer Patients: Prospective Longitudinal Observational Multicentric Study (DIANA-1 Project). J Clin Med 2024; 14:145. [PMID: 39797229 PMCID: PMC11721870 DOI: 10.3390/jcm14010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Everolimus, an oral inhibitor of the mammalian target of rapamycin (mTOR), is actually used to prevent organ transplant rejection and treat metastatic breast, renal, and neuroendocrine cancers. Despite significant pharmacokinetic variability among patients, routine therapeutic drug monitoring (TDM) is not commonly used in oncology. Methods: The aim of this multicenter, prospective observational cohort study is to assess the prevalence of everolimus minimum concentration at a steady state (Cminss) falling outside the therapeutic range (10-26.3 ng/mL) during a routine TDM programme. Sixty patients with metastatic breast, neuroendocrine, or renal cancers, either starting or continuing everolimus treatment according to hospital protocols, are to be included between 1st of January 2024 and 31st of December 2025 (patients undergoing clinical trials are excluded). We hypothesize that 30-50% of our patients and their blood samples will not achieve the target optimal plasma concentrations. Blood samples are collected every 4-6 weeks to monitor drug levels. The secondary goal is to explore correlation between out-of-range everolimus levels and factors such as demographic and anthropometric data, treatment specifics, lab results, genetic polymorphisms, and the presence of toxicity. Conclusions: This study could offer valuable insights into optimizing dosing strategies and may contribute to future research on personalizing everolimus and other anticancer treatments. This personalized approach seeks to tailor therapy not only to the tumour's molecular profile but also to the individual characteristics of each patient, improving both drug selection and dosing precision.
Collapse
Affiliation(s)
- Eduard Fort-Casamartina
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| | - Sonia Pernas
- Medical Oncology Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.P.); (À.T.); (X.G.d.M.)
| | - Sara Otero
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| | - Paula Mate
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| | - Núria Gonzalo
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| | - Sonia Narváez
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| | - Raúl Rigo-Bonnin
- Laboratory of Molecular Genetics, Laboratori Clínic Territorial Metropolitana Sud, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’ Hospitalet Llobregat, 08908 Barcelona, Spain; (R.R.-B.); (A.P.-M.)
| | - Ariadna Padró-Miquel
- Laboratory of Molecular Genetics, Laboratori Clínic Territorial Metropolitana Sud, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’ Hospitalet Llobregat, 08908 Barcelona, Spain; (R.R.-B.); (A.P.-M.)
| | - Àlex Teulé
- Medical Oncology Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.P.); (À.T.); (X.G.d.M.)
| | - Xavier Garcia del Muro
- Medical Oncology Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.P.); (À.T.); (X.G.d.M.)
| | - Inma Peiró
- Clinical Nutrition Unit, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, University of Barcelona, 08908 Barcelona, Spain; (I.P.); (L.A.)
| | - Lorena Arribas
- Clinical Nutrition Unit, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, University of Barcelona, 08908 Barcelona, Spain; (I.P.); (L.A.)
| | - Anna Esteve
- Medical Oncology Department, Institut Català Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP), 08916 Badalona, Spain; (A.E.); (A.G.)
- Research Management Unit (UGR), Institut Català Oncologia (ICO), 08916 Badalona, Spain
| | - Andrea Gonzalez
- Medical Oncology Department, Institut Català Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP), 08916 Badalona, Spain; (A.E.); (A.G.)
| | - Montse Rey
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| | - Ana Clopés
- CatSalut Medicine Area Director, 08028 Barcelona, Spain;
| | - Sandra Fontanals
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| | - Carme Muñoz
- Pharmacy Department, Institut Català Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet Llobregat, 08908 Barcelona, Spain; (S.O.); (P.M.); (N.G.); (S.N.); (M.R.); (S.F.); (C.M.)
| |
Collapse
|
2
|
Concha J, Sangüesa E, Ribate MP, García CB. CYP3A4*1B but Not CYP3A5*3 as Determinant of Long-Term Tacrolimus Dose Requirements in Spanish Solid Organ Transplant Patients. Int J Mol Sci 2024; 25:11327. [PMID: 39457109 PMCID: PMC11508189 DOI: 10.3390/ijms252011327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Tacrolimus (TAC) is a commonly used immunosuppressive drug in solid organ transplantation. Pharmacogenetics has been demonstrated before to be decisive in TAC pharmacotherapy. The CYP3A5*3 variant has been reported to be the main determinant of TAC dose requirements; however, other polymorphisms have also proven to be influential, especially in CYP3A5 non-expressor patients. The aim of this study is to evaluate the influence of genetic polymorphisms in TAC therapy in a cohort of Spanish transplant recipients. Genetic analysis including ten polymorphic variants was performed, and demographic and clinical data and pharmacotherapy of 26 patients were analyzed. No significant differences were found in weight-adjusted dose between CYP3A5 expressors and non-expressors (0.047 mg/kg vs. 0.044 mg/kg), while they were found for carriers of the CYP3A4*1B allele (0.101 mg/kg; p < 0.05). The results showed that patients with at least one CYP3A4*1B allele had a higher TAC dose and lower blood concentration. Dose-adjusted TAC blood levels were also lower in CYP3A4*1B carriers compared to non-carriers (0.72 ng/mL/mg vs. 2.88 ng/mL/mg). These results support the independence of CYP3A5*3 and CYP3A4*1B variants as determinants of dose requirements despite the linkage disequilibrium present between the two. The variability in genotype frequency between ethnicities may be responsible for the discrepancy found between studies.
Collapse
Affiliation(s)
| | | | - María Pilar Ribate
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, E-50830 Villanueva de Gállego, Zaragoza, Spain; (J.C.); (E.S.); (C.B.G.)
| | | |
Collapse
|
3
|
Lingaratnam S, Shah M, Nicolazzo J, Michael M, Seymour JF, James P, Lazarakis S, Loi S, Kirkpatrick CMJ. A systematic review and meta-analysis of the impacts of germline pharmacogenomics on severe toxicity and symptom burden in adult patients with cancer. Clin Transl Sci 2024; 17:e13781. [PMID: 38700261 PMCID: PMC11067509 DOI: 10.1111/cts.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
The clinical application of Pharmacogenomics (PGx) has improved patient safety. However, comprehensive PGx testing has not been widely adopted in clinical practice, and significant opportunities exist to further optimize PGx in cancer care. This systematic review and meta-analysis aim to evaluate the safety outcomes of reported PGx-guided strategies (Analysis 1) and identify well-studied emerging pharmacogenomic variants that predict severe toxicity and symptom burden (Analysis 2) in patients with cancer. We searched MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and International Clinical Trials Registry Platform from inception to January 2023 for clinical trials or comparative studies evaluating PGx strategies or unconfirmed pharmacogenomic variants. The primary outcomes were severe adverse events (SAE; ≥ grade 3) or symptom burden with pain and vomiting as defined by trial protocols and assessed by trial investigators. We calculated pooled overall relative risk (RR) and 95% confidence interval (95%CI) using random effects models. PROSPERO, registration number CRD42023421277. Of 6811 records screened, six studies were included for Analysis 1, 55 studies for Analysis 2. Meta-analysis 1 (five trials, 1892 participants) showed a lower absolute incidence of SAEs with PGx-guided strategies compared to usual therapy, 16.1% versus 34.0% (RR = 0.72, 95%CI 0.57-0.91, p = 0.006, I2 = 34%). Meta-analyses 2 identified nine medicine(class)-variant pairs of interest across the TYMS, ABCB1, UGT1A1, HLA-DRB1, and OPRM1 genes. Application of PGx significantly reduced rates of SAEs in patients with cancer. Emergent medicine-variant pairs herald further research into the expansion and optimization of PGx to improve systemic anti-cancer and supportive care medicine safety and efficacy.
Collapse
Affiliation(s)
- Senthil Lingaratnam
- Pharmacy DepartmentPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Mahek Shah
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Joseph Nicolazzo
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Michael Michael
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - John F. Seymour
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Smaro Lazarakis
- Health Sciences LibraryRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Sherene Loi
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Carl M. J. Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Concha J, Sangüesa E, Peña JL, Ribate MP, García CB. Retrospective pharmacogenetic study in a cohort of pediatric tuberous sclerosis complex patients using everolimus. Pharmacogenomics 2023; 24:797-808. [PMID: 37869874 DOI: 10.2217/pgs-2023-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Aim: Tuberous sclerosis complex (TSC) is a rare disease that produces multisystemic disorders. Everolimus (EVR) is the only immunosuppressive drug approved to control the symptoms and progression of the disease. The aim was to evaluate the genotype-phenotype association to improve the pediatric TSC pharmacotherapeutic outcome. Patients & methods: Ten pediatric TSC patients were recruited. Concomitant treatment and main metabolic enzymes and transporter coding gene variants of EVR were analyzed. Results: Significant associations were found between CYP3A4*22 allele and concomitant treatment with valproic acid (CYP3A4-inhibitor) with a poor metabolizer phenotype and the presence of pneumonia. Conclusion: This is the first pharmacogenetic study of EVR in pediatric TSC patients. The authors propose to consider concomitant treatment and pharmacogenetics due to their multifactorial status.
Collapse
Affiliation(s)
- Julia Concha
- Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
| | - Estela Sangüesa
- Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
| | - Jose Luis Peña
- Neuropediatrics Area, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | | |
Collapse
|
5
|
Subhan MA, Parveen F, Shah H, Yalamarty SSK, Ataide JA, Torchilin VP. Recent Advances with Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type. Cancers (Basel) 2023; 15:2204. [PMID: 37190133 PMCID: PMC10137302 DOI: 10.3390/cancers15082204] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer is a heterogeneous disease with different molecular subtypes. Breast cancer is the second leading cause of mortality in woman due to rapid metastasis and disease recurrence. Precision medicine remains an essential source to lower the off-target toxicities of chemotherapeutic agents and maximize the patient benefits. This is a crucial approach for a more effective treatment and prevention of disease. Precision-medicine methods are based on the selection of suitable biomarkers to envision the effectiveness of targeted therapy in a specific group of patients. Several druggable mutations have been identified in breast cancer patients. Current improvements in omics technologies have focused on more precise strategies for precision therapy. The development of next-generation sequencing technologies has raised hopes for precision-medicine treatment strategies in breast cancer (BC) and triple-negative breast cancer (TNBC). Targeted therapies utilizing immune checkpoint inhibitors (ICIs), epidermal growth factor receptor inhibitor (EGFRi), poly(ADP-ribose) polymerase inhibitor (PARPi), antibody-drug conjugates (ADCs), oncolytic viruses (OVs), glucose transporter-1 inhibitor (GLUT1i), and targeting signaling pathways are potential treatment approaches for BC and TNBC. This review emphasizes the recent progress made with the precision-medicine therapy of metastatic breast cancer and TNBC.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore 54000, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Janaína Artem Ataide
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, SP, Brazil
| | - Valdimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Scudeler MM, Manóchio C, Braga Pinto AJ, Santos Cirino HD, da Silva CS, Rodrigues-Soares F. Breast cancer pharmacogenetics: a systematic review. Pharmacogenomics 2023; 24:107-122. [PMID: 36475975 DOI: 10.2217/pgs-2022-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer was declared the most prevalent type of cancer in 2020. Among other factors, treatment response can be affected by genetic polymorphisms - which is the focus of pharmacogenetics - and ethnicity is also a contributing factor in this context. Relevant genes in disease treatment pathways were selected to evaluate treatment response from the pharmacogenetic perspective; polymorphism frequencies and ethnic and continental representation across the available literature were also assessed through a systematic review. The identified associations and gaps have been described in this study with the purpose that, in the future, treatments can be personalized and thus be more effective, safer, and accessible to all.
Collapse
Affiliation(s)
- Mariana M Scudeler
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Caíque Manóchio
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Alex J Braga Pinto
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Heithor Dos Santos Cirino
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cléber S da Silva
- Departamento de Ginecologia e Obstetrícia, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Cirurgia de Mama, Hospital Hélio Angotti, Uberaba, Minas Gerais, 38010-180, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| |
Collapse
|
7
|
Altena R, Bajalica-Lagercrantz S, Papakonstantinou A. Pharmacogenomics for Prediction of Cardiovascular Toxicity: Landscape of Emerging Data in Breast Cancer Therapies. Cancers (Basel) 2022; 14:cancers14194665. [PMID: 36230587 PMCID: PMC9563074 DOI: 10.3390/cancers14194665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenomics is an emerging field in oncology, one that could provide valuable input on identifying patients with inherent risk of toxicity, thus allowing for treatment tailoring and personalization on the basis of the clinical and genetic characteristics of a patient. Cardiotoxicity is a well-known side effect of anthracyclines and anti-HER2 agents, although at a much lower incidence for the latter. Data on single-nucleotide polymorphisms related to cardiotoxicity are emerging but are still scarce, mostly being of retrospective character and heterogeneous. A literature review was performed, aiming to describe current knowledge in pharmacogenomics and prediction of cardiotoxicity related to breast cancer systemic therapies and radiotherapies. Most available data regard genes encoding various enzymes related to anthracycline metabolism and HER2 polymorphisms. The available data are presented, together with the challenges and open questions in the field.
Collapse
Affiliation(s)
- Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Breast cancer, Endocrine tumors and Sarcoma, Theme Cancer, Karolinska University Hospital, 17 176 Stockholm, Sweden
| | - Svetlana Bajalica-Lagercrantz
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, 17 176 Stockholm, Sweden
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Breast cancer, Endocrine tumors and Sarcoma, Theme Cancer, Karolinska University Hospital, 17 176 Stockholm, Sweden
- Breast Cancer Group, Vall D’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
8
|
Hirabatake M, Mizuno T, Kato H, Hashida T. Everolimus pharmacokinetics and exposure-response relationship in Japanese patients with advanced breast cancer. Front Pharmacol 2022; 13:984002. [PMID: 36188563 PMCID: PMC9520775 DOI: 10.3389/fphar.2022.984002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Everolimus is one of the key drugs for the treatment of advanced breast cancer. The optimal target concentration range for everolimus therapy in patients with breast cancer has not yet been established. This study aimed to characterize everolimus pharmacokinetics (PK) and determine the relationship between blood concentration and efficacy as well as adverse events in patients with breast cancer. Methods: This was a prospective, observational PK study. Patients receiving everolimus between November 2015 and November 2018 at our hospital were enrolled in this study. The whole blood samples for the everolimus assay were collected at least two weeks after initiation of treatment or the last everolimus dose change. PK parameters were estimated using Bayesian analysis. Statistical differences in everolimus trough concentrations between patient cohorts were assessed using the Mann–Whitney test. Progression-free survival was assessed using the Kaplan-Meier method and the log-rank test. Results: Eighteen patients were enrolled in the study. The median follow-up period was 35 months. The most frequently observed adverse event was stomatitis (all grade 94%). There was high inter-individual variation in PK parameters such as clearance [range: 5.1–21.3 L/h/70 kg and co-efficient of variation (CV): 38.5%] and volume of distribution of the central compartment (range: 9.9–103.6 L/70 kg and CV: 57.8%). The trough concentrations at dose-limiting toxicities were significantly higher than trough concentrations in the absence of these toxicities (p = 0.0058). Progression-free survival was significantly longer in the 10–20 ng/ml group than in the other groups (p = 0.0078). Conclusion: This study characterized the everolimus PK parameters in Japanese patients with breast cancer. High everolimus exposure was found to be associated with poor tolerability. Based on our data, trough concentrations in the range of 10–20 ng/ml may be associated with prolonged progression-free survival. Thus, determining the blood concentration of everolimus and subsequent dose adjustments will potentially reduce side effects and enhance the therapeutic effect in Japanese patients with advanced breast cancer.
Collapse
Affiliation(s)
- Masaki Hirabatake
- Department of Pharmacy, Kobe City Medical Center General Hospital, Kobe, Japan
- *Correspondence: Masaki Hirabatake,
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hironori Kato
- Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tohru Hashida
- Department of Pharmacy, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
9
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N. Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D. Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S. Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
10
|
Rodrigues R, Duarte D, Vale N. Drug Repurposing in Cancer Therapy: Influence of Patient’s Genetic Background in Breast Cancer Treatment. Int J Mol Sci 2022; 23:ijms23084280. [PMID: 35457144 PMCID: PMC9028365 DOI: 10.3390/ijms23084280] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is among the leading causes of death worldwide and it is estimated that in 2040 more than 29 million people will be diagnosed with some type of cancer. The most prevalent type of cancer in women, worldwide, is breast cancer, a type of cancer associated with a huge death rate. This high mortality is mainly a consequence of the development of drug resistance, which is one of the major challenges to overcome in breast cancer treatment. As a result, research has been focused on finding novel therapeutical weapons, specifically ones that allow for a personalized treatment, based on patients’ characteristics. Although the scientific community has been concerned about guaranteeing the quality of life of cancer patients, researchers are also aware of the increasing costs related to cancer treatment, and efforts have been made to find alternatives to the development of new drugs. The development of new drugs presents some disadvantages as it is a multistep process that is time- and money-consuming, involving clinical trials that commonly fail in the initial phases. A strategy to overcome these disadvantages is drug repurposing. In this review, we focused on describing potential repurposed drugs in the therapy of breast cancer, considering their pharmacogenomic profile, to assess the relationship between patients’ genetic variations and their response to a certain therapy. This review supports the need for the development of further fundamental studies in this area, in order to investigate and expand the knowledge of the currently used and novel potential drugs to treat breast cancer. Future clinical trials should focus on developing strategies to group cancer patients according to their clinical and biological similarities and to discover new potential targets, to enable cancer therapy to be more effective and personalized.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (D.D.)
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (D.D.)
- Faculty of Pharmacy of University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (D.D.)
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory RISE–Health Research Network, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
11
|
Metformin Potentiates the Anticancer Effect of Everolimus on Cervical Cancer In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13184612. [PMID: 34572837 PMCID: PMC8468269 DOI: 10.3390/cancers13184612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Recent studies have shown that metformin combined with clinical chemotherapeutic drugs could cause decreased cell toxicity and attenuate tumor resistance in various types of cancer. The aim of the present study was to elucidate whether combined treatment with metformin and everolimus has a synergistic anticancer effect in human cervical cancer in vitro and in vivo. The results showed that this combined treatment synergistically inhibited the growth of human cervical cancer cell lines and xenografts in nude mice, and induced caspase-dependent apoptosis, promoting sub-G1- and G0/G1-phase arrest and enhancing mtROS production. Combined treatment also synergistically inactivated PI3K/AKT signaling and activated MAPKs signaling in cervical cancer. Our data suggested that metformin potentiates the anticancer effect of everolimus on cervical cancer, and combined treatment provides a novel therapeutic strategy for patients with cervical cancer. Abstract Cervical cancer is globally the fourth most common cancer in women. Metformin is a widely used drug for the treatment of type II diabetes and has been shown to possess important anticancer properties in cervical cancer. Everolimus is an mTOR inhibitor and is widely used to treat NETs, RCC, TSC, and breast cancers. The present study investigated the anticancer effects of metformin and everolimus in cervical cancer, when used alone or in combination. CaSki and C33A human cervical cancer cells were treated with different concentrations of everolimus alone or in combination with metformin. Cell viability was assessed using a CCK-8 assay. Cell apoptosis, cell-cycle, and mtROS analyses were conducted using flow cytometry. Target protein levels were analyzed by Western blotting. Related mechanisms were confirmed using appropriate inhibitors (z-VAD-fmk and BIRB796). The in vitro results were further confirmed in a xenograft tumor study. Both metformin and everolimus, when used alone, were moderately effective in inhibiting cell proliferation and inducing cell apoptosis of CaSki and C33A cells. When used in combination, these two drugs synergistically inhibited the growth of human cervical cancer cells and xenografts in nude mice, promoted sub-G1- and G0/G1-phase cell-cycle arrest, and enhanced mtROS production. The protein expressions of PI3K (p110α) and p-AKT were significantly downregulated, while P27, P21, p-p38, p-ERK, and p-JNK were upregulated following combined treatment. These results revealed that metformin potentiates the anticancer effect of everolimus on cervical cancer, and combination treatment with metformin and everolimus provides a novel therapeutic strategy for patients with cervical cancer.
Collapse
|
12
|
Cuyún Carter G, Mohanty M, Stenger K, Morato Guimaraes C, Singuru S, Basa P, Singh S, Tongbram V, Kuemmel S, Guarneri V, Tolaney SM. Prognostic Factors in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative (HR+/HER2-) Advanced Breast Cancer: A Systematic Literature Review. Cancer Manag Res 2021; 13:6537-6566. [PMID: 34447271 PMCID: PMC8384149 DOI: 10.2147/cmar.s300869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Advanced breast cancer is a heterogeneous disease with several well-defined subtypes, among which, hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) is most prevalent. Determination of HR and HER2 status influences prognosis and, thus, disease management. Although literature on these prognostic factors exist, especially in the early breast cancer setting, it remains unclear to what extent these factors can guide clinical decision-making in the advanced disease setting. Therefore, we sought to identify the strength and consistency of evidence for prognostic factors in patients with HR+/HER2- advanced breast cancer. METHODS A systematic literature review (SLR) of the major electronic databases was conducted in November 2018 for primary research studies published since 2010. Endpoints of interest were tumor response, progression-free survival (PFS), overall survival (OS), and breast cancer-specific survival (BCSS). RESULTS Seventy-nine studies were included wherein all patients were diagnosed with advanced breast cancer and ≥50% of the population were HR+/HER2-. OS was the most commonly assessed endpoint (n=67) followed by PFS (n=33), BCSS (n=5) and tumor response (n=3). The prognostic factors with strongest evidence of association with worse OS were negative progesterone receptor status, higher tumor grade, higher circulating tumor cell (CTC) count and higher Ki67 level, number of metastatic sites (eg multiple vs single) and sites of metastases (eg presence of liver metastases vs absence), shorter time to recurrence or progression to advanced breast cancer, poor performance status, prior therapy attributes in the early or metastatic setting (type of therapy, treatment line, response of prior therapy), and race (black vs white). The prognostic factors that had strongest evidence of association with PFS included CTC count, number and sites of metastases, and absence of prior therapy or higher lines of therapy in the early or metastatic setting. The directionality of association was consistent for all prognostic factors except between lymph node and OS, and de novo metastatic breast cancer and PFS. CONCLUSION Multiple disease, treatment, and patient-related prognostic factors impact survival, particularly OS, in patients with HR+/HER2- advanced breast cancer. Treatment outcomes can vary considerably due to these factors. Understanding poorer prognostic factors for patients can result in improved clinical decision-making.
Collapse
Affiliation(s)
| | - Maitreyee Mohanty
- Global Health Economics and Outcomes Research, ICON Plc, New York, NY, USA
| | | | | | - Shivaprasad Singuru
- Global Health Economics and Outcomes Research, ICON Plc, Bangalore, Karnataka, India
| | - Pradeep Basa
- Global Health Economics and Outcomes Research, ICON Plc, Bangalore, Karnataka, India
| | - Sheena Singh
- Global Health Economics and Outcomes Research, ICON Plc, Bangalore, Karnataka, India
| | - Vanita Tongbram
- Global Health Economics and Outcomes Research, ICON Plc, New York, NY, USA
| | - Sherko Kuemmel
- Interdisciplinary Breast Unit, Kliniken Essen-Mitte (KEM), Essen, Germany
- Charité – Universitätsmedizin Berlin, Department of Gynecology with Breast Center, Berlin, Germany
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, PD, Italy; Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, PD, Italy
| | | |
Collapse
|
13
|
Mulder TAM, van Eerden RAG, de With M, Elens L, Hesselink DA, Matic M, Bins S, Mathijssen RHJ, van Schaik RHN. CYP3A4∗22 Genotyping in Clinical Practice: Ready for Implementation? Front Genet 2021; 12:711943. [PMID: 34306041 PMCID: PMC8296839 DOI: 10.3389/fgene.2021.711943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug metabolizing enzyme in the liver, responsible for the oxidative metabolism of ∼50% of clinically prescribed drugs. Therefore, genetic variation in CYP3A4 could potentially affect the pharmacokinetics, toxicity and clinical outcome of drug treatment. Thus far, pharmacogenetics for CYP3A4 has not received much attention. However, the recent discovery of the intron 6 single-nucleotide polymorphism (SNP) rs35599367C > T, encoding the CYP3A4∗22 allele, led to several studies into the pharmacogenetic effect of CYP3A4∗22 on different drugs. This allele has a relatively minor allele frequency of 3-5% and an effect on CYP3A4 enzymatic activity. Thus far, no review summarizing the data published on several drugs is available yet. This article therefore addresses the current knowledge on CYP3A4∗22. This information may help in deciding if, and for which drugs, CYP3A4∗22 genotype-based dosing could be helpful in improving drug therapy. CYP3A4∗22 was shown to significantly influence the pharmacokinetics of several drugs, with currently being most thoroughly investigated tacrolimus, cyclosporine, and statins. Additional studies, focusing on toxicity and clinical outcome, are warranted to demonstrate clinical utility of CYP3A4∗22 genotype-based dosing.
Collapse
Affiliation(s)
- Tessa A M Mulder
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Laure Elens
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets 2021; 21:768-793. [PMID: 34036920 DOI: 10.2174/1568009621666210525151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common malignancy in women. Environmental and genetic factors are associated with BC progression. Genetic polymorphisms have been reported as important risk factors of BC prognosis and drug response. Main body: Therefore, in the present review, we have summarized all single nucleotide polymorphisms (SNPs) which have been significantly associated with drug response in BC patients around the world. We have also categorized the reported SNPs based on their related genes functions to clarify the molecular biology of drug responses in BC. CONCLUSION The majority of SNPs were reported in detoxifying enzymes, which introduced such genes as the main genetic risk factors during BC drug responses. This review paves the way for introducing a prognostic panel of SNPs for the BC patients in the world.
Collapse
Affiliation(s)
- Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Rastgar-Moghadam
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Homaei Shandiz
- Department of Radiotherapy/Oncology, Omid Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
An Example of Personalized Treatment in HR+ HER2+ Long Survivor Breast Cancer Patient (Case Report). Curr Oncol 2021; 28:1980-1987. [PMID: 34070464 PMCID: PMC8161821 DOI: 10.3390/curroncol28030184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background. Personalized therapy is becoming increasingly popular in oncological scenarios, not only based on molecular pharmacological targets, but also preventing any drug–drug–gene interaction (DDGI), which could lead to severe toxicities. Single nucleotide polymorphisms (SNPs), the individual germline sequence variations in genes involved in drug metabolism, are correlated to interindividual response to drugs and explain both efficacy and toxicity profiles reported by patients. Case presentation. We present the case of a woman suffering from triple-positive breast cancer; she had early-stage disease at the onset and after four years developed metastatic disease. During her history, she presented different toxicities due to antineoplastic treatments. Particularly, hypertransaminasemia was found during every line of treatment. Nevertheless, we were able to guarantee the patient an excellent therapeutic adhesion thanks to the supportive treatments and the reduction of drug dosage. Moreover, we conducted a simultaneous analysis of the patient’s biochemical and genomic data thanks to Drug-PIN software, and we found several significant SNPs of the main enzymes and transporters involved in drug metabolism. Conclusion. Our case report demonstrated the relevance of DDGI in clinical practice management of a patient treated for advanced breast cancer, suggesting the role of Drug-PIN software as an easy-to-use tool to prevent adverse events during cancer treatment and to help physicians in therapeutic algorithms. However, further studies are needed to confirm these results.
Collapse
|
16
|
Significance of Ethnic Factors in Immunosuppressive Therapy Management After Organ Transplantation. Ther Drug Monit 2021; 42:369-380. [PMID: 32091469 DOI: 10.1097/ftd.0000000000000748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcomes after organ transplantation have greatly improved in the past 2 decades with the discovery and development of immunosuppressive drugs such as calcineurin inhibitors, antiproliferative agents, and mammalian target of rapamycin inhibitors. However, individualized dosage regimens have not yet been fully established for these drugs except for therapeutic drug monitoring-based dosage modification because of extensive interindividual variations in immunosuppressive drug pharmacokinetics. The variations in immunosuppressive drug pharmacokinetics are attributed to interindividual variations in the functional activity of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and ATP-binding cassette subfamily B member 1 (known as P-glycoprotein or multidrug resistance 1) in the liver and small intestine. Some genetic variations have been found to be involved to at least some degree in pharmacokinetic variations in post-transplant immunosuppressive therapy. It is well known that the frequencies and effect size of minor alleles vary greatly between different races. Thus, ethnic considerations might provide useful information for optimizing individualized immunosuppressive therapy after organ transplantation. Here, we review ethnic factors affecting the pharmacokinetics of immunosuppressive drugs requiring therapeutic drug monitoring, including tacrolimus, cyclosporine, mycophenolate mofetil, sirolimus, and everolimus.
Collapse
|
17
|
Bonnet S, Falkowski S, Deppenweiler M, Monchaud C, Arnion H, Picard N, Woillard JB. Effect of genetic polymorphisms in CYP3A4, CYP3A5, and m-TOR on everolimus blood exposure and clinical outcomes in cancer patients. THE PHARMACOGENOMICS JOURNAL 2020; 20:647-654. [PMID: 32015456 DOI: 10.1038/s41397-020-0152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Genetic variations in CYP3A4, CYP3A5, and m-TOR could contribute to interpatient variability regarding m-TOR inhibitors pharmacokinetics or cellular effects. The purpose of this study was to evaluate the influence of selected candidate variations in these genes on everolimus pharmacokinetics, efficacy, and toxicity in cancer patients. Thirty-four patients receiving everolimus for breast (n = 22) or renal (n = 10) cancers, or neuroendocrine tumors of pancreatic origin (n = 2) were included in the study. Six variants in genes related to everolimus pharmacokinetics (CYP3A4*22 and CYP3A5*3) or pharmacodynamics (m-TOR rs2295079, rs2295080, rs2024627 and rs1057079) were genotyped. Associations with trough concentrations (C0), dose reductions, or treatment interruptions due to toxicity and progression-free survival were investigated using generalized estimating equations and Cox models. CYP3A5 nonexpressers had significantly higher C0 as compared with expressers (βGG vs AG = + 6.32 ± 2.22 ng/mL, p = 0.004). m-TOR rs2024627 was significantly associated with an increased risk of cancer progression studied alone or as part of an haplotype (T vs C: HR = 2.60, 95% CI [1.16-5.80], p = 0.020; CTCG vs other haplotypes HR = 2.29, 95% CI [1.06-4.95], p = 0.035, respectively). This study showed that CYP3A5 expression impacts everolimus pharmacokinetics in cancer patients and identified a genetic variation in m-TOR associated with the risk of cancer progression.
Collapse
Affiliation(s)
- Stéphanie Bonnet
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France
| | | | | | - Caroline Monchaud
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France.,Department of Pharmacology and Toxicology, CHU Limoges, F-87000, Limoges, France
| | - Hélène Arnion
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France
| | - Nicolas Picard
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France.,Department of Pharmacology and Toxicology, CHU Limoges, F-87000, Limoges, France
| | - Jean-Baptiste Woillard
- University of Limoges, IPPRITT, F-87000, Limoges, France. .,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France. .,Department of Pharmacology and Toxicology, CHU Limoges, F-87000, Limoges, France.
| |
Collapse
|
18
|
Leggeri S, Sobhani N. Single nucleotide polymorphisms Rs1045642 C>T genetic alteration in ATP Binding Cassette Subfamily B Member 1 role in increasing everolimus toxicity in metastatic breast cancer. AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Al-Eitan LN, Rababa'h DM, Alghamdi MA, Khasawneh RH. Association of CYP gene polymorphisms with breast cancer risk and prognostic factors in the Jordanian population. BMC MEDICAL GENETICS 2019; 20:148. [PMID: 31477036 PMCID: PMC6720417 DOI: 10.1186/s12881-019-0884-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Background Single nucleotide polymorphisms (SNPs) in several CYP genes have been associated with altered breast cancer (BC) risk in different populations. Despite this, there is a dearth of information on the roles of these SNPs in Jordanian BC patients. Therefore, this study aims to determine if there is any single nucleotide polymorphism (SNP) within CYP19A1, CYP2C19, CYP2C9, CYP1B1, CYP3A4, and CYP1A2 genes associated with BC in the Jordanian population. In addition, this work investigates the association between selected BC prognostic factors and variants of the aforementioned CYP candidate genes. Methods Blood samples were withdrawn from 221 BC patients and 218 healthy volunteers recruited from the Jordanian population. Genomic DNA was withdrawn and, after quantification and quality control, was genotyped using the Sequenom MassARRAY® system (iPLEX GOLD). Statistical analysis was then carried out to assess allelic and genotypic frequencies as well as genetic association between cases and controls. Results The CYP19A1 SNP rs7176005 (p < 0.0045) and the CYP1A2 SNP rs762551 (p = 0.004) were significantly associated with BC risk. However, no such association was found for the screened SNPs of the CYP2C9, CYP1B1, CYP2C19 and CYP3A4 genes. Regarding the prognostic factors of BC, several of the screened SNPs were associated with different pathological and clinical features. Conclusions Certain CYP genes, particularly CYP19A1 and CYP1A2, were associated with BC risk and development in the Jordanian population.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan. .,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Doaa M Rababa'h
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | | | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman, 11118, Jordan
| |
Collapse
|
20
|
Sun J, Xu H, Qi M, Zhang C, Shi J. Identification of key genes in osteosarcoma by meta‑analysis of gene expression microarray. Mol Med Rep 2019; 20:3075-3084. [PMID: 31432118 PMCID: PMC6755242 DOI: 10.3892/mmr.2019.10543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is one of the most malignant tumors in children and young adults. To better understand the underlying mechanism, five related datasets deposited in the Gene Expression Omnibus were included in the present study. The Bioconductor ‘limma’ package was used to identify differentially expressed genes (DEGs) and the ‘Weighted Gene Co-expression Network Analysis’ package was used to construct a weighted gene co-expression network to identify key modules and hub genes, associated with OS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes overrepresentation analyses were used for functional annotation. The results indicated that 1,405 genes were dysregulated in OS, including 927 upregulated and 478 downregulated genes, when the cut off value was set at a ≥2 fold-change and an adjusted P-value of P<0.01 was used. Functional annotation of DEGs indicated that these genes were involved in the extracellular matrix (ECM) and that they function in several processes, including biological adhesion, ECM organization, cell migration and leukocyte migration. These findings suggested that dysregulation of the ECM shaped the tumor microenvironment and modulated the OS hallmark. Genes assigned to the yellow module were positively associated with OS and could contribute to the development of OS. In conclusion, the present study has identified several key genes that are potentially druggable genes or therapeutics targets in OS. Functional annotations revealed that the dysregulation of the ECM may contribute to OS development and, therefore, provided new insights to improve our understanding of the mechanisms underlying OS.
Collapse
Affiliation(s)
- Junkui Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongen Xu
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Muge Qi
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Chi Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
21
|
Predicting mucositis risk associated with cytotoxic cancer treatment regimens: rationale, complexity, and challenges. Curr Opin Support Palliat Care 2019; 12:198-210. [PMID: 29547492 DOI: 10.1097/spc.0000000000000339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to describe the complexity of factors influencing the risk of cancer regimen-related mucosal injury (CRRMI), to evaluate the contribution of the innate immune response to CRRMI risk, to compare the concordance of genome analytics in describing mechanism and risk, and to determine if common biological pathways are noted when CRRMI is compared to a disease with a similar phenotype. RECENT FINDINGS The pathogenesis of and risk for CRRMI are complex and influenced by multiple intrinsic and extrinsic factors. It is incumbent on analyses to recognize the likelihood that the interplay and cross-talk of synergistically expressed factors is critical and that the contributing weights of these factors is not uniform from patient to patient. Genomically derived analyses imply final common pathways are implicit in phenotype expression. SUMMARY The identification of specific factors (both genomic and otherwise) which contribute to CRRMI risk represents an important opportunity to apply principles of precision medicine to the management of regimen-related toxicities.
Collapse
|
22
|
Li X, Liu J, Shi PF, Fu P. Katanin P80 expression correlates with lymph node metastasis and worse overall survival in patients with breast cancer. Cancer Biomark 2019; 23:363-371. [PMID: 30223388 DOI: 10.3233/cbm-181369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the correlation of katanin P80 expression with clinicopathological features and overall survival (OS) in surgical breast cancer (BC) patients. METHODS Four hundred and fourteen BC patients underwent surgery were analyzed in this retrospective cohort study. Katanin P80 expression was examined by immunofluorescence assay. The median follow-up duration was 118.0 months (quantiles: 99.0-140.5 months), the last follow-up date was Jul 1st 2017. RESULTS Eighty-five patients (20.5%) with katanin P80 positive expression and 329 patients (79.5%) with katanin P80 negative expression were observed in this research. Katanin P80 positive expression was correlated with higher N stage (p< 0.001) and TNM stage (p< 0.001). K-M curve and log-rank test revealed that katanin P80 positive patients presented with shorter OS compared with katanin P80 negative patients (p< 0.001). Multivariate Cox's regression analysis disclosed that katanin P80 positive expression (p< 0.001) and histologic grade (p< 0.001) could independently predict unfavorable OS. Furthermore, subgroups analysis was performed, which illuminated that katanin P80 positive expression was correlated with shorter OS in all subgroups divided by molecular subtyping and TNM stage (all p< 0.05) except in TNM stage I subgroup (p= 0.573). CONCLUSION Katanin P80 expression positively correlated with lymph node metastasis and could abe a novel biomarker for prognosis in BC patients.
Collapse
Affiliation(s)
- Xun Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Fei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Fu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Tsuchiya N. Molecular-targeted therapy in advanced renal cell carcinoma based on pharmacokinetics, pharmacodynamics and pharmacogenetics: A proposed strategy. Int J Urol 2018; 26:48-56. [DOI: 10.1111/iju.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Norihiko Tsuchiya
- Department of Urology; Yamagata University Faculty of Medicine; Yamagata Japan
| |
Collapse
|
24
|
Liu X, Huang X, Zhang S, Niu F, Ouyang Y, Shou Z, Liu J. Correlations between CYP3A4 polymorphism and susceptibility to breast cancer in Chinese Han population. Int J Clin Oncol 2018; 24:179-188. [PMID: 30218411 DOI: 10.1007/s10147-018-1346-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND CYP3A4 is a major enzyme catalyzing the metabolism of endogenous steroids that play an important role in the etiology of carcinogenesis. This study was designed to investigate the contribution of CYP3A4 polymorphism to breast cancer in Chinese Han female population. METHODS To examine whether variants of CYP3A4 contribute to breast cancer, 5 single-nucleotide polymorphisms (SNPs) of CYP3A4 were genotyped by Sequenom MassARRAY in 267 breast cancer patients and 302 healthy controls. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression adjusted for age. RESULTS We found that the TT genotype of CYP3A4*1G (rs2242480) polymorphism was associated with increased risk of breast cancer using the fixed effects model (recessive model: OR = 2.34, p = 0.018). Stratified according to age, CYP3A4*1G increased the risk of breast cancer especially in less than 50-year-old group (codominant model OR = 3.68, p = 0.041; recessive model: OR = 3.55, p = 0.012). Furthermore, TT genotype of rs2242480 was associated with Cerb-B2 positive (recessive model: OR = 2.47, p = 0.025) and stage I/II (recessive model: OR = 2.32, p = 0.041). However, no statistically significant associations in other polymorphisms and haploview analysis were observed. CONCLUSIONS This study provides an evidence for polymorphism of CYP3A4 gene associated with the development of breast cancer, also a new insight into etiology of breast cancer. However, the underlying mechanism of the CYP3A4 gene in breast cancer is necessary for further study.
Collapse
Affiliation(s)
- Xu Liu
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, #1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China
| | - Xi Huang
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Shanshan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Yongri Ouyang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, #1277, Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei, China.
| | - Jikui Liu
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, #1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
25
|
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J, Liu J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. Oncol Lett 2018; 16:4984-4996. [PMID: 30250564 PMCID: PMC6144355 DOI: 10.3892/ol.2018.9290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
As a clinically heterogeneous subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with a poor clinical outcome and a high relapse rate. Conventional chemotherapy and radiotherapy are effective treatments for patients with TNBC. However, the prognosis of TNBC remains unsatisfactory. Therefore, a large volume of research has explored the molecular markers and oncogenic signaling pathways associated with TNBC, including the cell cycle, DNA damage response and androgen receptor (AR) signaling pathways, to identify more efficient targeted therapies. However, whether these predicted pathways are effective targets has yet to be confirmed. In the present review, potentially carcinogenic signaling pathways in TNBCs from previous reports were considered, and ultimately five tumorigenic signaling pathways were selected, specifically receptor tyrosine kinases and downstream signaling pathways, the epithelial-to-mesenchymal transition and associated pathways, the immunoregulatory tumor microenvironment, DNA damage repair pathways, and AR and coordinating pathways. The conclusions of the preclinical and clinical trials of each pathway were then consolidated. Although a number of signaling pathways in TNBC have been considered in preclinical and clinical trials, the aforementioned pathways account for the majority of the malignant behaviors of TNBC. Identifying the alterations to different carcinogenic signaling pathways and their association with the heterogeneity of TNBC may facilitate the development of optimal precision medical approaches for patients with TNBC, potentially improving the efficiency of anticancer therapy.
Collapse
Affiliation(s)
- Nan Wu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinghua Zhang
- Department of Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China
| | - Jing Zhao
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Kun Mu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jun Zhang
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhao Jin
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Juntian Liu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
26
|
Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev 2018; 132:139-168. [PMID: 29778901 DOI: 10.1016/j.addr.2018.05.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
The US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications.
Collapse
Affiliation(s)
- Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Justin Jia Yao Tan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| |
Collapse
|
27
|
Yamamoto K, Yano I. Genetic polymorphisms associated with adverse reactions of molecular-targeted therapies in renal cell carcinoma. Med Oncol 2018; 35:16. [PMID: 29302760 DOI: 10.1007/s12032-017-1077-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/27/2017] [Indexed: 12/28/2022]
Abstract
The prognosis of patients with metastatic renal cell carcinoma has drastically improved due to the development of molecular-targeted drugs and their use in clinical practice. However, these drugs cause some diverse adverse reactions in patients and sometimes affect clinical outcomes of cancer therapy. Therefore, predictive markers are necessary to avoid severe adverse reactions, to establish novel and effective prevention methods, and to improve treatment outcomes. Some genetic factors involved in these adverse reactions have been reported; however, perspectives on each adverse response have not been integrated yet. In this review, genetic polymorphisms relating to molecular-targeted therapy-induced adverse reactions in patients with renal cell carcinoma are summarized in the points of pharmacokinetic and pharmacodynamic mechanisms. We also discuss about the relationship between systemic drug exposure and adverse drug reactions.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Department of Pharmacy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Ikuko Yano
- Department of Pharmacy, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|