1
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
2
|
Toffoli M, Chen X, Sedlazeck FJ, Lee CY, Mullin S, Higgins A, Koletsi S, Garcia-Segura ME, Sammler E, Scholz SW, Schapira AHV, Eberle MA, Proukakis C. Comprehensive short and long read sequencing analysis for the Gaucher and Parkinson's disease-associated GBA gene. Commun Biol 2022; 5:670. [PMID: 35794204 PMCID: PMC9259685 DOI: 10.1038/s42003-022-03610-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
GBA variants carriers are at increased risk of Parkinson's disease (PD) and Lewy body dementia (LBD). The presence of pseudogene GBAP1 predisposes to structural variants, complicating genetic analysis. We present two methods to resolve recombinant alleles and other variants in GBA: Gauchian, a tool for short-read, whole-genome sequencing data analysis, and Oxford Nanopore sequencing after PCR enrichment. Both methods were concordant for 42 samples carrying a range of recombinants and GBAP1-related mutations, and Gauchian outperformed the GATK Best Practices pipeline. Applying Gauchian to sequencing of over 10,000 individuals shows that copy number variants (CNVs) spanning GBAP1 are relatively common in Africans. CNV frequencies in PD and LBD are similar to controls. Gains may coexist with other mutations in patients, and a modifying effect cannot be excluded. Gauchian detects more GBA variants in LBD than PD, especially severe ones. These findings highlight the importance of accurate GBA analysis in these patients.
Collapse
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Xiao Chen
- Illumina Inc., San Diego, CA, USA
- Pacific Biosciences, 1305 O'Brien Dr., Menlo Park, CA, 94025, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
- Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Abigail Higgins
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Sofia Koletsi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Monica Emili Garcia-Segura
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Esther Sammler
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, 21287, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom
| | - Michael A Eberle
- Illumina Inc., San Diego, CA, USA.
- Pacific Biosciences, 1305 O'Brien Dr., Menlo Park, CA, 94025, USA.
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, NW3 2PF, United Kingdom.
| |
Collapse
|
3
|
Slaying (Yet Again) the Brain-Eating Zombie Called the "Isochore Theory": A Segmentation Algorithm Used to "Confirm" the Existence of Isochores Creates "Isochores" Where None Exist. Int J Mol Sci 2022; 23:ijms23126558. [PMID: 35743002 PMCID: PMC9224211 DOI: 10.3390/ijms23126558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
The isochore theory, which was proposed more than 40 years ago, depicts the mammalian genome as a mosaic of long, homogeneous regions that are characterized by their guanine and cytosine (GC) content. The human genome, for instance, was claimed to consist of five compositionally distinct isochore families. The isochore theory, in all its reincarnations, has been repeatedly falsified in the literature, yet isochore proponents have persistently resurrected it by either redefining isochores or by proposing alternative means of testing the theory. Here, I deal with the latest attempt to salvage this seemingly immortal zombie—a sequence segmentation method called isoSegmenter, which was claimed to “identify” isochores while at the same time disregarding the main characteristic attribute of isochores—compositional homogeneity. I used a series of controlled, randomly generated simulated sequences as a benchmark to study the performance of isoSegmenter. The main advantage of using simulated sequences is that, unlike real data, the exact start and stop point of any isochore or homogeneous compositional domain is known. Based on three key performance metrics—sensitivity, precision, and Jaccard similarity index—isoSegmenter was found to be vastly inferior to isoPlotter, a segmentation algorithm with no user input. Moreover, isoSegmenter identified isochores where none exist and failed to identify compositionally homogeneous sequences that were shorter than 100−200 kb. Will this zillionth refutation of “isochores” ensure a final and permanent entombment of the isochore theory? This author is not holding his breath.
Collapse
|
4
|
Method of Microglial DNA-RNA Purification from a Single Brain of an Adult Mouse. Methods Protoc 2021; 4:mps4040086. [PMID: 34940397 PMCID: PMC8704779 DOI: 10.3390/mps4040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Microglia, the resident brain immune effectors cells, show dynamic activation level changes for most neuropsychiatric diseases, reflecting their complex regulatory function and potential as a therapeutic target. Emerging single-cell molecular biology studies are used to investigate the genetic modification of individual cells to better understand complex gene regulatory pathways. Although multiple protocols for microglia isolation from adult mice are available, it is always challenging to get sufficient purified microglia from a single brain for simultaneous DNA and RNA extraction for subsequent downstream analysis. Moreover, for data comparison between treated and untreated groups, standardized cell isolation techniques are essential to decrease variability. Here, we present a combined method of microglia isolation from a single adult mouse brain, using a magnetic bead-based column separation technique, and a column-based extraction of purified DNA-RNA from the isolated microglia for downstream application. Our current method provides step-by-step instructions accompanied by visual explanations of important steps for isolating DNA-RNA simultaneously from a highly purified microglia population.
Collapse
|
5
|
Gentiluomo M, Giaccherini M, Gào X, Guo F, Stocker H, Schöttker B, Brenner H, Canzian F, Campa D. Genome-wide association study of mitochondrial copy number. Hum Mol Genet 2021; 31:1346-1355. [PMID: 34964454 DOI: 10.1093/hmg/ddab341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) variation has been associated with increased risk of several human diseases in epidemiological studies. The quantification of mtDNAcn performed with real-time PCR is currently considered the de facto standard among several techniques. However, the heterogeneity of the laboratory methods (DNA extraction, storage, processing) used could give rise to results that are difficult to compare and reproduce across different studies. Several lines of evidence suggest that mtDNAcn is influenced by nuclear and mitochondrial genetic variability, however this relation is largely unexplored. The aim of this work was to elucidate the genetic basis of mtDNAcn variation. We performed a genome-wide association study (GWAS) of mtDNAcn in 6836 subjects from the ESTHER prospective cohort, and included, as replication set, the summary statistics of a GWAS that used 295 150 participants from the UK Biobank. We observed two novel associations with mtDNAcn variation on chromosome 19 (rs117176661), and 12 (rs7136238) that reached statistical significance at the genome-wide level. A polygenic score that we called mitoscore including all known single nucleotide polymorphisms explained 1.11% of the variation of mtDNAcn (p = 5.93 × 10-7). In conclusion, we performed a GWAS on mtDNAcn, adding to the evidence of the genetic background of this trait.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| | - Matteo Giaccherini
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, 69120, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| |
Collapse
|
6
|
Klein HU, Trumpff C, Yang HS, Lee AJ, Picard M, Bennett DA, De Jager PL. Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer's disease brain. Mol Neurodegener 2021; 16:75. [PMID: 34742335 PMCID: PMC8572491 DOI: 10.1186/s13024-021-00495-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a feature of neurodegenerative diseases, including Alzheimer's disease (AD). Changes in the mitochondrial DNA copy number (mtDNAcn) and increased mitochondrial DNA mutation burden have both been associated with neurodegenerative diseases and cognitive decline. This study aims to systematically identify which common brain pathologies in the aged human brain are associated with mitochondrial recalibrations and to disentangle the relationship between these pathologies, mtDNAcn, mtDNA heteroplasmy, aging, neuronal loss, and cognitive function. METHODS Whole-genome sequencing data from n = 1361 human brain samples from 5 different regions were used to quantify mtDNAcn as well as heteroplasmic mtDNA point mutations and small indels. Brain samples were assessed for 10 common pathologies. Annual cognitive test results were used to assess cognitive function proximal to death. For a subset of samples, neuronal proportions were estimated from RNA-seq profiles, and mass spectrometry was used to quantify the mitochondrial protein content of the tissue. RESULTS mtDNAcn was 7-14% lower in AD relative to control participants. When accounting for all 10 common neuropathologies, only tau was significantly associated with lower mtDNAcn in the dorsolateral prefrontal cortex. In the posterior cingulate cortex, TDP-43 pathology demonstrated a distinct association with mtDNAcn. No changes were observed in the cerebellum, which is affected late by pathologies. Neither age nor gender was associated with mtDNAcn in the studied brain regions when adjusting for pathologies. Mitochondrial content and mtDNAcn independently explained variance in cognitive function unaccounted by pathologies, implicating complex mitochondrial recalibrations in cognitive decline. In contrast, mtDNA heteroplasmy levels increased by 1.5% per year of life in the cortical regions, but displayed no association with any of the pathologies or cognitive function. CONCLUSIONS We studied mtDNA quantity and quality in relation to mixed pathologies of aging and showed that tau and not amyloid-β is primarily associated with reduced mtDNAcn. In the posterior cingulate cortex, the association of TDP-43 with low mtDNAcn points to a vulnerability of this region in limbic-predominant age-related TDP-43 encephalopathy. While we found low mtDNAcn in brain regions affected by pathologies, the absence of associations with mtDNA heteroplasmy burden indicates that mtDNA point mutations and small indels are unlikely to be involved in the pathogenesis of late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Hyun-Sik Yang
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
- Merritt Center and Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
7
|
Kozhukhar N, Fant A, Alexeyev MF. Quantification of mtDNA content in cultured cells by direct droplet digital PCR. Mitochondrion 2021; 61:102-113. [PMID: 34606994 PMCID: PMC10405363 DOI: 10.1016/j.mito.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Although alterations in cellular mitochondrial DNA (mtDNA) content have been linked to various pathological conditions, the mechanisms that govern mtDNA copy number (mtCN) control remain poorly understood. Moreover, techniques for mtDNA quantification do not allow for direct comparisons of absolute mtCNs between labs. Here we report the development of a direct droplet digital PCR technique for the determination of mtCNs in whole-cell lysates. Using this technique, we demonstrate that cellular mtDNA content can fluctuate in culture by as much as 50% and provide evidence for both cell proliferation-coupled and uncoupled mtDNA replication.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
| | - Anthony Fant
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
8
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
9
|
Uhd J, Miotke L, Ji HP, Dunaeva M, Pruijn GJM, Jørgensen CD, Kristoffersen EL, Birkedal V, Yde CW, Nielsen FC, Hansen J, Astakhova K. Ultra-fast detection and quantification of nucleic acids by amplification-free fluorescence assay. Analyst 2021; 145:5836-5844. [PMID: 32648858 DOI: 10.1039/d0an00676a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two types of clinically important nucleic acid biomarkers, microRNA (miRNA) and circulating tumor DNA (ctDNA) were detected and quantified from human serum using an amplification-free fluorescence hybridization assay. Specifically, miRNAs hsa-miR-223-3p and hsa-miR-486-5p with relevance for rheumatoid arthritis and cancer related mutations BRAF and KRAS of ctDNA were directly measured. The required oligonucleotide probes for the assay were rationally designed and synthesized through a novel "clickable" approach which is time and cost-effective. With no need for isolating nucleic acid components from serum, the fluoresence-based assay took only 1 hour. Detection and absolute quantification of targets was successfully achieved despite their notoriously low abundance, with a precision down to individual nucleotides. Obtained miRNA and ctDNA amounts showed overall a good correlation with current techniques. With appropriate probes, our novel assay and signal boosting approach could become a useful tool for point-of-care measuring other low abundance nucleic acid biomarkers.
Collapse
Affiliation(s)
- Jesper Uhd
- Department of Chemistry, Technical University of Denmark, 207 Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Methods for simultaneous and quantitative isolation of mitochondrial DNA, nuclear DNA and RNA from mammalian cells. Biotechniques 2020; 69:436-442. [PMID: 33103926 DOI: 10.2144/btn-2020-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess two protocols for their capacities to simultaneously isolate RNA, mtDNA and ncDNA from mammalian cells. We compared the Invitrogen TRIzol-based method and Qiagen DNeasy columns, using the HepG2 cell line and human primary glioblastoma stem cells. Both methods allowed the isolation of all three types of nucleic acids and provided similar yields in mtDNA. However, the yield in ncDNA was more than tenfold higher on columns, as observed for both cell types. Conversely, the TRIzol method proved more reproducible and was the method of choice for isolating RNA from glioblastoma cells, as demonstrated for the housekeeping genes RPLP0 and RPS9.
Collapse
|
11
|
Leija-Salazar M, Pittman A, Mokretar K, Morris H, Schapira AH, Proukakis C. Investigation of Somatic Mutations in Human Brains Targeting Genes Associated With Parkinson's Disease. Front Neurol 2020; 11:570424. [PMID: 33193015 PMCID: PMC7642339 DOI: 10.3389/fneur.2020.570424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Somatic single nucleotide variant (SNV) mutations occur in neurons but their role in synucleinopathies is unknown. Aim: We aimed to identify disease-relevant low-level somatic SNVs in brains from sporadic patients with synucleinopathies and a monozygotic twin carrying LRRK2 G2019S, whose penetrance could be explained by somatic variation. Methods and Results: We included different brain regions from 26 Parkinson's disease (PD), one Incidental Lewy body, three multiple system atrophy cases, and 12 controls. The whole SNCA locus and exons of other genes associated with PD and neurodegeneration were deeply sequenced using molecular barcodes to improve accuracy. We selected 21 variants at 0.33-5% allele frequencies for validation using accurate methods for somatic variant detection. Conclusions: We could not detect disease-relevant somatic SNVs, however we cannot exclude their presence at earlier stages of degeneration. Our results support that coding somatic SNVs in neurodegeneration are rare, but other types of somatic variants may hold pathological consequences in synucleinopathies.
Collapse
Affiliation(s)
- Melissa Leija-Salazar
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Katya Mokretar
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Huw Morris
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Anthony H. Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
12
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
13
|
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53:214-223. [PMID: 32544465 DOI: 10.1016/j.mito.2020.06.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker of mitochondrial function and levels of mtDNA-CN have been reproducibly associated with overall mortality and a number of age-related diseases, including cardiovascular disease, chronic kidney disease, and cancer. Recent advancements in techniques for estimating mtDNA-CN, in particular the use of DNA microarrays and next-generation sequencing data, have led to the comprehensive assessment of mtDNA-CN across these and other diseases and traits. The importance of mtDNA-CN measures to disease and these advancing technologies suggest the potential for mtDNA-CN to be a useful biomarker in the clinic. While the exact mechanism(s) underlying the association of mtDNA-CN with disease remain to be elucidated, we review the existing literature which supports roles for inflammatory dynamics, immune function and alterations to cell signaling as consequences of variation in mtDNA-CN. We propose that future studies should focus on characterizing longitudinal, cell-type and cross-tissue profiles of mtDNA-CN as well as improving methods for measuring mtDNA-CN which will expand the potential for its use as a clinical biomarker.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
14
|
Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, Grove ML, Guallar E, Pankratz N, Taylor KD, Rotter JI, Boerwinkle E, Arking DE. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One 2020; 15:e0228166. [PMID: 32004343 PMCID: PMC6994099 DOI: 10.1371/journal.pone.0228166] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has been associated with several aging-related diseases. Although quantitative real-time PCR (qPCR) is the current gold standard method for measuring mtDNA-CN, mtDNA-CN can also be measured from genotyping microarray probe intensities and DNA sequencing read counts. To conduct a comprehensive examination on the performance of these methods, we use known mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus genotype, incident cardiovascular disease) to evaluate mtDNA-CN calculated from qPCR, two microarray platforms, as well as whole genome (WGS) and whole exome sequence (WES) data across 1,085 participants from the Atherosclerosis Risk in Communities (ARIC) study and 3,489 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). We observe mtDNA-CN derived from WGS data is significantly more associated with known correlates compared to all other methods (p < 0.001). Additionally, mtDNA-CN measured from WGS is on average more significantly associated with traits by 5.6 orders of magnitude and has effect size estimates 5.8 times more extreme than the current gold standard of qPCR. We further investigated the role of DNA extraction method on mtDNA-CN estimate reproducibility and found mtDNA-CN estimated from cell lysate is significantly less variable than traditional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and silica-based column selection (p = 2.82x10-7). In conclusion, we recommend the field moves towards more accurate methods for mtDNA-CN, as well as re-analyze trait associations as more WGS data becomes available from larger initiatives such as TOPMed.
Collapse
Affiliation(s)
- Ryan J. Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christina A. Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie Y. Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles E. Newcomb
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Sumpter
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Kent D. Taylor
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Jerome I. Rotter
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
15
|
Microarray expression studies on bone marrow of patients with Shwachman-Diamond syndrome in relation to deletion of the long arm of chromosome 20, other chromosome anomalies or normal karyotype. Mol Cytogenet 2020; 13:1. [PMID: 31908654 PMCID: PMC6941278 DOI: 10.1186/s13039-019-0466-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Clonal chromosome changes are often found in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS). The most frequent ones include an isochromosome of the long arm of chromosome 7, i (7)(q10), and an interstitial deletion of the long arm of chromosome 20, del (20)(q). These two imbalances are mechanisms of somatic genetic rescue. The literature offers few expression studies on SDS. Results We report the expression analysis of bone marrow (BM) cells of patients with SDS in relation to normal karyotype or to the presence of clonal chromosome anomalies: del (20)(q) (five cases), i (7)(q10) (one case), and other anomalies (two cases). The study was performed using the microarray technique considering the whole transcriptome (WT) and three gene subsets selected as relevant in BM functions. The expression patterns of nine healthy controls and SDS patients with or without chromosome anomalies in the bone marrow showed clear differences. Conclusions There is a significant difference between gene expression in the BM of SDS patients and healthy subjects, both at the WT level and in the selected gene sets. The deletion del (20)(q), with the EIF6 gene consistently lost, even in patients with the smallest losses of material, changes the transcription pattern: a low proportion of abnormal cells led to a pattern similar to SDS patients without acquired anomalies, whereas a high proportion yields a pattern similar to healthy subjects. Hence, the benign prognostic value of del (20)(q). The case of i (7)(q10) showed a transcription pattern similar to healthy subjects, paralleling the positive prognostic role of this anomaly as well.
Collapse
|
16
|
Perez-Rodriguez D, Kalyva M, Leija-Salazar M, Lashley T, Tarabichi M, Chelban V, Gentleman S, Schottlaender L, Franklin H, Vasmatzis G, Houlden H, Schapira AHV, Warner TT, Holton JL, Jaunmuktane Z, Proukakis C. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathol Commun 2019; 7:219. [PMID: 31870437 PMCID: PMC6929293 DOI: 10.1186/s40478-019-0873-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Melissa Leija-Salazar
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, Midland Road 1, London, NW1 1AT, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | | | - Lucia Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Hannah Franklin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - George Vasmatzis
- Center for Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Janice L Holton
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
17
|
Babarinde IA, Li Y, Hutchins AP. Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Comput Struct Biotechnol J 2019; 17:628-637. [PMID: 31193391 PMCID: PMC6526290 DOI: 10.1016/j.csbj.2019.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The measurement of gene expression has long provided significant insight into biological functions. The development of high-throughput short-read sequencing technology has revealed transcriptional complexity at an unprecedented scale, and informed almost all areas of biology. However, as researchers have sought to gather more insights from the data, these new technologies have also increased the computational analysis burden. In this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs. We also discuss the assembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary, RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.
Collapse
Affiliation(s)
| | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Lu, Shenzhen, China
| |
Collapse
|
18
|
Leija‐Salazar M, Sedlazeck FJ, Toffoli M, Mullin S, Mokretar K, Athanasopoulou M, Donald A, Sharma R, Hughes D, Schapira AH, Proukakis C. Evaluation of the detection of GBA missense mutations and other variants using the Oxford Nanopore MinION. Mol Genet Genomic Med 2019; 7:e564. [PMID: 30637984 PMCID: PMC6418358 DOI: 10.1002/mgg3.564] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mutations in GBA cause Gaucher disease when biallelic and are strong risk factors for Parkinson's disease when heterozygous. GBA analysis is complicated by the nearby pseudogene. We aimed to design and validate a method for sequencing GBA using long reads. METHODS We sequenced GBA on the Oxford Nanopore MinION as an 8.9 kb amplicon from 102 individuals, including patients with Parkinson's and Gaucher diseases. We used NanoOK for quality metrics, NGMLR to align data (after comparing with GraphMap), Nanopolish and Sniffles to call variants, and WhatsHap for phasing. RESULTS We detected all known missense mutations in these samples, including the common p.N409S (N370S) and p.L483P (L444P) in multiple samples, and nine rarer ones, as well as a splicing and a truncating mutation, and intronic SNPs. We demonstrated the ability to phase mutations, confirm compound heterozygosity, and assign haplotypes. We also detected two known risk variants in some Parkinson's patients. Rare false positives were easily identified and filtered, with the Nanopolish quality score adjusted for the number of reads a very robust discriminator. In two individuals carrying a recombinant allele, we were able to detect and fully define it in one carrier, where it included a 55-base pair deletion, but not in another one, suggesting a limitation of the PCR enrichment method. Missense mutations were detected at the correct zygosity, except for the case where the RecNciI one was missed. CONCLUSION The Oxford Nanopore MinION can detect missense mutations and an exonic deletion in this difficult gene, with the added advantages of phasing and intronic analysis. It can be used as an efficient research tool, but additional work is required to exclude all recombinants.
Collapse
Affiliation(s)
- Melissa Leija‐Salazar
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | | | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
- Institute of Translational and Stratified MedicinePlymouth University Peninsula School of MedicinePlymouthUK
| | - Katya Mokretar
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | - Maria Athanasopoulou
- Department of Molecular Neuroscience, Institute of NeurologyUniversity College LondonLondonUK
| | - Aimee Donald
- Department of PaediatricsRoyal Manchester Children’s HospitalManchesterUK
| | - Reena Sharma
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS TrustSalfordUK
| | - Derralynn Hughes
- Institute of Immunity and TransplantationLysosomal Storage Disorders Unit, Royal Free HospitalLondonUK
| | - Anthony H.V. Schapira
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
19
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Plasmid-normalized quantification of relative mitochondrial DNA copy number. Sci Rep 2018; 8:15347. [PMID: 30337569 PMCID: PMC6194030 DOI: 10.1038/s41598-018-33684-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Alterations of mitochondrial DNA (mtDNA) copy number have been associated with a wide variety of phenotypes and diseases. Unfortunately, the literature provides scarce methodical information about duplex targeting of nuclear and mtDNA that meets the quality criteria for qPCR. Therefore, we established a method for mtDNA copy number quantification using a quantitative PCR assay that allows for simultaneous targeting of a single copy nuclear gene (beta-2-microglobulin) and the t-RNALeu gene on the mtDNA. We include a plasmid containing both targets in order to normalize against differences in emission intensities of the fluorescent dyes Yakima Yellow and FAM. Applying the plasmid calibrator on an internal control reduced the intra-assay variability from 21% (uncorrected) to 7% (plasmid-corrected). Moreover, we noted that DNA samples isolated with different methods revealed different numbers of mtDNA copies, thus highlighting an important influence of the pre-analytical procedures. In summary, we developed a precise assay for mitochondrial copy number detection relative to nuclear DNA. Our method is applicable to comparative mitochondrial DNA copy number studies since the use of the dual insert plasmid allows correcting for the unequal emission intensities of the different fluorescent labels of the two targets.
Collapse
|
21
|
Mokretar K, Pease D, Taanman JW, Soenmez A, Ejaz A, Lashley T, Ling H, Gentleman S, Houlden H, Holton JL, Schapira AHV, Nacheva E, Proukakis C. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 2018; 141:2419-2431. [DOI: 10.1093/brain/awy157] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Katya Mokretar
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
- Department of Academic Haematology, University College London, UK
| | - Daniel Pease
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Jan-Willem Taanman
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Aynur Soenmez
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Ayesha Ejaz
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Helen Ling
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurodegenerative diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | | | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
22
|
Leija-Salazar M, Piette C, Proukakis C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 2018; 44:267-285. [PMID: 29369391 DOI: 10.1111/nan.12465] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022]
Abstract
Somatic mutations are postzygotic mutations which may lead to mosaicism, the presence of cells with genetic differences in an organism. Their role in cancer is well established, but detailed investigation in health and other diseases has only been recently possible. This has been empowered by the improvements of sequencing techniques, including single-cell sequencing, which can still be error-prone but is rapidly improving. Mosaicism appears relatively common in the human body, including the normal brain, probably arising in early development, but also potentially during ageing. In this review, we first discuss theoretical considerations and current evidence relevant to somatic mutations in the brain. We present a framework to explain how they may be integrated with current views on neurodegeneration, focusing mainly on sporadic late-onset neurodegenerative diseases (Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis). We review the relevant studies so far, with the first evidence emerging in Alzheimer's in particular. We also discuss the role of mosaicism in inherited neurodegenerative disorders, particularly somatic instability of tandem repeats. We summarize existing views and data to present a model whereby the time of origin and spatial distribution of relevant somatic mutations, combined with any additional risk factors, may partly determine the development and onset age of sporadic neurodegenerative diseases.
Collapse
Affiliation(s)
- M Leija-Salazar
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Piette
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Proukakis
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| |
Collapse
|