1
|
Raphael HE, Hassan GF, Osorio OA, Cohen LS, Payne MD, Katz-Kiriakos E, Tata I, Hicks J, Byers DE, Zhang B, Alexander-Brett J. Activator protein transcription factors coordinate human IL-33 expression from noncanonical promoters in chronic airway disease. JCI Insight 2024; 9:e174786. [PMID: 38456508 PMCID: PMC10972587 DOI: 10.1172/jci.insight.174786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.
Collapse
Affiliation(s)
- Heather E. Raphael
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Ghandi F. Hassan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Omar A. Osorio
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Lucy S. Cohen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Morgan D. Payne
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Ella Katz-Kiriakos
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Ishana Tata
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Jamie Hicks
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Derek E. Byers
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Bo Zhang
- Department of Developmental Biology, and
| | - Jen Alexander-Brett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Liang Y, Qu X, Shah NM, Wang T. Towards targeting transposable elements for cancer therapy. Nat Rev Cancer 2024; 24:123-140. [PMID: 38228901 DOI: 10.1038/s41568-023-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Transposable elements (TEs) represent almost half of the human genome. Historically deemed 'junk DNA', recent technological advancements have stimulated a wave of research into the functional impact of TEs on gene-regulatory networks in evolution and development, as well as in diseases including cancer. The genetic and epigenetic evolution of cancer involves the exploitation of TEs, whereby TEs contribute directly to cancer-specific gene activities. This Review provides a perspective on the role of TEs in cancer as being a 'double-edged sword', both promoting cancer evolution and representing a vulnerability that could be exploited in cancer therapy. We discuss how TEs affect transcriptome regulation and other cellular processes in cancer. We highlight the potential of TEs as therapeutic targets for cancer. We also summarize technical hurdles in the characterization of TEs with genomic assays. Last, we outline open questions and exciting future research avenues.
Collapse
Affiliation(s)
- Yonghao Liang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xuan Qu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nakul M Shah
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Lee B, Park J, Voshall A, Maury E, Kang Y, Kim YJ, Lee JY, Shim HR, Kim HJ, Lee JW, Jung MH, Kim SC, Chu HBK, Kim DW, Kim M, Choi EJ, Hwang OK, Lee HW, Ha K, Choi JK, Kim Y, Choi Y, Park WY, Lee EA. Pan-cancer analysis reveals multifaceted roles of retrotransposon-fusion RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562422. [PMID: 37905014 PMCID: PMC10614793 DOI: 10.1101/2023.10.16.562422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Transposon-derived transcripts are abundant in RNA sequences, yet their landscape and function, especially for fusion transcripts derived from unannotated or somatically acquired transposons, remains underexplored. Here, we developed a new bioinformatic tool to detect transposon-fusion transcripts in RNA-sequencing data and performed a pan-cancer analysis of 10,257 cancer samples across 34 cancer types as well as 3,088 normal tissue samples. We identified 52,277 cancer-specific fusions with ~30 events per cancer and hotspot loci within transposons vulnerable to fusion formation. Exonization of intronic transposons was the most prevalent genic fusions, while somatic L1 insertions constituted a small fraction of cancer-specific fusions. Source L1s and HERVs, but not Alus showed decreased DNA methylation in cancer upon fusion formation. Overall cancer-specific L1 fusions were enriched in tumor suppressors while Alu fusions were enriched in oncogenes, including recurrent Alu fusions in EZH2 predictive of patient survival. We also demonstrated that transposon-derived peptides triggered CD8+ T-cell activation to the extent comparable to EBV viruses. Our findings reveal distinct epigenetic and tumorigenic mechanisms underlying transposon fusions across different families and highlight transposons as novel therapeutic targets and the source of potent neoantigens.
Collapse
Affiliation(s)
- Boram Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Junseok Park
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Adam Voshall
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Bioinformatics and Integrative Genomics Program; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Yeeok Kang
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Yoen Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Young Lee
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Hye-Ran Shim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Hyo-Ju Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Jung-Woo Lee
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Min-Hyeok Jung
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Si-Cho Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Hoang Bao Khanh Chu
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Da-Won Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Minjeong Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Eun-Ji Choi
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Ok Kyung Hwang
- New Drug Development Center, KBiohealth, Cheongju-Si, Chungbuk, Republic of Korea
| | - Ho Won Lee
- New Drug Development Center, KBiohealth, Cheongju-Si, Chungbuk, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, KBiohealth, Cheongju-Si, Chungbuk, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Yongjoon Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Akimoto M, Susa T, Okudaira N, Koshikawa N, Hisaki H, Iizuka M, Okinaga H, Takenaga K, Okazaki T, Tamamori-Adachi M. Hypoxia induces downregulation of the tumor-suppressive sST2 in colorectal cancer cells via the HIF-nuclear IL-33-GATA3 pathway. Proc Natl Acad Sci U S A 2023; 120:e2218033120. [PMID: 37094129 PMCID: PMC10160999 DOI: 10.1073/pnas.2218033120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
As a decoy receptor, soluble ST2 (sST2) interferes with the function of the inflammatory cytokine interleukin (IL)-33. Decreased sST2 expression in colorectal cancer (CRC) cells promotes tumor growth via IL-33-mediated bioprocesses in the tumor microenvironment. In this study, we discovered that hypoxia reduced sST2 expression in CRC cells and explored the associated molecular mechanisms, including the expression of key regulators of ST2 gene transcription in hypoxic CRC cells. In addition, the effect of the recovery of sST2 expression in hypoxic tumor regions on malignant progression was investigated using mouse CRC cells engineered to express sST2 in response to hypoxia. Our results indicated that hypoxia-dependent increases in nuclear IL-33 interfered with the transactivation activity of GATA3 for ST2 gene transcription. Most importantly, hypoxia-responsive sST2 restoration in hypoxic tumor regions corrected the inflammatory microenvironment and suppressed tumor growth and lung metastasis. These results indicate that strategies targeting sST2 in hypoxic tumor regions could be effective for treating malignant CRC.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Noriyuki Okudaira
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Nobuko Koshikawa
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
- Medical Education Center, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Keizo Takenaga
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| |
Collapse
|
5
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
6
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Grillo G, Lupien M. Cancer-associated chromatin variants uncover the oncogenic role of transposable elements. Curr Opin Genet Dev 2022; 74:101911. [PMID: 35487182 DOI: 10.1016/j.gde.2022.101911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
The vast array of cell states found across human tissue arises from chromatin variants, which correspond to segments of the genome, known as DNA elements, adopting a different chromatin state over cell state transitions. Oncogenesis stems from alterations to the chromatin states over DNA elements that result in cancer-associated chromatin variants. Here, we review how cancer-associated chromatin variants call attention to repetitive DNA elements, and guide the functional characterization of transposable elements to decode their role in oncogenesis. We further discuss prevailing opportunities in the study of repetitive DNA elements to move towards the 'complete cancer genome' goal for precision medicine in oncology.
Collapse
Affiliation(s)
- Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Pinson ME, Court F, Masson A, Renaud Y, Fantini A, Bacoeur-Ouzillou O, Barriere M, Pereira B, Guichet PO, Chautard E, Karayan-Tapon L, Verrelle P, Arnaud P, Vaurs-Barrière C. L1 chimeric transcripts are expressed in healthy brain and their deregulation in glioma follows that of their host locus. Hum Mol Genet 2022; 31:2606-2622. [PMID: 35298627 PMCID: PMC9396940 DOI: 10.1093/hmg/ddac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5′ UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.
Collapse
Affiliation(s)
- Marie-Elisa Pinson
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Franck Court
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Aymeric Masson
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Allison Fantini
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | | | - Marie Barriere
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, Délégation à la Recherche Clinique et à l'Innovation, Clermont-Ferrand Hospital, Clermont-Ferrand 63003, France
| | | | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont-Ferrand 63011, France.,Pathology Department, Centre Jean PERRIN, Clermont-Ferrand 63011, France
| | - Lucie Karayan-Tapon
- Cancer Biology Department, CHU de Poitiers, Poitiers 86021, France.,INSERM, U1084, Poitiers 86021, France.,Université de Poitiers, Poitiers 86000, France
| | - Pierre Verrelle
- INSERM, U1196 CNRS UMR9187, Curie Institute, Orsay 91405, France.,Radiotherapy Department Curie Institute, Paris 75005, France.,Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
9
|
Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J 2022; 289:1160-1179. [PMID: 33471418 PMCID: PMC11577309 DOI: 10.1111/febs.15722] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at The George Washington University, Washington, DC, USA
| | - Noor Diab
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Buttler CA, Chuong EB. Emerging roles for endogenous retroviruses in immune epigenetic regulation. Immunol Rev 2022; 305:165-178. [PMID: 34816452 PMCID: PMC8766910 DOI: 10.1111/imr.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
In recent years, there has been significant progress toward understanding the transcriptional networks underlying mammalian immune responses, fueled by advances in regulatory genomic technologies. Epigenomic studies profiling immune cells have generated detailed genome-wide maps of regulatory elements that will be key to deciphering the regulatory networks underlying cellular immune responses and autoimmune disorders. Unbiased analyses of these genomic maps have uncovered endogenous retroviruses as an unexpected ally in the regulation of human immune systems. Despite their parasitic origins, studies are finding an increasing number of examples of retroviral sequences having been co-opted for beneficial immune function and regulation by the host cell. Here, we review how endogenous retroviruses have given rise to numerous regulatory elements that shape the epigenetic landscape of host immune responses. We will discuss the implications of these elements on the function, dysfunction, and evolution of innate immunity.
Collapse
|
11
|
Merkerova MD, Krejcik Z. Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 2021; 59:105. [PMID: 34779490 DOI: 10.3892/ijo.2021.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein‑coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P‑element‑induced WImpy testis‑interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high‑throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.
Collapse
Affiliation(s)
| | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, 128 20 Prague, Czech Republic
| |
Collapse
|
12
|
Nuclear IL-33 Plays an Important Role in IL-31‒Mediated Downregulation of FLG, Keratin 1, and Keratin 10 by Regulating Signal Transducer and Activator of Transcription 3 Activation in Human Keratinocytes. J Invest Dermatol 2021; 142:136-144.e3. [PMID: 34293350 DOI: 10.1016/j.jid.2021.05.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
IL-33, a chromatin-associated multifunctional cytokine, is implicated in the pathogenesis of atopic dermatitis (AD), an inflammatory skin disorder characterized by skin barrier dysfunction. IL-33 accumulates in the nuclei of epidermal keratinocytes (KCs) in AD lesions. However, it is unclear whether nuclear IL-33 directly contributes to the pathogenesis of AD. IL-31, a pruritogenic cytokine primarily produced by T helper type 2 cells, is elevated in AD lesions and promotes AD development by suppressing KC differentiation and inducing itching. In this study, we investigated the involvement of nuclear IL-33 in IL-31‒mediated suppression of KC differentiation. In monolayer cultures and living skin equivalent, IL-31 increased the expression of full-length IL-33 and the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in the nuclei of human KCs, which in turn downregulated the expression of differentiation markers. We found that IL-31 and IL-4/IL-13 use very similar mechanisms to inhibit KC differentiation: nuclear IL-33 combines with phosphorylated STAT3 and functions as a STAT3 transcription cofactor, promoting phosphorylated STAT3 binding to the FLG promoter to inhibit its transcription; moreover, the nuclear IL-33/phosphorylated STAT3 complex drives the downregulation of keratin 1 and keratin 10 by reducing the availability of the transcription factor RunX1. Therefore, nuclear IL-33 plays an important role in IL-31‒mediated differentiation suppression by regulating STAT3 activation in human KCs.
Collapse
|
13
|
Pisano MP, Grandi N, Tramontano E. High-Throughput Sequencing is a Crucial Tool to Investigate the Contribution of Human Endogenous Retroviruses (HERVs) to Human Biology and Development. Viruses 2020; 12:E633. [PMID: 32545287 PMCID: PMC7354619 DOI: 10.3390/v12060633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.
Collapse
Affiliation(s)
- Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Cagliari, Italy
| |
Collapse
|
14
|
Ishak CA, De Carvalho DD. Reactivation of Endogenous Retroelements in Cancer Development and Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Domesticated retroelements contribute extensively as regulatory elements within host gene networks. Upon germline integration, retroelement mobilization is restricted through epigenetic silencing, mutational degradation, and innate immune defenses described as the viral mimicry response. Recent discoveries reveal how early events in tumorigenesis reactivate retroelements to facilitate onco-exaptation, replication stress, retrotransposition, mitotic errors, and sterile inflammation, which collectively disrupt genome integrity. The characterization of altered epigenetic homeostasis at retroelements in cancer cells also reveals new epigenetic targets whose inactivation can bolster responses to cancer therapies. Recent discoveries reviewed here frame reactivated retroelements as both drivers of tumorigenesis and therapy responses, where their reactivation by emerging epigenetic therapies can potentiate immune checkpoint blockade, cancer vaccines, and other standard therapies.
Collapse
Affiliation(s)
- Charles A. Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
15
|
Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, Zhang D, Li D, Xing X, Kim S, O'Donnell D, Gordon JI, Wang T. Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet 2019; 51:611-617. [PMID: 30926969 PMCID: PMC6443099 DOI: 10.1038/s41588-019-0373-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/12/2019] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are an abundant and rich genetic resource of regulatory sequences1-3. Cryptic regulatory elements within TEs can be epigenetically reactivated in cancer to influence oncogenesis in a process termed onco-exaptation4. However, the prevalence and impact of TE onco-exaptation events across cancer types are poorly characterized. Here, we analyzed 7,769 tumors and 625 normal datasets from 15 cancer types, identifying 129 TE cryptic promoter-activation events involving 106 oncogenes across 3,864 tumors. Furthermore, we interrogated the AluJb-LIN28B candidate: the genetic deletion of the TE eliminated oncogene expression, while dynamic DNA methylation modulated promoter activity, illustrating the necessity and sufficiency of a TE for oncogene activation. Collectively, our results characterize the global profile of TE onco-exaptation and highlight this prevalent phenomenon as an important mechanism for promiscuous oncogene activation and ultimately tumorigenesis.
Collapse
Affiliation(s)
- Hyo Sik Jang
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Zea Z Dailey
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Paula M Godoy
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - David Zhang
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Sungsu Kim
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disease, Washington University School of Medicine, St Louis, MO, USA
| | - David O'Donnell
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey I Gordon
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
16
|
Chen X, Lu K, Timko NJ, Weir DM, Zhu Z, Qin C, Mann JD, Bai Q, Xiao H, Nicholl MB, Wakefield MR, Fang Y. IL-33 notably inhibits the growth of colon cancer cells. Oncol Lett 2018; 16:769-774. [PMID: 29963144 PMCID: PMC6019937 DOI: 10.3892/ol.2018.8728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-33 (IL-33), a damage-associated molecular pattern molecule, is a cytokine within the IL-1 interleukin family that binds to the plasma membrane receptor suppression of tumorigenicity 2 on numerous cell types. IL-33 has been extensively studied in its role in autoimmune diseases, host responses to pathogens and allergens, and has been associated with tumorigenic effects in cancer research. The present study was performed to investigate the effects of IL-33 on colon cancer cells, based off the previous data that have demonstrated an anti-tumor effect of IL-33 on pancreatic cancer cells. The effects of IL-33 on proliferation, cell survival and apoptosis on human HCT-116 colon cancer cells were examined using clonogenic survival assays, proliferation and caspase-3 activity kits, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and immunocytochemistry. It was determined that the HCT-116 cells demonstrated an notable decrease in optical density value upon incubation with IL-33, along with a decrease in the number of colonies, compared with the controls. It was further determined that the anti-proliferative effect of IL-33 on HCT-116 cells was associated with downregulation of the pro-proliferative molecules cyclin B, cyclin D and cyclin dependent kinase 2. An apoptosis-inducing effect of IL-33 on HCT-116 cells was associated with downregulation of the anti-apoptotic molecules Flice-like inhibitory protein and B-cell lymphoma 2. Taken together, the results indicated that IL-33 inhibits the growth of colon cancer by suppressing cellular proliferation, whilst simultaneously promoting apoptosis.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Surgery, Luohu Hospital, Shenzhen, Guangdong 518000, P.R. China.,Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA 50312, USA
| | - Kuanchang Lu
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA 50312, USA
| | - Noah J Timko
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Dylan M Weir
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Chenglu Qin
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jeffery D Mann
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA 50312, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA 50312, USA.,The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan 423000, P.R. China
| | - Michael B Nicholl
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA 50312, USA.,Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Abstract
Although immunotherapy has been at the forefront of cancer therapy for the last several years, better clinical responses are still desired. Interleukin-33 is perhaps one of the most overlooked antitumor cytokines. Its ability to promote type 1 immune responses, which control tumor growth in preclinical animal models is overshadowed by its association with type 2 immunity and poor prognosis in some human cancers. Accumulating evidence shows that IL-33 is a powerful new tool for restoring and enhancing the body's natural antitumor immunity cycle. Furthermore, the antitumor mechanisms of IL-33 are two-fold, as it can directly boost CD8+ T cell function and restore dendritic cell dysfunction in vivo. Mechanistic studies have identified a novel pathway induced by IL-33 and its receptor ST2 in which dendritic cells avoid dysfunction and retain cross-priming abilities in tumor-bearing conditions. Here, we also comment on IL-33 data in human cancers and explore the idea that endogenous IL-33 may not deserve its reputation for promoting tumor growth. In fact, tumors may hijack the IL-33/ST2 axis to avoid immune surveillance and escape antitumor immunity.
Collapse
Affiliation(s)
- Donye Dominguez
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|