1
|
Medvedeva A, Domakhina S, Vasnetsov C, Vasnetsov V, Kolomeisky A. Physical-Chemical Approach to Designing Drugs with Multiple Targets. J Phys Chem Lett 2024; 15:1828-1835. [PMID: 38330920 DOI: 10.1021/acs.jpclett.3c03624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Many people simultaneously exhibit multiple diseases, which complicates efficient medical treatments. For example, patients with cancer are frequently susceptible to infections. However, developing drugs that could simultaneously target several diseases is challenging. We present a novel theoretical method to assist in selecting compounds with multiple therapeutic targets. The idea is to find correlations between the physical and chemical properties of drug molecules and their abilities to work against multiple targets. As a first step, we investigated potential drugs against cancer and viral infections. Specifically, we investigated antimicrobial peptides (AMPs), which are short positively charged biomolecules produced by living systems as a part of their immune defense. AMPs show anticancer and antiviral activity. We use chemoinformatics and correlation analysis as a part of the machine-learning method to identify the specific properties that distinguish AMPs with dual anticancer and antiviral activities. Physical-chemical arguments to explain these observations are presented.
Collapse
Affiliation(s)
- Angela Medvedeva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Sofya Domakhina
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Catherine Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Victor Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Solid state synthesis of bispyridyl-ferrocene conjugates with unusual site selective 1,4-Michael addition, as potential inhibitor and electrochemical probe for fibrillation in amyloidogenic protein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Rohmer M, Freudenberg J, Binder WH. Secondary Structures in Synthetic Poly(Amino Acids): Homo- and Copolymers of Poly(Aib), Poly(Glu), and Poly(Asp). Macromol Biosci 2022; 23:e2200344. [PMID: 36377468 DOI: 10.1002/mabi.202200344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The secondary structure of poly(amino acids) is an excellent tool for controlling and understanding the functionality and properties of proteins. In this perspective article the secondary structures of the homopolymers of oligo- and poly-glutamic acid (Glu), aspartic acid (Asp), and α-aminoisobutyric acid (Aib) are discussed. Information on external and internal factors, such as the nature of side groups, interactions with solvents and interactions between chains is reviewed. A special focus is directed on the folding in hybrid-polymers consisting of oligo(amino acids) and synthetic polymers. Being part of the SFB TRR 102 "Polymers under multiple constraints: restricted and controlled molecular order and mobility" this overview is embedded into the cross section of protein fibrillation and supramolecular polymers. As polymer- and amino acid folding is an important step for the utilization and design of future biomolecules these principles guide to a deeper understanding of amyloid fibrillation.
Collapse
Affiliation(s)
- Matthias Rohmer
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Jan Freudenberg
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | | |
Collapse
|
4
|
Agrawal S, Govind Kumar V, Gundampati RK, Moradi M, Kumar TKS. Characterization of the structural forces governing the reversibility of the thermal unfolding of the human acidic fibroblast growth factor. Sci Rep 2021; 11:15579. [PMID: 34341408 PMCID: PMC8329156 DOI: 10.1038/s41598-021-95050-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Human acidic fibroblast growth factor (hFGF1) is an all beta-sheet protein that is involved in the regulation of key cellular processes including cell proliferation and wound healing. hFGF1 is known to aggregate when subjected to thermal unfolding. In this study, we investigate the equilibrium unfolding of hFGF1 using a wide array of biophysical and biochemical techniques. Systematic analyses of the thermal and chemical denaturation data on hFGF1 variants (Q54P, K126N, R136E, K126N/R136E, Q54P/K126N, Q54P/R136E, and Q54P/K126N/R136E) indicate that nullification of charges in the heparin-binding pocket can significantly increase the stability of wtFGF1. Triple variant (Q54P/K126N/R136E) was found to be the most stable of all the hFGF1 variants studied. With the exception of triple variant, thermal unfolding of wtFGF1 and the other variants is irreversible. Thermally unfolded triple variant refolds completely to its biologically native conformation. Microsecond-level molecular dynamic simulations reveal that a network of hydrogen bonds and salt bridges linked to Q54P, K126N, and R136E mutations, are responsible for the high stability and reversibility of thermal unfolding of the triple variant. In our opinion, the findings of the study provide valuable clues for the rational design of a stable hFGF1 variant that exhibits potent wound healing properties.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
5
|
Bioactive Phytocompounds: Anti-amyloidogenic Effects Against Hen Egg-White Lysozyme Aggregation. Protein J 2021; 40:78-86. [PMID: 33392981 DOI: 10.1007/s10930-020-09946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Amyloidosis is the process of fibril formation responsible for causing several diseases in the human being that involve protein aggregation such as Alzheimer's, Parkinson's, Huntington's disease, and type II diabetes. Natural phytocompounds such as curcumin shown promising anti-amyloidogenic activity. In the present study, selective phytocompounds such as piperine, cinnamaldehyde, eugenol, and cuminaldehyde present in Piper nigrum L, Cinnamomum zeylanicum Blume, Eugenia caryophyllus Thumb, and Cuminum cyminum L, respectively were analyzed for anti-amyloidogenic activity using hen egg white-lysozyme (HEWL) as a model system. Out of the selected phytocompounds, piperine showed the most significant anti-amyloidogenic activity, as evident from in vitro assays that were validated by in silico molecular docking study. Piperine showed 64.7 ± 3.74% inhibition of amyloid formation at 50 μM concentration, as observed by Thioflavin T assay. Subsequently, the anti-amyloidogenic activity of piperine was further validated by congo red, intrinsic fluorescence assay, and transmission electron microscopy analysis. The in silico molecular binding interaction showed piperine with the highest docking score and glide energy. Piperine was found to be interacting with amyloidogenic region residues and Trp62, the most important residue involved in the amyloidogenesis process. In conclusion, piperine can be used as a positive lead for a potential therapeutic role in targeting diseases involved amyloidogenesis.
Collapse
|
6
|
Chatterjee S, Salimi A, Lee JY. Molecular mechanism of amyloidogenicity and neurotoxicity of a pro-aggregated tau mutant in the presence of histidine tautomerism via replica-exchange simulation. Phys Chem Chem Phys 2021; 23:10475-10486. [DOI: 10.1039/d1cp00105a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Considering ΔK280 tau mutation, δε isomer with highest sheet content may accelerate aggregation; generating small compounds to inhibit this would help tp prevent tauopathies.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - Jin Yong Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Korea
| |
Collapse
|
7
|
Ghosh R, Raveendranath R, Kishore N. Unraveling diverse action of triton X-100 and methimazole on lysozyme fibrillation/aggregation: Physicochemical insights. Int J Biol Macromol 2020; 167:736-745. [PMID: 33278448 DOI: 10.1016/j.ijbiomac.2020.11.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 01/18/2023]
Abstract
Identification of functionalities responsible for prevention of fibrillation in proteins is important to design effective drugs in addressing neurodegenerative diseases. We have used nonionic surfactant triton X-100 (TX-100) and antithyroid drug methimazole (MMI) to understand mechanistic aspects of action of these molecules having different functionalities on hen egg-white lysozyme at different stages of fibrillation. After establishing the nucleation, elongation and maturation stages of fibrillation of protein at 57 °C, energetics of interactions with these molecules have been determined by using isothermal titration calorimetry. Differential scanning calorimetry has permitted assessment of thermal stability of the protein at these stages, with or without these molecular entities. The enthalpies of interaction of TX-100 and MMI with protein fibrils suggest importance of hydrogen bonding and polar interactions in their effectiveness towards prevention of fibrils. TX-100, in spite of several polar centres, is unable to prevent fibrillation, rather it promotes. MMI is able to establish polar interactions with interacting strands of the protein and disintegrate fibrils. A rigorous comparison with inhibitors reported in literature highlights importance -OH and >CO functionalities in fibrillation prevention. Even though MMI has hydrogen bonding centres, its efficiency as inhibitor falls after the inhibited lysozyme fibrils further interact and form amorphous aggregates.
Collapse
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Revathy Raveendranath
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
8
|
Terry C. Insights from nature: A review of natural compounds that target protein misfolding in vivo. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
Ghosh R, Kishore N. Physicochemical Insights into the Role of Drug Functionality in Fibrillation Inhibition of Bovine Serum Albumin. J Phys Chem B 2020; 124:8989-9008. [DOI: 10.1021/acs.jpcb.0c06167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
10
|
Scala R, Di Matteo A, Coluccia A, Lo Sciuto A, Federici L, Travaglini-Allocatelli C, Visca P, Silvestri R, Imperi F. Mutational analysis of the essential lipopolysaccharide-transport protein LptH of Pseudomonas aeruginosa to uncover critical oligomerization sites. Sci Rep 2020; 10:11276. [PMID: 32647254 PMCID: PMC7347655 DOI: 10.1038/s41598-020-68054-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Lipopolysaccharide (LPS) is a critical component of the outer membrane (OM) of many Gram-negative bacteria. LPS is translocated to the OM by the LPS transport (Lpt) system. In the human pathogen Pseudomonas aeruginosa, the periplasmic Lpt component, LptH, is essential for LPS transport, planktonic and biofilm growth, OM stability and infectivity. LptH has been proposed to oligomerize and form a protein bridge that accommodates LPS during transport. Based on the known LptH crystal structure, here we predicted by in silico modeling five different sites likely involved in LptH oligomerization. The relevance of these sites for LptH activity was verified through plasmid-mediated expression of site-specific mutant proteins in a P. aeruginosa lptH conditional mutant. Complementation and protein expression analyses provided evidence that all mutated sites are important for LptH activity in vivo. It was observed that the lptH conditional mutant overcomes the lethality of nonfunctional lptH variants through RecA-mediated homologous recombination between the wild-type lptH gene in the genome and mutated copies in the plasmid. Finally, biochemical assays on purified recombinant proteins showed that some LptH variants are indeed specifically impaired in oligomerization, while others appear to have defects in protein folding and/or stability.
Collapse
Affiliation(s)
- Romina Scala
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Lo Sciuto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Science and C.A.S.T. Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
11
|
Banach M, Fabian P, Stapor K, Konieczny L, Roterman I. Structure of the Hydrophobic Core Determines the 3D Protein Structure-Verification by Single Mutation Proteins. Biomolecules 2020; 10:E767. [PMID: 32423068 PMCID: PMC7281683 DOI: 10.3390/biom10050767] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Four de novo proteins differing in single mutation positions, with a chain length of 56 amino acids, represent diverse 3D structures: monomeric 3α and 4β + α folds. The reason for this diversity is seen in the different structure of the hydrophobic core as a result of synergy leading to the generation of a system in which the polypeptide chain as a whole participates. On the basis of the fuzzy oil drop model, where the structure of the hydrophobic core is expressed by means of the hydrophobic distribution function in the form of a 3D Gaussian distribution, it has been shown that the composition of the hydrophobic core in these two structural forms is different. In addition, the use of a model to determine the structure of the early intermediate in the folding process allows to indicate differences in the polypeptide chain geometry, which, combined with the construction of a common hydrophobic nucleus as an effect of specific synergy, may indicate the reason for the diversity of the folding process of the polypeptide chain. The results indicate the need to take into account the presence of an external force field originating from the water environment and that its active impact on the formation of a hydrophobic core whose participation in the stabilization of the tertiary structure is fundamental.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Lazarza 16, 31-533 Krakow, Poland;
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (P.F.); (K.S.)
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (P.F.); (K.S.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Krakow, Poland;
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Lazarza 16, 31-533 Krakow, Poland;
| |
Collapse
|
12
|
Abstract
A huge number of proteins that occur in the body have to be folded into a specific shape in order to become functional. Proteins are made up of chains of amino acids and the folding process is exquisitely complex. When this folding process is inhibited, the respective protein is referred to as being misfolded and nonfunctional. So the hypothesis that follows is in regard to the diseases that are caused by the misfolding of vital proteins and their reported relationship with thiamin metabolism. These diseases are termed proteopathies and there are at least 50 different conditions in which the mechanism is importantly related to a misfolded protein. In the brain, thiamin deficiency causes a cascade of events involving mild impairment of oxidative metabolism, neuroinflammation and neurodegeneration, including the pathology of Alzheimer's disease, Parkinson's and Huntington's diseases, all of which are examples of proteopathies. Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform (PrPSc). The physiological form (PrP C) is a cell surface glycoprotein expressed mainly in the central nervous system. Despite numerous efforts to elucidate its role, the exact biological function remains unknown. Prion-induced diseases, due to the conformational change in the protein, are a global health problem, with lack of effective therapy and 100% mortality. Thiamin and its derivatives bind the prion protein and intermolecular actions have been noted between thiamin and other thiamin-binding proteins, although the exact importance of this is conjectural.
Collapse
Affiliation(s)
- Derrick Lonsdale
- Cleveland Clinic, 28575 Westlake Village Dr., Westlake, OH 44145, United States.
| |
Collapse
|
13
|
Cieplak AS. Tau Inclusions in Alzheimer's, Chronic Traumatic Encephalopathy and Pick's Disease. A Speculation on How Differences in Backbone Polarization Underlie Divergent Pathways of Tau Aggregation. Front Neurosci 2019; 13:488. [PMID: 31156372 PMCID: PMC6530265 DOI: 10.3389/fnins.2019.00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Tau-related dementias appear to involve specific to each disease aggregation pathways and morphologies of filamentous tau assemblies. To understand etiology of these differences, here we elucidate molecular mechanism of formation of tau PHFs based on the PMO theory of misfolding and aggregation of pleiomorphic proteins associated with neurodegenerative diseases. In this model, fibrillization of tau is initiated by the coupled binding and folding of the MTB domains that yields antiparallel homodimers, in analogy to folding of split inteins. The free energy of binding is minimized when the antiparallel alignment brings about backbone-backbone H-bonding between the MTBD segments of similar "strand" propensities. To assess these propensities, a function of the NMR shielding tensors of the Cα atoms is introduced as the folding potential function FP i ; the Cα tensors are obtained by the quantum mechanical modeling of protein secondary structure (GIAO//B3LYP/D95**). The calculated FP i plots show that the "strand" propensities of the MBTD segments, and hence the homodimer's register, can be affected by the relatively small changes in the environment's pH, as a result of protonation of MBTD's conserved histidines. The assembly of the antiparallel tau dimers into granular aggregates and their subsequent conversion into the parallel cross-β structure of paired helical filaments is expected to follow the same path as the previously described fibrillization of Aβ. Consequently, the core structure of the nascent tau fibril is determined by the register of the tau homodimer. This model accounts for the reported differences in (i) fibril-core structure of in vivo and in vitro filaments, (ii) cross-seeding of isoforms, (iii) effects of reducing/non-reducing conditions, (iv) effects of PHF6 mutations, and (v) homologs' aggregation properties. The proposed model also suggests that in contrast to Alzheimer's and chronic traumatic encephalopathy disease, the assembly of tau prions in Pick's disease would be facilitated by a moderate drop in pH that accompanies e.g., transit in the endosomal system, inflammation response or an ischemic injury.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Brandeis University, Waltham, MA, United States
| |
Collapse
|
14
|
Arendash G, Cao C, Abulaban H, Baranowski R, Wisniewski G, Becerra L, Andel R, Lin X, Zhang X, Wittwer D, Moulton J, Arrington J, Smith A. A Clinical Trial of Transcranial Electromagnetic Treatment in Alzheimer's Disease: Cognitive Enhancement and Associated Changes in Cerebrospinal Fluid, Blood, and Brain Imaging. J Alzheimers Dis 2019; 71:57-82. [PMID: 31403948 PMCID: PMC6839500 DOI: 10.3233/jad-190367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small aggregates (oligomers) of the toxic proteins amyloid-β (Aβ) and phospho-tau (p-tau) are essential contributors to Alzheimer's disease (AD). In mouse models for AD or human AD brain extracts, Transcranial Electromagnetic Treatment (TEMT) disaggregates both Aβ and p-tau oligomers, and induces brain mitochondrial enhancement. These apparent "disease-modifying" actions of TEMT both prevent and reverse memory impairment in AD transgenic mice. OBJECTIVE To evaluate the safety and initial clinical efficacy of TEMT against AD, a comprehensive open-label clinical trial was performed. METHODS Eight mild/moderate AD patients were treated with TEMT in-home by their caregivers for 2 months utilizing a unique head device. TEMT was given for two 1-hour periods each day, with subjects primarily evaluated at baseline, end-of-treatment, and 2 weeks following treatment completion. RESULTS No deleterious behavioral effects, discomfort, or physiologic changes resulted from 2 months of TEMT, as well as no evidence of tumor or microhemorrhage induction. TEMT induced clinically important and statistically significant improvements in ADAS-cog, as well as in the Rey AVLT. TEMT also produced increases in cerebrospinal fluid (CSF) levels of soluble Aβ1-40 and Aβ1-42, cognition-related changes in CSF oligomeric Aβ, a decreased CSF p-tau/Aβ1-42 ratio, and reduced levels of oligomeric Aβ in plasma. Pre- versus post-treatment FDG-PET brain scans revealed stable cerebral glucose utilization, with several subjects exhibiting enhanced glucose utilization. Evaluation of diffusion tensor imaging (fractional anisotropy) scans in individual subjects provided support for TEMT-induced increases in functional connectivity within the cognitively-important cingulate cortex/cingulum. CONCLUSION TEMT administration to AD subjects appears to be safe, while providing cognitive enhancement, changes to CSF/blood AD markers, and evidence of stable/enhanced brain connectivity.
Collapse
Affiliation(s)
| | - Chuanhai Cao
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Haitham Abulaban
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| | | | | | | | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Department of Neurology, 2nd Faculty of Medicine, Charles University/Motol University Hospital, Prague, Czech Republic
| | - Xiaoyang Lin
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xiaolin Zhang
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | | | | | - Amanda Smith
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|