1
|
Sayari M, Dolatabadian A, El-Shetehy M, Daayf F. Genomic insights into Verticillium: a review of progress in the genomics era. Front Microbiol 2024; 15:1463779. [PMID: 39464398 PMCID: PMC11502406 DOI: 10.3389/fmicb.2024.1463779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Genomics has emerged as a great tool in enhancing our understanding of the biology of Verticillium species and their interactions with the host plants. Through different genomic approaches, researchers have gained insights into genes, pathways and virulence factors that play crucial roles in both Verticillium pathogenesis and the defense responses of their host organisms. This review emphasizes the significance of genomics in uncovering the mechanisms that underlie pathogenicity, virulence, and host resistance in Verticillium fungi. Our goal is to summarize recent discoveries in Verticillium research highlighting progress made in comprehending the biology and interactions of Verticillium fungi. The integration of genomics into Verticillium studies has the potential to open avenues for developing strategies to control diseases and produce crop varieties resistant to verticillium, thereby offering sustainable solutions for enhancing agricultural productivity.
Collapse
Affiliation(s)
- M. Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A. Dolatabadian
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - M. El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - F. Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Xiong X, Sun C, Chen B, Sun J, Fei C, Xue F. Transcriptomic datasets of Verticillium wilt resistant and non-resistant Gossypium barbadense varieties during pathogen inoculation. Sci Data 2024; 11:11. [PMID: 38167492 PMCID: PMC10762110 DOI: 10.1038/s41597-023-02852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Cotton is a significant cash crop and the primary source of natural fiber globally. Among the numerous diseases encountered in cotton production, Verticillium wilt is one of the most serious, caused by the pathogen Verticillium dahliae (V. dahliae). Unfortunately, there are no effective targeted methods to combat this disease. Genomic resources for Verticillium wilt resistance primarily exist in Gossypium barbadense (G. barbadense). Regrettably, there have been limited transcriptomic comparisons between V. dahliae-resistant and -susceptible varieties of G. barbadense due to the scarcity of susceptible resources. In this study, we conducted a transcriptome analysis on both V. dahliae-resistant and -susceptible varieties of G. barbadense at the 0, 12, 24 and 48 hours after V. dahliae inoculation. This comparative transcriptome analysis yielded high-quality data and offered new insights into the molecular mechanisms underlying cotton's resistance against this destructive pathogen.
Collapse
Affiliation(s)
- Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cong Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Bin Chen
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, China
| | - Cong Fei
- Department of Life Sciences, Yuncheng University, Yuncheng, 044000, China.
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
3
|
Tie Z, Wang P, Chen W, Tang B, Yu Y, Liu Z, Zhao S, Khan FH, Zhang X, Xi H. Different responses of the rhizosphere microbiome to Verticillium dahliae infection in two cotton cultivars. Front Microbiol 2023; 14:1229454. [PMID: 37637103 PMCID: PMC10450913 DOI: 10.3389/fmicb.2023.1229454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Verticillium wilt is a disastrous disease caused by Verticillium dahliae that severely damages the production of cotton in China. Even under homogeneous conditions, the same cotton cultivar facing V. dahliae tends to either stay healthy or become seriously ill and die. This binary outcome may be related to the interactions between microbiome assembly and plant health. Understanding how the rhizosphere microbiome responds to V. dahliae infection is vital to controlling Verticillium wilt through the manipulation of the microbiome. In this study, we evaluated the healthy and diseased rhizosphere microbiome of two upland cotton cultivars that are resistant to V. dahliae, Zhong 2 (resistant) and Xin 36 (susceptible), using 16S rRNA and ITS high-throughput sequencing. The results showed that the healthy rhizosphere of both resistant cultivar and susceptible cultivar had more unique bacterial ASVs than the diseased rhizosphere, whereas fewer unique fungal ASVs were found in the healthy rhizosphere of resistant cultivar. There were no significant differences in alpha diversity and beta diversity between the resistant cultivar and susceptible cultivar. In both resistant cultivar and susceptible cultivar, bacterial genera such as Pseudomonas and Acidobacteria bacterium LP6, and fungal genera such as Cephalotrichum and Mortierella were both highly enriched in the diseased rhizosphere, and Pseudomonas abundance in diseased rhizospheres was significantly higher than that in the healthy rhizosphere regardless of the cultivar type. However, cultivar and V. dahliae infection can cause composition changes in the rhizosphere bacterial and fungal communities, especially in the relative abundances of core microbiome members, which varied significantly, with different responses in the two cotton cultivars. Analysis of co-occurrence networks showed that resistant cultivar has a more complex network relationship than susceptible cultivar in the bacterial communities, and V. dahliae has a significant impact on the bacterial community structure. These findings will further broaden the understanding of plant-rhizosphere microbiome interactions and provide an integrative perspective on the cotton rhizosphere microbiome, which is beneficial to cotton health and production.
Collapse
Affiliation(s)
- Zhanjiang Tie
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Peng Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Weijian Chen
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Binghui Tang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, Xinjiang, China
| | - Yu Yu
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Zheng Liu
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Sifeng Zhao
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Faisal Hayat Khan
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - XueKun Zhang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Xi
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
5
|
Zhao J, Sun Y, Li X, Li Y. CYSTEINE-RICH RECEPTOR-LIKE KINASE5 (CRK5) and CRK22 regulate the response to Verticillium dahliae toxins. PLANT PHYSIOLOGY 2022; 190:714-731. [PMID: 35674361 PMCID: PMC9434262 DOI: 10.1093/plphys/kiac277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 05/13/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) play critical roles in responses to biotic and abiotic stresses. However, the molecular mechanisms of CRKs in plant defense responses remain unknown. Here, we demonstrated that two CRKs, CRK5 and CRK22, are involved in regulating defense responses to Verticillium dahliae toxins (Vd-toxins) in Arabidopsis (Arabidopsis thaliana). Biochemical and genetic analyses showed that CRK5 and CRK22 may act upstream of MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 to regulate the salicylic acid (SA)-signaling pathway in response to Vd-toxins. In addition, MPK3 and MPK6 interact with the transcription factor WRKY70 to modulate defense responses to Vd-toxins. WRKY70 directly binds the promoter domains of the SA-signaling-related transcription factor genes TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA2) and TGA6 to regulate their expression in response to Vd-toxins. Thus, our study reveals a mechanism by which CRK5 and CRK22 regulate SA signaling through the MPK3/6-WRKY70-TGA2/6 pathway in response to Vd-toxins.
Collapse
Affiliation(s)
- Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyue Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
6
|
Duan Y, Chen Q, Chen Q, Zheng K, Cai Y, Long Y, Zhao J, Guo Y, Sun F, Qu Y. Analysis of transcriptome data and quantitative trait loci enables the identification of candidate genes responsible for fiber strength in Gossypium barbadense. G3 GENES|GENOMES|GENETICS 2022; 12:6650278. [PMID: 35881688 PMCID: PMC9434320 DOI: 10.1093/g3journal/jkac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
Gossypium barbadense possesses a superior fiber quality because of its fiber length and strength. An in-depth analysis of the underlying genetic mechanism could aid in filling the gap in research regarding fiber strength and could provide helpful information for Gossypium barbadense breeding. Three quantitative trait loci related to fiber strength were identified from a Gossypium barbadense recombinant inbred line (PimaS-7 × 5917) for further analysis. RNA sequencing was performed in the fiber tissues of PimaS-7 × 5917 0–35 days postanthesis. Four specific modules closely related to the secondary wall-thickening stage were obtained using the weighted gene coexpression network analysis. In total, 55 genes were identified as differentially expressed from 4 specific modules. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis, and Gbar_D11G032910, Gbar_D08G020540, Gbar_D08G013370, Gbar_D11G033670, and Gbar_D11G029020 were found to regulate fiber strength by playing a role in the composition of structural constituents of cytoskeleton and microtubules during fiber development. Quantitative real-time PCR results confirmed the accuracy of the transcriptome data. This study provides a quick strategy for exploring candidate genes and provides new insights for improving fiber strength in cotton.
Collapse
Affiliation(s)
- Yajie Duan
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yilei Long
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Jieyin Zhao
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yaping Guo
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Fenglei Sun
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| |
Collapse
|
7
|
Dynamic Expression, Differential Regulation and Functional Diversity of the CNGC Family Genes in Cotton. Int J Mol Sci 2022; 23:ijms23042041. [PMID: 35216157 PMCID: PMC8878070 DOI: 10.3390/ijms23042041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein–protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.
Collapse
|
8
|
Zhang G, Zhao Z, Ma P, Qu Y, Sun G, Chen Q. Integrative transcriptomic and gene co-expression network analysis of host responses upon Verticillium dahliae infection in Gossypium hirsutum. Sci Rep 2021; 11:20586. [PMID: 34663884 PMCID: PMC8523704 DOI: 10.1038/s41598-021-99063-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Worldwide, Verticillium wilt is among the major harmful diseases in cotton production, causing substantial reduction in yields. While this disease has been extensively researched at the molecular level of the pathogen, the molecular basis of V. dahliae host response association is yet to be thoroughly investigated. In this study, RNA-seq analysis was carried out on V. dahliae infected two Gossypium hirsutum L. cultivars, Xinluzao-36 (susceptible) and Zhongzhimian-2 (disease resistant) for 0 h, 24 h, 72 h and 120 h time intervals. Statistical analysis revealed that V. dahliae infection elicited differentially expressed gene responses in the two cotton varieties, but more intensely in the susceptible cultivar than in the resistant cultivars. Data analysis revealed 4241 differentially expressed genes (DEGs) in the LT variety across the three treatment timepoints whereas 7657 in differentially expressed genes (DEGs) in the Vd592 variety across the three treatment timepoints. Six genes were randomly selected for qPCR validation of the RNA-Seq data. Numerous genes encompassed in disease resistance and defense mechanisms were identified. Further, RNA-Seq dataset was utilized in construction of the weighted gene co-expression network and 11 hub genes were identified, that encode for different proteins associated with lignin and immune response, Auxin response factor, cell wall and vascular development, microtubule, Ascorbate transporter, Serine/threonine kinase and Immunity and drought were identified. This significant research will aid in advancing crucial knowledge on virus-host interactions and identify key genes intricate in G. hirsutum L. resistance to V. dahliae infection.
Collapse
Affiliation(s)
- Guoli Zhang
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.,Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Zengqiang Zhao
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Panpan Ma
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Guoqing Sun
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
9
|
Jiang X, Fan L, Li P, Zou X, Zhang Z, Fan S, Gong J, Yuan Y, Shang H. Co-expression network and comparative transcriptome analysis for fiber initiation and elongation reveal genetic differences in two lines from upland cotton CCRI70 RIL population. PeerJ 2021; 9:e11812. [PMID: 34327061 PMCID: PMC8308610 DOI: 10.7717/peerj.11812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Upland cotton is the most widely planted for natural fiber around the world, and either lint percentage (LP) or fiber length (FL) is the crucial component tremendously affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL) population presenting different phenotypes in LP and FL traits were chosen to conduct RNA sequencing on ovule and fiber samples, aiming at exploring the differences of molecular and genetic mechanisms during cotton fiber initiation and elongation stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated differentially expressed genes (DGEs) in L2 were obtained at -3, 0, 5 and 10 days post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated using Short Time-series Expression Miner (STEM) analysis; seven modules and hub genes were identified using weighted gene co-expression network analysis. The DEGs were mainly enriched into energetic metabolism and accumulating as well as auxin signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub genes were identified as 14-3-3ω , TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc., where the DEGs and hub genes revealed the genetic and molecular mechanisms and differences during cotton fiber development.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Kamireddy K, Sonbarse PP, Mishra SK, Agrawal L, Chauhan PS, Lata C, Parvatam G. Proteomic approach to identify the differentially abundant proteins during flavour development in tuberous roots of Decalepis hamiltonii Wight & Arn. 3 Biotech 2021; 11:173. [PMID: 33927964 DOI: 10.1007/s13205-021-02714-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
2-Hydroxy-4-Methoxy Benzaldehyde (2H4MB) is a structural isomer of vanillin produced in the tuberous roots of D. hamiltonii. Both vanillin and 2H4MB share the common phenylpropanoid pathway for their synthesis. Unlike vanillin, in which the biosynthetic pathway was well elucidated in V. planifolia, the 2H4MB biosynthetic pathway is not known in any of its plant sources. To find the key enzymes/proteins that promote 2H4MB biosynthesis, a comparative proteomic approach was adapted. In this case, two developmental stages of tuberous roots of D. hamiltonii were selected, where the flavour content was highly variable. The flavour content in the two stages was estimated using quantitative HPLC. The flavour content in the first and second stages of tuber development was 160 and 510 µgg-1, respectively. Two-dimensional electrophoresis (2-DE) was performed for these two stages of tubers; this was followed by PDquest analysis. A total of 180 protein spots were differentially abundant of which 57 spots were selected and subjected to MALDI-TOF-TOF analysis. The largest percentage of identified proteins was involved in stress and defence (27.9%), followed by proteins related to bioenergy and metabolism (23.2%), Cellular homeostasis proteins (18.6%), signaling proteins (11.6%), Plant growth and development proteins (9.3%). Holistically, we found the upregulation of methyltransferase, cell division responsive proteins, plant growth and development proteins which directly relate to flavour development and maturation. Similarly, stress-responsive and signaling proteins, vacuole proteins and ATPases were down-regulated with an increase in flavour content. In this study, we could not identify the specific 2H4MB metabolic pathway proteins, however, we could be able to study the changes in physiological and primary metabolic proteins with 2H4MB accumulation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02714-x.
Collapse
Affiliation(s)
- Kiran Kamireddy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh India
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysore, Karnataka India
| | - Priyanka Purushottam Sonbarse
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh India
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysore, Karnataka India
| | - Shashank K Mishra
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
| | - Lalit Agrawal
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
| | - Puneet S Chauhan
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
| | - Charu Lata
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh India
| | - Giridhar Parvatam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh India
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysore, Karnataka India
| |
Collapse
|
11
|
Xiong XP, Sun SC, Zhu QH, Zhang XY, Li YJ, Liu F, Xue F, Sun J. The Cotton Lignin Biosynthetic Gene Gh4CL30 Regulates Lignification and Phenolic Content and Contributes to Verticillium Wilt Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:240-254. [PMID: 33507814 DOI: 10.1094/mpmi-03-20-0071-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Verticillium wilt is a vascular disease causing tremendous damage to cotton production worldwide. However, our knowledge of the mechanisms of cotton resistance or susceptibility to this disease is very limited. In this study, we compared the defense transcriptomes of cotton (Gossypium hirsutum) cultivars Shidalukang 1 (Verticillium dahliae resistant, HR) and Junmian 1 (V. dahliae susceptible, HS) before and after V. dahliae infection, identified hub genes of the network associated with responses to V. dahliae infection, and functionally characterized one of the hub genes involved in biosynthesis of lignin and phenolics. We identified 6,831 differentially expressed genes (DEGs) between the basal transcriptomes of HR and HS; 3,685 and 3,239 of these DEGs were induced in HR and HS, respectively, at different time points after V. dahliae infection. KEGG pathway analysis indicated that DEGs were enriched for genes involved in lignin biosynthesis. In all, 23 hub genes were identified based on a weighted gene coexpression network analysis of the 6,831 DEGs and their expression profiles at different time points after V. dahliae infection. Knockdown of Gh4CL30, one of the hub genes related to the lignin biosynthesis pathway, by virus-induced gene silencing, led to a decreased content of flavonoids, lignin, and S monomer but an increased content of G monomer, G/S lignin monomer, caffeic acid, and ferulic acid, and enhanced cotton resistance to V. dahliae. These results suggest that Gh4CL30 is a key gene modulating the outputs of different branches of the lignin biosynthesis pathway, and provide new insights into cotton resistance to V. dahliae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
12
|
Cui Y, Ge Q, Zhao P, Chen W, Sang X, Zhao Y, Chen Q, Wang H. Rapid Mining of Candidate Genes for Verticillium Wilt Resistance in Cotton Based on BSA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:703011. [PMID: 34691091 PMCID: PMC8531640 DOI: 10.3389/fpls.2021.703011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 05/05/2023]
Abstract
Cotton is a globally important cash crop. Verticillium wilt (VW) is commonly known as "cancer" of cotton and causes serious loss of yield and fiber quality in cotton production around the world. Here, we performed a BSA-seq analysis using an F2:3 segregation population to identify the candidate loci involved in VW resistance. Two QTLs (qvw-D05-1 and qvw-D05-2) related to VW resistance in cotton were identified using two resistant/susceptible bulks from the F2 segregation population constructed by crossing the resistant cultivar ZZM2 with the susceptible cultivar J11. A total of 30stop-lost SNPs and 42 stop-gained SNPs, which included 17 genes, were screened in the qvw-D05-2 region by SnpEff analysis. Further analysis of the transcriptome data and qRT-PCR revealed that the expression level of Ghir_D05G037630 (designated as GhDRP) varied significantly at certain time points after infection with V. dahliae. The virus-induced gene silencing of GhDRP resulted in higher susceptibility of the plants to V. dahliae than the control, suggesting that GhDRP is involved in the resistance to V. dahlia infection. This study provides a method for rapid mining of quantitative trait loci and screening of candidate genes, as well as enriches the genomic information and gene resources for the molecular breeding of disease resistance in cotton.
Collapse
Affiliation(s)
- Yanli Cui
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Yunlei Zhao,
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- Quanjia Chen,
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hongmei Wang,
| |
Collapse
|
13
|
Xiong XP, Sun SC, Zhu QH, Zhang XY, Liu F, Li YJ, Xue F, Sun J. Transcriptome Analysis and RNA Interference Reveal GhGDH2 Regulating Cotton Resistance to Verticillium Wilt by JA and SA Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:654676. [PMID: 34177978 PMCID: PMC8226099 DOI: 10.3389/fpls.2021.654676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, is one of the most damaging and widespread soil-borne cotton diseases. The molecular mechanisms underlying the cotton defense against V. dahliae remain largely elusive. Here, we compared the transcriptional differences between Upland cotton cultivars: one highly resistant (HR; Shidalukang 1) and one highly susceptible (HS; Junmian 1). This was done at multiple time points after V. dahliae inoculation, which identified 2010 and 1275 differentially expressed genes (DEGs) in HR and HS, respectively. Plant hormone signal transduction-related genes were enriched in HR, whereas genes related to lignin biosynthesis were enriched in both HR and HS. Weighted gene co-expression network analysis (WGCNA) using the 2868 non-redundant genes differentially expressed between the V. dahliae infected and uninfected samples in HR or HS identified 10 different gene network modules and 22 hub genes with a potential role in regulating cotton defense against V. dahliae infection. GhGDH2, encoding glutamate dehydrogenase (GDH), was selected for functional characterization. Suppressing the expression level of GhGDH2 by virus-induced gene silencing (VIGS) in HS led to inhibition of the salicylic acid (SA) biosynthesis/signaling pathways and activation of the jasmonic acid (JA) biosynthesis/signaling pathways, which resulted in an increase of 42.1% JA content and a reduction of 78.9% SA content in cotton roots, and consequently enhanced V. dahliae resistance. Our finding provides new insights on the molecular mechanisms of cotton resistance to V. dahliae infection and candidate genes for breeding V. dahliae resistance cotton cultivars by genetic modification.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Fei Xue,
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Jie Sun,
| |
Collapse
|
14
|
Genome-wide identification and abiotic stress-responsive expression of MLP family genes in Brassica rapa. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Zhang Y, Yang N, Zhao L, Zhu H, Tang C. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC PLANT BIOLOGY 2020; 20:89. [PMID: 32106811 PMCID: PMC7047391 DOI: 10.1186/s12870-019-2221-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Verticillium wilt of cotton is a serious soil-borne disease that causes a substantial reduction in cotton yields. A previous study showed that the endophytic fungus Chaetomium globosum CEF-082 could control Verticillium wilt of cotton, and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. RESULTS To study the signalling mechanism induced by CEF-082, the transcriptome of cotton seedlings pretreated with CEF-082 was sequenced. The results revealed 5638 DEGs at 24 h post inoculation with CEF-082, and 2921 and 2153 DEGs at 12 and 48 h post inoculation with Verticillium dahliae, respectively. At 24 h post inoculation with CEF-082, KEGG enrichment analysis indicated that the DEGs were enriched mainly in the plant-pathogen interaction, MAPK signalling pathway-plant, flavonoid biosynthesis, and phenylpropanoid biosynthesis pathways. There were 1209 DEGs specifically induced only in cotton plants inoculated with V. dahliae in the presence of the biocontrol fungus CEF-082, and not when cotton plants were only inoculated with V. dahliae. GO analysis revealed that these DEGs were enriched mainly in the following terms: ROS metabolic process, H2O2 metabolic process, defense response, superoxide dismutase activity, and antioxidant activity. Moreover, many genes, such as ERF, CNGC, FLS2, MYB, GST and CML, that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF-082 increases the resistance of cotton to Verticillium wilt. CONCLUSIONS The results of this study showed that CEF-082 could regulate multiple metabolic pathways in cotton. After treatment with V. dahliae, the defense response of cotton plants preinoculated with CEF-082 was strengthened.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan People’s Republic of China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan People’s Republic of China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| |
Collapse
|
16
|
Zhang X, Cheng W, Feng Z, Zhu Q, Sun Y, Li Y, Sun J. Transcriptomic analysis of gene expression of Verticillium dahliae upon treatment of the cotton root exudates. BMC Genomics 2020; 21:155. [PMID: 32050898 PMCID: PMC7017574 DOI: 10.1186/s12864-020-6448-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022] Open
Abstract
Background Cotton Verticillium wilt is one of the most devastating diseases for cotton production in the world. Although this diseases have been widely studied at the molecular level from pathogens, the molecular basis of V. dahliae interacted with cotton has not been well examined. Results In this study, RNA-seq analysis was carried out on V. dahliae samples cultured by different root exudates from three cotton cultivars (a susceptible upland cotton cultivar, a tolerant upland cotton cultivar and a resistant island cotton cultivar) and water for 0 h, 6 h, 12 h, 24 h and 48 h. Statistical analysis of differentially expressed genes revealed that V. dahliae responded to all kinds of root exudates but more strongly to susceptible cultivar than to tolerant and resistant cultivars. Go analysis indicated that ‘hydrolase activity, hydrolyzing O-glycosyl compounds’ related genes were highly enriched in V. dahliae cultured by root exudates from susceptible cotton at early stage of interaction, suggesting genes related to this term were closely related to the pathogenicity of V. dahliae. Additionally, ‘transmembrane transport’, ‘coenzyme binding’, ‘NADP binding’, ‘cofactor binding’, ‘oxidoreductase activity’, ‘flavin adenine dinucleotide binding’, ‘extracellular region’ were commonly enriched in V. dahliae cultured by all kinds of root exudates at early stage of interaction (6 h and 12 h), suggesting that genes related to these terms were required for the initial steps of the roots infections. Conclusions Based on the GO analysis results, the early stage of interaction (6 h and 12 h) were considered as the critical stage of V. dahliae-cotton interaction. Comparative transcriptomic analysis detected that 31 candidate genes response to root exudates from cotton cultivars with different level of V. dahliae resistance, 68 response to only susceptible cotton cultivar, and 26 genes required for development of V. dahliae. Collectively, these expression data have advanced our understanding of key molecular events in the V. dahliae interacted with cotton, and provided a framework for further functional studies of candidate genes to develop better control strategies for the cotton wilt disease.
Collapse
Affiliation(s)
- Xinyu Zhang
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China
| | - Wenhan Cheng
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China
| | - Zhidi Feng
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Yuqiang Sun
- Zhejiang Sci-Tech University College of Life Sciences, Zhejiang, 310016, Hangzhou, China
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China.
| | - Jie Sun
- The Key Laboratory of Oasis Eco-agriculture, Shihezi University College of Agriculture, Shihezi city, Xinjiang, 832003, China.
| |
Collapse
|
17
|
Xi H, Shen J, Qu Z, Yang D, Liu S, Nie X, Zhu L. Effects of Long-term Cotton Continuous Cropping on Soil Microbiome. Sci Rep 2019; 9:18297. [PMID: 31797982 PMCID: PMC6892916 DOI: 10.1038/s41598-019-54771-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 11/24/2022] Open
Abstract
Verticillium wilt is a severe disease of cotton crops in Xinjiang and affecting yields and quality, due to the continuous cotton cropping in the past decades. The relationship between continuous cropping and the changes induced on soil microbiome remains unclear to date. In this study, the culture types of 15 isolates from Bole (5F), Kuitun (7F), and Shihezi (8F) of north Xinjiang were sclerotium type. Only isolates from field 5F belonged to nondefoliating pathotype, the others belonged to defoliating pathotype. The isolates showed pathogenicity differentiation in cotton. Fungal and bacterial communities in soils had some difference in alpha-diversity, relative abundance, structure and taxonomic composition, but microbial groups showed similarity in the same habitat, despite different sampling sites. The fungal phyla Ascomycota, and the bacterial phyla Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Gemmatimonadetes were strongly enriched. Verticillium abundance was significantly and positively correlated with AN, but negatively correlated with soil OM, AK and pH. Moreover, Verticillium was correlated in abundances with 5 fungal and 6 bacterial genera. Overall, we demonstrate that soil microbiome communities have similar responses to long-term continuous cotton cropping, providing new insights into the effects of continuous cotton cropping on soil microbial communities.
Collapse
Affiliation(s)
- Hui Xi
- College of Agronomy, Shihezi University, Shihezi, 832000, P.R. China
| | - Jili Shen
- College of Agronomy, Shihezi University, Shihezi, 832000, P.R. China
| | - Zheng Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | - Dingyi Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
| | - Xinhui Nie
- College of Agronomy, Shihezi University, Shihezi, 832000, P.R. China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China.
| |
Collapse
|
18
|
Wu L, Du G, Bao R, Li Z, Gong Y, Liu F. De novo assembly and discovery of genes involved in the response of Solanum sisymbriifolium to Verticillium dahlia. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1009-1027. [PMID: 31402823 PMCID: PMC6656901 DOI: 10.1007/s12298-019-00666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is a devastating disease of eggplant (Solanum spp.) and causes substantial losses worldwide. Although some genes or biological processes involved in the interaction between eggplant and V. dahliae have been identified in some studies, the underlying molecular mechanism is not yet clear. Here, we monitored the transcriptomic profiles of the roots of resistant S. sisymbriifolium plants challenged with V. dahliae. Based on the measurements of physiological indexes (T-SOD, POD and SSs), three time points were selected and subsequently divided into two stages (S_12 h vs. S_0 h and S_48 h vs. S_12 h). KEGG enrichment analysis of the DEGs revealed several genes putatively involved in regulating plant-V. dahliae interactions, including mitogen-activated protein kinase (MAPK) genes (MEKK1 and MAP2K1), WRKY genes (WRKY22 and WRKY33) and cytochrome P450 (CYP) genes (CYP73A/C4H, CYP98A/C3'H and CYP84A/F5H). In addition, a subset of genes that play an important role in activating V. dahliae defence responses, including Ve genes as well as genes encoding PR proteins and TFs, were screened and are discussed. These results will help to identify key resistance genes and will contribute to a further understanding of molecular mechanisms of the S. sisymbriifolium resistance response to V. dahliae.
Collapse
Affiliation(s)
- Liyan Wu
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Guanghui Du
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| | - Rui Bao
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Zhibin Li
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Yaju Gong
- Horticultural Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Feihu Liu
- Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China
| |
Collapse
|
19
|
Kundu A, Singh PK, Dey A, Ganguli S, Pal A. Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep 2019; 9:8858. [PMID: 31221982 PMCID: PMC6586629 DOI: 10.1038/s41598-019-45383-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mungbean Yellow Mosaic India Virus (MYMIV)-infection creates major hindrance in V. mungo cultivation and poses significant threat to other grain legume production. Symptoms associated include severe patho-physiological alterations characterized by chlorotic foliar lesion accompanied by reduced growth. However, dissection of the host's defense machinery remains a tough challenge due to limited of host's genomic resources. A comparative RNA-Seq transcriptomes of resistant (VM84) and susceptible (T9) plants was carried out to identify genes potentially involved in V. mungo resistance against MYMIV. Distinct gene expression landscapes were observed in VM84 and T9 with 2158 and 1679 differentially expressed genes (DEGs), respectively. Transcriptomic responses in VM84 reflect a prompt and intense immune reaction demonstrating an efficient pathogen surveillance leading to activation of basal and induced immune responses. Functional analysis of the altered DEGs identified multiple regulatory pathways to be activated or repressed over time. Up-regulation of DEGs including NB-LRR, WRKY33, ankyrin, argonaute and NAC transcription factor revealed an insight on their potential roles in MYMIV-resistance; and qPCR validation shows a propensity of their accumulation in VM84. Analyses of the current RNA-Seq dataset contribute immensely to decipher molecular responses that underlie MYMIV-resistance and will aid in the improvement strategy of V. mungo and other legumes through comparative functional genomics.
Collapse
Affiliation(s)
- Anirban Kundu
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
- Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 7000118, India
| | | | - Avishek Dey
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
| | - Sayak Ganguli
- Theoretical and Computational Biology, AIIST, Palta, Kolkata, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
20
|
Co-Expression Network Analysis and Hub Gene Selection for High-Quality Fiber in Upland Cotton (Gossypium hirsutum) Using RNA Sequencing Analysis. Genes (Basel) 2019; 10:genes10020119. [PMID: 30736327 PMCID: PMC6410125 DOI: 10.3390/genes10020119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023] Open
Abstract
Upland cotton (Gossypium hirsutum) is grown for its elite fiber. Understanding differential gene expression patterns during fiber development will help to identify genes associated with fiber quality. In this study, we used two recombinant inbred lines (RILs) differing in fiber quality derived from an intra-hirsutum population to explore expression profiling differences and identify genes associated with high-quality fiber or specific fiber-development stages using RNA sequencing. Overall, 72/27, 1137/1584, 437/393, 1019/184, and 2555/1479 differentially expressed genes were up-/down-regulated in an elite fiber line (L1) relative to a poor-quality fiber line (L2) at 10, 15, 20, 25, and 30 days post-anthesis, respectively. Three-hundred sixty-three differentially expressed genes (DEGs) between two lines were colocalized in fiber strength (FS) quantitative trait loci (QTL). Short Time-series Expression Miner (STEM) analysis discriminated seven expression profiles; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation were performed to identify difference in function between genes unique to L1 and L2. Co-expression network analysis detected five modules highly associated with specific fiber-development stages, especially for high-quality fiber tissues. The hub genes in each module were identified by weighted gene co-expression network analysis. Hub genes encoding actin 1, Rho GTPase-activating protein with PAK-box, TPX2 protein, bHLH transcription factor, and leucine-rich repeat receptor-like protein kinase were identified. Correlation networks revealed considerable interaction among the hub genes, transcription factors, and other genes.
Collapse
|
21
|
Scholz SS, Schmidt-Heck W, Guthke R, Furch ACU, Reichelt M, Gershenzon J, Oelmüller R. Verticillium dahliae-Arabidopsis Interaction Causes Changes in Gene Expression Profiles and Jasmonate Levels on Different Time Scales. Front Microbiol 2018; 9:217. [PMID: 29497409 PMCID: PMC5819561 DOI: 10.3389/fmicb.2018.00217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/30/2018] [Indexed: 01/27/2023] Open
Abstract
Verticillium dahliae is a soil-borne vascular pathogen that causes severe wilt symptoms in a wide range of plants. Co-culture of the fungus with Arabidopsis roots for 24 h induces many changes in the gene expression profiles of both partners, even before defense-related phytohormone levels are induced in the plant. Both partners reprogram sugar and amino acid metabolism, activate genes for signal perception and transduction, and induce defense- and stress-responsive genes. Furthermore, analysis of Arabidopsis expression profiles suggests a redirection from growth to defense. After 3 weeks, severe disease symptoms can be detected for wild-type plants while mutants impaired in jasmonate synthesis and perception perform much better. Thus, plant jasmonates have an important influence on the interaction, which is already visible at the mRNA level before hormone changes occur. The plant and fungal genes that rapidly respond to the presence of the partner might be crucial for early recognition steps and the future development of the interaction. Thus they are potential targets for the control of V. dahliae-induced wilt diseases.
Collapse
Affiliation(s)
- Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wolfgang Schmidt-Heck
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Germany
| | - Reinhard Guthke
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
22
|
Li NY, Zhou L, Zhang DD, Klosterman SJ, Li TG, Gui YJ, Kong ZQ, Ma XF, Short DPG, Zhang WQ, Li JJ, Subbarao KV, Chen JY, Dai XF. Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:119. [PMID: 29467784 PMCID: PMC5808209 DOI: 10.3389/fpls.2018.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 05/06/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae results in severe losses in cotton, and is economically the most destructive disease of this crop. Improving genetic resistance is the cleanest and least expensive option to manage Verticillium wilt. Previously, we identified the island cotton NBS-LRR-encoding gene GbaNA1 that confers resistance to the highly virulent V. dahliae isolate Vd991. In this study, we expressed cotton GbaNA1 in the heterologous system of Arabidopsis thaliana and investigated the defense response mediated by GbaNA1 following inoculations with V. dahliae. Heterologous expression of GbaNA1 conferred Verticillium wilt resistance in A. thaliana. Moreover, overexpression of GbaNA1 enabled recovery of the resistance phenotype of A. thaliana mutants that had lost the function of GbaNA1 ortholog gene. Investigations of the defense response in A. thaliana showed that the reactive oxygen species (ROS) production and the expression of genes associated with the ethylene signaling pathway were enhanced significantly following overexpression of GbaNA1. Intriguingly, overexpression of the GbaNA1 ortholog from Gossypium hirsutum (GhNA1) in A. thaliana did not induce the defense response of ROS production due to the premature termination of GhNA1, which lacks the encoded NB-ARC and LRR motifs. GbaNA1 therefore confers Verticillium wilt resistance in A. thaliana by the activation of ROS production and ethylene signaling. These results demonstrate the functional conservation of the NBS-LRR-encoding GbaNA1 in a heterologous system, and the mechanism of this resistance, both of which may prove valuable in incorporating GbaNA1-mediated resistance into other plant species.
Collapse
Affiliation(s)
- Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Steven J. Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Yue-Jing Gui
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Xue-Feng Ma
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Dylan P. G. Short
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Wen-Qi Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- *Correspondence: Xiao-Feng Dai, Jie-Yin Chen, Krishna V. Subbarao,
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
- *Correspondence: Xiao-Feng Dai, Jie-Yin Chen, Krishna V. Subbarao,
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, c/o Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, China
- *Correspondence: Xiao-Feng Dai, Jie-Yin Chen, Krishna V. Subbarao,
| |
Collapse
|