1
|
Tani H. Metabolic labeling of RNA using ribonucleoside analogs enables the evaluation of RNA synthesis and degradation rates. ANAL SCI 2025; 41:345-351. [PMID: 39699752 DOI: 10.1007/s44211-024-00704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts exceeding 200 nucleotides that do not encode proteins. Despite lacking protein-coding capabilities, lncRNAs play crucial roles in cellular processes, including gene-expression modulation and structural maintenance. The study of lncRNAs has evolved significantly since 2009, with advancements in analytical methodologies providing new insights into their functions and dynamics. Key developments include BRIC-Seq, SLAM-Seq, TUC-Seq, TimeLapse-seq, and Dyrec-Seq. These methodologies have enabled researchers to investigate lncRNA behavior under various conditions, including cellular stress responses and complex biologic systems. Future challenges include developing comprehensive techniques for identifying lncRNA-interacting proteins and advancing in vivo methodologies using model organisms. As the field progresses, integrating these technologies will enhance our understanding of lncRNA biology, potentially leading to novel therapeutic strategies and deeper insights into gene-regulation mechanisms.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama, 245-0066, Japan.
| |
Collapse
|
2
|
Ou C, He X, Liu Y, Zhang X. lncRNA cytoskeleton regulator RNA (CYTOR): Diverse functions in metabolism, inflammation and tumorigenesis, and potential applications in precision oncology. Genes Dis 2023; 10:415-429. [PMID: 37223495 PMCID: PMC10201560 DOI: 10.1016/j.gendis.2021.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of non-coding RNA (ncRNA), that have been studied extensively in the field of tumor research in recent years. In the case of tumor-associated lncRNAs, lncRNA cytoskeleton regulator RNA (CYTOR) displays extensive functions in tumorigenesis, including invasion, metastasis, malignant proliferation, glycolysis, and inflammatory response. Moreover, the dysregulation of CYTOR is closely related to clinicopathological characteristics, such as tumor stage, lymph node metastasis and infiltration, and poor prognosis of tumor patients. In this review, we provide a novel strategy to summarize the biological functions and clinical value of CYTOR in tumors through an overview of the literature combined with gene set enrichment analysis. A deeper understanding of the role of CYTOR in tumorigenesis may provide new diagnostic, prognostic and therapeutic markers for human tumors.
Collapse
Affiliation(s)
- Chunlin Ou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Changsha, Hunan 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Changsha, Hunan 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, China
| |
Collapse
|
3
|
lncRNA CYTOR Facilitates Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating SOX11 via Sponging miR-6512-3p. Stem Cells Int 2023; 2023:5671809. [PMID: 36910334 PMCID: PMC10005871 DOI: 10.1155/2023/5671809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are considered ideal cell sources for the regeneration of periodontal and alveolar bone tissue. Cytoskeleton Regulator RNA (CYTOR), a newly discovered long noncoding RNA, has been reported to function as competing endogenous RNA (ceRNA) and to be involved in many biological processes. However, its roles in PDLSC osteogenic differentiation remain unclear. Here, we firstly found CYTOR was mainly sublocalized in the cytoplasm of PDLSCs and CYTOR expression was increased during osteogenic differentiation of PDLSCs. By employing gain- and loss-of-function approaches, we then identified CYTOR overexpression promoted osteogenic differentiation of PDLSCs while CYTOR knockdown inhibited this process. Furthermore, bioinformatics analysis was utilized to show that both CYTOR and SOX11 mRNA contained the same seed sites for miR-6512-3p, which was further confirmed by dual luciferase reporter assay and RNA-binding protein immunoprecipitation. Notably, CYTOR conferred its functions by directly binding to miR-6512-3p and an inverse correlation between CYTOR and miR-6512-3p on the level on SOX11 and osteogenic differentiation of PDLSCs was obtained. Additionally, miR-6512-3p could bind to SOX11 mRNA 3' UTR and repressed SOX11 expression. Moreover, level of SOX11 was significantly increased during osteogenic differentiation of PDLSCs. Knockdown of SOX11 attenuated the increasing effect of CYTOR overexpression on osteogenic differentiation of PDLSCs. Collectively, these data supported that CYTOR positively modulated the expression of SOX11 through competitively binding to miR-6512-3p, thus promoting osteogenic differentiation of PDLSCs. The CYTOR/miR-6512-3p/SOX11 axis could be a novel therapeutic target for periodontal regeneration medicine.
Collapse
|
4
|
Scheurer T, Steffens J, Markert A, Du Marchie Sarvaas M, Roderburg C, Rink L, Tacke F, Luedde T, Kraus T, Baumann R. The human long noncoding RNAs CoroMarker, MALAT1, CDR1as, and LINC00460 in whole blood of individuals after controlled short-term exposure with ultrafine metal fume particles at workplace conditions, and in human macrophages in vitro. J Occup Med Toxicol 2022; 17:15. [PMID: 35915466 PMCID: PMC9344619 DOI: 10.1186/s12995-022-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term inhalation of occupationally relevant ultrafine zinc/copper (Zn/Cu) containing welding fumes has been shown to induce subclinical systemic inflammation, associated with an elevated risk for cardiovascular diseases. The involvement of noncoding RNAs (lncRNAs) in this setting is currently unknown. However, lncRNAs have been reported to fulfill essential roles in, e.g., cardiovascular diseases, inflammation, infectious diseases, and pollution-related lung disorders. METHODS In this study, the specific lncRNAs levels of the 4 lncRNAs CoroMarker, MALAT1, CDR1as and LINC00460 were determined by RT-qPCR in THP-1 macrophages exposed to Zn/Cu metal fume suspensions for 1, 2, and 4 hours in vitro. Furthermore, 14 subjects were exposed to Zn/Cu containing welding fumes (at 2.5 mg/m3) for 6 hours. Before, 6, 10, and 29 hours after exposure start, whole blood cell lncRNAs levels were determined by RT-qPCR. RESULTS In THP-1 macrophages, we observed a 2.3-fold increase of CDR1as at 1 h (Wilcoxon p = 0.03), a non-significant increase of CoroMarker at 1 h, and an increase of LINC00460 at 2 h (p = 0.03) and at 4 h (p = 0.06). In whole blood cells, we determined a non-significant upregulation of CDR1as at 6 h (p = 0.2), a significant downregulation of CoroMarker at 6 h (p = 0.04), and a significant upregulation of LINC00460 levels at 10 h (p = 0.04) and 29 h (p = 0.04). MALAT-1 remained unchanged in both settings. CONCLUSION The orientation of regulation of the lncRNAs is (except for CoroMarker) similar in the in vitro and in vivo experiments and in line with their described functions. Therefore, these results, e.g. the upregulation of the potential risk marker for cardiovascular diseases, CDR1as, contribute to understanding the underlying mechanisms of Zn/Cu-induced subclinical inflammation in metal workers.
Collapse
Affiliation(s)
- Theresa Scheurer
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Steffens
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Agnieszka Markert
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Miriam Du Marchie Sarvaas
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Luedde
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ralf Baumann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany
| |
Collapse
|
5
|
lncRNA SNHG15 Induced by SOX12 Promotes the Tumorigenic Properties and Chemoresistance in Cervical Cancer via the miR-4735-3p/HIF1a Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8548461. [PMID: 35069980 PMCID: PMC8769851 DOI: 10.1155/2022/8548461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Cervical cancer (CC) is one of the most common malignancies in females, with high prevalence and mortality globally. Despite advances in diagnosis and therapeutic strategies developed in recent years, CC is still a major health burden worldwide. The molecular mechanisms underlying the development of CC need to be understood. In this study, we aimed to demonstrate the role of lncRNA SNHG15 in CC progression. Using qRT-PCR, we determined that lncRNA SNHG15 is highly expressed in CC tumor tissues and cells. lncRNA SNHG15 knockdown also reduces the tumorigenic properties of CC in vitro, as determined using the MTT, EdU, flow cytometry, and transwell assays. Using bioinformatics analysis, RNA pull-down, ChIP, and luciferase reporter assays, we verified the molecular mechanisms of lncRNA SNHG15 in CC progression and found that lncRNA SNHG15 expression in CC cells is transcriptionally regulated by SOX12; moreover, lncRNA SNHG15 promotes CC progression via the miR-4735-3p/HIF1a axis. This study can provide a potential target for CC diagnosis or therapeutic strategies in the future.
Collapse
|
6
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
7
|
Identification of COVID-19 Infection-Related Human Genes Based on a Random Walk Model in a Virus-Human Protein Interaction Network. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4256301. [PMID: 32685484 PMCID: PMC7345912 DOI: 10.1155/2020/4256301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
Coronaviruses are specific crown-shaped viruses that were first identified in the 1960s, and three typical examples of the most recent coronavirus disease outbreaks include severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19. Particularly, COVID-19 is currently causing a worldwide pandemic, threatening the health of human beings globally. The identification of viral pathogenic mechanisms is important for further developing effective drugs and targeted clinical treatment methods. The delayed revelation of viral infectious mechanisms is currently one of the technical obstacles in the prevention and treatment of infectious diseases. In this study, we proposed a random walk model to identify the potential pathological mechanisms of COVID-19 on a virus–human protein interaction network, and we effectively identified a group of proteins that have already been determined to be potentially important for COVID-19 infection and for similar SARS infections, which help further developing drugs and targeted therapeutic methods against COVID-19. Moreover, we constructed a standard computational workflow for predicting the pathological biomarkers and related pharmacological targets of infectious diseases.
Collapse
|
8
|
Rodríguez-Lorenzo S, Ferreira Francisco DM, Vos R, van Het Hof B, Rijnsburger M, Schroten H, Ishikawa H, Beaino W, Bruggmann R, Kooij G, de Vries HE. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:35. [PMID: 32192527 PMCID: PMC7083003 DOI: 10.1186/s40478-020-00903-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing. We identified 17 genes with significantly higher expression in progressive MS patients relative to that in controls. Among them is the newly described long non-coding RNA HIF1A-AS3. Next to that, we uncovered disease-affected pathways related to hypoxia, secretion and neuroprotection, while only subtle immunological and no barrier alterations were observed. In an ex vivo CP explant model, a subset of the upregulated genes responded in a similar way to hypoxic conditions. Our results suggest a deregulation of the Hypoxia-Inducible Factor (HIF)-1 pathway in progressive MS CP. Importantly, cerebrospinal fluid levels of the hypoxia-responsive secreted peptide PAI-1 were higher in MS patients with high disability relative to those with low disability. These findings provide for the first time a complete overview of the CP transcriptome in health and disease, and suggest that the CP environment becomes hypoxic in progressive MS patients, highlighting the altered secretory and neuroprotective properties of the CP under neuropathological conditions. Together, these findings provide novel insights to target the CP and promote the secretion of neuroprotective factors into the CNS of progressive MS patients.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | | | - Ricardo Vos
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Manheim, Medical Faculty Manheim, Heidelberg University, Manheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands.
- Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands.
| |
Collapse
|
9
|
Short-lived long noncoding RNAs as surrogate indicators for chemical stress in HepG2 cells and their degradation by nuclear RNases. Sci Rep 2019; 9:20299. [PMID: 31889167 PMCID: PMC6937343 DOI: 10.1038/s41598-019-56869-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length that have been shown to play important roles in various biological processes. The mechanisms underlying the induction of lncRNA expression by chemical exposure remain to be determined. We identified a novel class of short-lived lncRNAs with half-lives (t1/2) ≤4 hours in human HeLa Tet-off cells, which have been suggested to express many lncRNAs with regulatory functions. As they may affect various human biological processes, short-lived lncRNAs may be useful indicators of the degree of stress on chemical exposure. In the present study, we identified four short-lived lncRNAs, designated as OIP5-AS1, FLJ46906, LINC01137, and GABPB1-AS1, which showed significantly upregulated expression following exposure to hydrogen peroxide (oxidative stress), mercury II chloride (heavy metal stress), and etoposide (DNA damage stress) in human HepG2 cells. These lncRNAs may be useful indicators of chemical stress responses. The levels of these lncRNAs in the cells were increased because of chemical stress-induced prolongation of their decay. These lncRNAs were degraded by nuclear RNases, which are components of the exosome and XRN2, and chemical exposure inhibited the RNase activities within the cells.
Collapse
|
10
|
Tong J, Ma X, Yu H, Yang J. SNHG15: a promising cancer-related long noncoding RNA. Cancer Manag Res 2019; 11:5961-5969. [PMID: 31308739 PMCID: PMC6613027 DOI: 10.2147/cmar.s208054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is expected to rank as the leading cause of death worldwide due to increasing morbidity and mortality. Long noncoding RNAs (lncRNAs) have been found to play pivotal roles in multiple biological processes, such as transcriptional interference, posttranscriptional regulation and epigenetic modification. Small nucleolar RNA host gene 15 (SNHG15), a snoRNA host gene which produces a short half-lived lncRNA, was reported to be upregulated in tumor cells and participate in the occurrence and development of multiple cancers. And more than half of the SNHG15 research in cancers has been published within the last 2 years. In this review, we summarized the current evidence concerning the biological functions and molecular mechanisms of SNHG15 in various cancers, including gastric, hepatocellular, pancreatic, colorectal, breast, and thyroid cancer, osteosarcoma, glioma, lung cancer, renal cell carcinoma, and epithelial ovarian cancer. SNHG15 plays critical roles in regulation of cell proliferation, migration and invasion of tumors via different potential mechanisms. Moreover, the abnormal expression of SNHG15 was associated with clinical features of patients with cancers. Consequently, SNHG15 could be considered as a promising biomarker for cancer diagnosis, prognosis or treatment.
Collapse
Affiliation(s)
- Jinfei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xudong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Hailan Yu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Identification of RNA biomarkers for chemical safety screening in neural cells derived from mouse embryonic stem cells using RNA deep sequencing analysis. Biochem Biophys Res Commun 2019; 512:641-646. [DOI: 10.1016/j.bbrc.2018.11.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/13/2023]
|
12
|
TANI H. Development and Application of Analytical Methods for Biological Molecules Using the Fluorescent Dyes and the Nucleotide Analogs. BUNSEKI KAGAKU 2019. [DOI: 10.2116/bunsekikagaku.68.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hidenori TANI
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
13
|
Qu C, Dai C, Guo Y, Qin R, Liu J. Long noncoding RNA SNHG15 serves as an oncogene and predicts poor prognosis in epithelial ovarian cancer. Onco Targets Ther 2018; 12:101-111. [PMID: 30588034 PMCID: PMC6304080 DOI: 10.2147/ott.s182657] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective This study aims to investigate the functional role of long noncoding RNA SNHG15 in epithelial ovarian cancer (EOC). Materials and methods The expression of SNHG15 was measured in EOC cells and tissues using qRT-PCR. The correlation of SNHG15 expression and the clinicopathological characters was statistically analyzed. The prognosis of patients with different clinical features in the high/low SNHG15 expression groups were calculated. Moreover, univariate and multivariate Cox regression analyses were performed to identify the risk factors for poor overall survival (OS) and progression-free survival (PFS). The effect of SNHG15 on the migration and invasion was evaluated using Transwell and Matrigel, respectively. The proliferation ability of EOC cells was tested using colony formation and MTT assay. The influence of SNHG15 on the cisplatin resistance was detected by measuring cell inhibition rate and cell viability. Results SNHG15 was upegulated in EOC cells and tissues. High SNHG15 expression was correlated with EOC progression and predicted poor OS and PFS in different subgroups of EOC patients. Moreover, multivariate Cox regression analysis defined high SNHG15 expression as an independent risk factor for poor OS and PFS. Furthermore, functional assays showed that the overexpression of SNHG15 promoted migration and invasion, while the loss of SNHG15 suppressed migration and invasion. Furthermore, the proliferation of EOC cells was improved after the ectopic expression of SNHG15, which was suppressed with SNHG15 deficiency. In addition, cisplatin-resistant EOC cells were established for detecting the effect of SNHG15 on EOC chemoresistance. The results showed that cisplatin-resistant EOC cells exhibited much higher levels of SNHG15 expression than controls, and SNHG15 contributed to the chemoresistance of EOC cells. Conclusion This study confirms that SNHG15 contributes to the migration, invasion, proliferation, and chemoresistance of EOC. SNHG15 may serve as a potential therapeutic target and prognostic biomarker of EOC patients.
Collapse
Affiliation(s)
- Chong Qu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China
| | - Chunmei Dai
- Department of School Hospital, Changchun University of Chinese Medicine, Changchun 130033, Jilin, People's Republic of China
| | - Yahua Guo
- Department of Obstetrics and Gynaecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China,
| | - Rui Qin
- Department of Obstetrics and Gynaecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China,
| | - Junbao Liu
- Department of Obstetrics and Gynaecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China,
| |
Collapse
|