1
|
Yang N, Ren J, Dai S, Wang K, Leung M, Lu Y, An Y, Burlingame A, Xu S, Wang Z, Yu W, Li N. The Quantitative Biotinylproteomics Studies Reveal a WInd-Related Kinase 1 (Raf-Like Kinase 36) Functioning as an Early Signaling Component in Wind-Induced Thigmomorphogenesis and Gravitropism. Mol Cell Proteomics 2024; 23:100738. [PMID: 38364992 PMCID: PMC10951710 DOI: 10.1016/j.mcpro.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.
Collapse
Affiliation(s)
- Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jia Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shuaijian Dai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Manhin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Li X, Zhang L, Wei X, Datta T, Wei F, Xie Z. Polyploidization: A Biological Force That Enhances Stress Resistance. Int J Mol Sci 2024; 25:1957. [PMID: 38396636 PMCID: PMC10888447 DOI: 10.3390/ijms25041957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.
Collapse
Affiliation(s)
- Xiaoying Li
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Tanusree Datta
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
4
|
Yue J, Shi D, Zhang L, Zhang Z, Fu Z, Ren Q, Zhang J. The photo-inhibition of camphor leaves ( Cinnamomum camphora L.) by NaCl stress based on physiological, chloroplast structure and comparative proteomic analysis. PeerJ 2020; 8:e9443. [PMID: 32974090 PMCID: PMC7486828 DOI: 10.7717/peerj.9443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022] Open
Abstract
Background The distribution and use of camphor (Cinnamomum camphora L.) trees are constrained by increasing soil salinity in south-eastern China along the Yangtze River. However, the response mechanism of this species to salinity, especially in team of photosynthesis, are unknown. Methods Here, we analysed themorphological, physiological, ultrastructural, and proteomic traits of camphor seedlings under NaCl (103.45 mM) treatment in pot experiments for 80 days. Results The growth was limited because of photosynthetic inhibition, with the most significant disturbance occurring within 50 days. Salinity caused severe reductions in the leaf photosynthetic rate (An), stomatal conductance (gs), maximal chlorophyll fluorescence (Fm), maximum quantum yield of PSII (Fv/Fm), non-photochemical quenching (NPQ), relative quantum efficiency of PSII photochemistry (ΦPSII), photochemical quenching coefficient (qP) and photo-pigment contents (chlorophyll a (Cha), chlorophyll b (Chb), total chlorophyll (Chl)); weakened the antioxidant effects, including those of malondialdehyde (MDA), superoxide dismutase (SOD) and peroxidase (POD); and injured chloroplasts. The physiologicalresults indicated that the main reason for photo-inhibition was oxidative factors induced by NaCl. The proteomic results based on isobaric tags for relative and absolute quantitation (iTRAQ) further confirmedthat photosynthesis was the most significant disrupted process by salinity (P < 0.01) and there were 30 downregulated differentially expression proteins (DEPs) and one upregulated DEP related to restraint of the photosynthetic system, which affected photosystem I, photosystem II, the Cytochrome b6/f complex, ATP synthase and the light-harvesting chlorophyll protein complex. In addition, 57 DEPs were related to photo-inhibition by redox effect and 6 downregulated DEPs, including O2 evolving complex 33kD family protein (gi—224094610) and five other predicted proteins (gi—743921083, gi—743840443, gi—743885735, gi—743810316 and gi—743881832) were directly affected. This study provides new proteomic information and explains the possible mechanisms of photo-inhibition caused by salinity on C. camphor.
Collapse
Affiliation(s)
- Jiammin Yue
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China.,Key Laboratory of Land Degradation and Ecosystem Restoration & Key Laboratory of Rehabilitation and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yingchuan, Ningxia, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dawei Shi
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Liang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zihan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhiyuan Fu
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Qiong Ren
- Jiangxi Academy of Forestry, Nanchang, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China of Jiangsu Province & Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Song MJ, Potter BI, Doyle JJ, Coate JE. Gene Balance Predicts Transcriptional Responses Immediately Following Ploidy Change in Arabidopsis thaliana. THE PLANT CELL 2020; 32:1434-1448. [PMID: 32184347 PMCID: PMC7203931 DOI: 10.1105/tpc.19.00832] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/14/2020] [Indexed: 05/22/2023]
Abstract
The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable. We sequenced the transcriptomes of two synthetic autopolyploid accessions of Arabidopsis (Arabidopsis thaliana) and their diploid progenitors, as well as one natural tetraploid and its synthetic diploid produced via haploid induction, to estimate transcriptome size and dosage responses immediately following ploidy change. Similar to what has been observed in previous studies, overall transcriptome size does not exhibit a simple doubling in response to genome doubling, and individual gene dosage responses are highly variable in all three accessions, indicating that expression is not strictly coupled with gene dosage. Nonetheless, putatively dosage balance-sensitive gene groups (Gene Ontology terms, metabolic networks, gene families, and predicted interacting proteins) exhibit smaller and more coordinated dosage responses than do putatively dosage-insensitive gene groups, suggesting that constraints on dosage balance operate immediately following whole-genome duplication and that duplicate gene retention patterns are shaped by selection to preserve dosage balance.
Collapse
Affiliation(s)
- Michael J Song
- University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, California 94720
| | - Barney I Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jeff J Doyle
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202
| |
Collapse
|
6
|
Ma Q, Shi C, Su C, Liu Y. Complementary analyses of the transcriptome and iTRAQ proteome revealed mechanism of ethylene dependent salt response in bread wheat (Triticum aestivum L.). Food Chem 2020; 325:126866. [PMID: 32387982 DOI: 10.1016/j.foodchem.2020.126866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
In order to clarify the ethylene dependent salt response mechanism in wheat, 2-week-old wheat seedlings of cultivar 'Qingmai 6' treated with water, sodium chloride (NaCl), NaCl and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and NaCl and ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) were collected and analyzed by transcriptional sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. At least 1140 proteins and 73,401 genes were identified, and proteins including ribosomal proteins (RPs), nucleoside diphosphate kinases (CDPKs), transaldolases (TALs), beta-glucosidases (BGLUs), phosphoenlpyruvate carboxylases (PEPCs), superoxide dismutases (SODs), and 6-phosphogluconate dehydrogenases (6-PGDHs) were significantly differently expressed. These genes and proteins revealed that ethylene dependent salt response through RPs activation, chaperones synthesis, the reactive oxygen species (ROS) scavenging, and carbohydrate metabolites pathway. Our results provided transcriptomics and proteomics information with respect to the molecular mechanisms of ethylene regualted salt response.
Collapse
Affiliation(s)
- Qian Ma
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Changhai Shi
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunxue Su
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiguo Liu
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Rey MD, Castillejo MÁ, Sánchez-Lucas R, Guerrero-Sanchez VM, López-Hidalgo C, Romero-Rodríguez C, Valero-Galván J, Sghaier-Hammami B, Simova-Stoilova L, Echevarría-Zomeño S, Jorge I, Gómez-Gálvez I, Papa ME, Carvalho K, Rodríguez de Francisco LE, Maldonado-Alconada AM, Valledor L, Jorrín-Novo JV. Proteomics, Holm Oak ( Quercus ilex L.) and Other Recalcitrant and Orphan Forest Tree Species: How do They See Each Other? Int J Mol Sci 2019; 20:ijms20030692. [PMID: 30736277 PMCID: PMC6386906 DOI: 10.3390/ijms20030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Proteomics has had a big impact on plant biology, considered as a valuable tool for several forest species, such as Quercus, Pines, Poplars, and Eucalyptus. This review assesses the potential and limitations of the proteomics approaches and is focused on Quercus ilex as a model species and other forest tree species. Proteomics has been used with Q. ilex since 2003 with the main aim of examining natural variability, developmental processes, and responses to biotic and abiotic stresses as in other species of the genus Quercus or Pinus. As with the progress in techniques in proteomics in other plant species, the research in Q. ilex moved from 2-DE based strategy to the latest gel-free shotgun workflows. Experimental design, protein extraction, mass spectrometric analysis, confidence levels of qualitative and quantitative proteomics data, and their interpretation are a true challenge with relation to forest tree species due to their extreme orphan and recalcitrant (non-orthodox) nature. Implementing a systems biology approach, it is time to validate proteomics data using complementary techniques and integrate it with the -omics and classical approaches. The full potential of the protein field in plant research is quite far from being entirely exploited. However, despite the methodological limitations present in proteomics, there is no doubt that this discipline has contributed to deeper knowledge of plant biology and, currently, is increasingly employed for translational purposes.
Collapse
Affiliation(s)
- María-Dolores Rey
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Ángeles Castillejo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Rosa Sánchez-Lucas
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Victor M Guerrero-Sanchez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina López-Hidalgo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina Romero-Rodríguez
- Departamento de Fitoquímica, Dirección de Investigación de la Facultad de Ciencias Químicas de la Universidad Nacional de Asunción, Asunción 1001-1925, Paraguay.
| | - José Valero-Galván
- Department of Chemical and Biological Science, Biomedicine Science Institute, Autonomous University of Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Ciudad Juarez 32310, Mexico.
| | - Besma Sghaier-Hammami
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Lyudmila Simova-Stoilova
- Plant Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 21, 1113 Sofia, Bulgaria.
| | - Sira Echevarría-Zomeño
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Inmaculada Jorge
- Department of Vascular Biology and Inflammation (BVI), Spanish National Centre for Cardiovascular Research, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Isabel Gómez-Gálvez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Eugenia Papa
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Kamilla Carvalho
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | | | - Ana María Maldonado-Alconada
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Luis Valledor
- Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Santiago Gascón Building, 2nd Floor (Office 2.9), 33006 Oviedo, Spain.
| | - Jesús V Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| |
Collapse
|
8
|
Wang Z, Zhao Z, Fan G, Dong Y, Deng M, Xu E, Zhai X, Cao H. A comparison of the transcriptomes between diploid and autotetraploid Paulownia fortunei under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1-11. [PMID: 30804626 PMCID: PMC6352521 DOI: 10.1007/s12298-018-0578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/08/2018] [Accepted: 06/29/2018] [Indexed: 05/06/2023]
Abstract
Paulownia is a tree species grown in many countries. Our previous study reveals that tetraploid Paulownia fortunei is more tolerant to salt stress than its corresponding diploid tree. To investigate the molecular mechanisms of salt stress tolerance in P. fortunei, the transcriptomes of normal and salt-stressed diploid and tetraploid were investigated. After assembling the clean reads, we obtained 130,842 unigenes. The unigenes were aligned against six public databases (Nr, Nt, Swiss-Prot, COG, KEGG, GO) to discover homologs and assign functional annotations. We retrieved 7983 and 15,503 differentially expressed unigenes (DEUs) between the normal and the salt-stressed diploid and tetraploid P. fortunei, respectively. We identified dozens of important DEUs including 3 related to photosynthesis, 10 related to plant growth and development and 11 related to osmolytes. Some of these DEUs were upregulated in tetraploid compared to diploid and others were upregulated under salt stress. Quantitative reverse transcriptase polymerase chain reaction verified the expression patterns of 15 unigenes. Our results provided insights into the molecular aspects why tetraploid is stronger and more energetic than diploid under saline environment. This study provides useful information for further studies on the molecular mechanisms of salt tolerance in other tree plants.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Enkai Xu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan People’s Republic of China
| | - Heping Cao
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124 USA
| |
Collapse
|