1
|
Shibata N, Cahard D. N-Fluoro Ammonium Salts of Cinchona Alkaloids in Enantioselective Electrophilic Fluorination. CHEM REC 2023; 23:e202300096. [PMID: 37096873 DOI: 10.1002/tcr.202300096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Indexed: 04/26/2023]
Abstract
From 2000, our two research groups independently and simultaneously designed and developed a novel family of electrophilic fluorinating reagents based on the use of Cinchona alkaloids. The chiral N-fluoro ammonium salts demonstrated the highest efficiency compared to prior art in enantioselective electrophilic fluorination for a wide range of substrates. In this account, we tell our respective stories, how the same idea germinated in our laboratories, the characterization of the chiral reagents, the use in stoichiometric quantity then the development of a catalytic version, the application to the synthesis of chiral fluorinated molecules of pharmaceutical interest, and finally the exploitation of our reagents by other teams and for other applications.
Collapse
Affiliation(s)
- Norio Shibata
- Department of Engineering, Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA - Normandie Université, 76821, Mont Saint Aignan, France
| |
Collapse
|
2
|
Doi R, Kajiwara K, Negoro T, Koh K, Ogoshi S. Regioselective C-F Bond Transformations of Silyl Difluoroenolates. Org Lett 2023. [PMID: 37466250 DOI: 10.1021/acs.orglett.3c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, we report the development of a nickel-catalyzed cross-coupling reaction of silyl difluoroenolates with aryl zinc reagents via C-F bond cleavage. Treatment of a stoichiometric amount of Ni(0)/N-heterocyclic carbene (NHC) with silyl difluoroenolates in the presence of a lithium salt resulted in C-F bond cleavage to selectively afford the corresponding (Z)-alkenyl Ni complexes. On the basis of the observations, we developed a catalytic cross-coupling reaction that selectively delivers a single geometric isomer of a fluoroenolate.
Collapse
Affiliation(s)
- Ryohei Doi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koki Kajiwara
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taiki Negoro
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenta Koh
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Tawfik NM, Teiama MS, Iskandar SS, Osman A, Hammad SF. A Novel Nanoemulsion Formula for an Improved Delivery of a Thalidomide Analogue to Triple-Negative Breast Cancer; Synthesis, Formulation, Characterization and Molecular Studies. Int J Nanomedicine 2023; 18:1219-1243. [PMID: 36937550 PMCID: PMC10016366 DOI: 10.2147/ijn.s385166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2023] Open
Abstract
Background Thalidomide (THD) and its analogues were recently reported as a promising treatment for different types of solid tumors due to their antiangiogenic effect. Methods In this work, we synthesized a novel THD analogue (TA), and its chemistry was confirmed with different techniques such as IR, mass spectroscopy, elemental analysis as well as 1H and 13C NMR. To increase solubility and anticancer efficacy, a new oil in water (O/W) nanoemulsion (NE) was used in the formulation of the analogue. The novel formula's surface charge, size, stability, FTIR, FE-TEM, in vitro drug release and physical characteristics were investigated. Furthermore, molecular docking studies were conducted to predict the possible binding modes and molecular interactions behind the inhibitory activities of the THD and TA. Results TA showed a significant cytotoxic activity with IC50 ranging from 0.326 to 43.26 µmol/mL when evaluated against cancerous cells such as MCF-7, HepG2, Caco-2, LNCaP and RKO cell lines. The loaded analogue showed more potential cytotoxicity against MDA-MB-231 and MCF-7-ADR cell lines with IC50 values of 0.0293 and 0.0208 nmol/mL, respectively. Moreover, flow cytometry of cell cycle analysis and apoptosis were performed showing a suppression in the expression levels of TGF-β, MCL-1, VEGF, TNF-α, STAT3 and IL-6 in the MDA-MB-231 cell line. Conclusion The novel NE formula dramatically reduced the anticancer dosage of TA from micromolar efficiency to nanomolar efficiency. This indicates that the synthesized analogue exhibited high potency in the NE formulation and proved its efficacy against triple-negative breast cancer cell line.
Collapse
Affiliation(s)
- Noran M Tawfik
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohammed S Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Sameh Samir Iskandar
- Fellow and Head of Surgical Oncology Department, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif F Hammad
- PharmD Programs, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Doi H, Matsui T, Dijkstra JM, Ogasawara A, Higashimoto Y, Imamura S, Ohye T, Takematsu H, Katsuda I, Akiyama H. Andrographolide, isolated from Andrographis paniculata, induces apoptosis in monocytic leukemia and multiple myeloma cells via augmentation of reactive oxygen species production. F1000Res 2022; 10:542. [PMID: 35528957 PMCID: PMC9069414 DOI: 10.12688/f1000research.53595.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Andrographolide (Andro) is a diterpenoid component of the plant
Andrographis paniculata that is known for its anti-tumor activity against a variety of cancer cells. Methods: We studied the effects of Andro on the viability of the human leukemia monocytic cell line THP-1 and the human multiple myeloma cell line H929. Andro was compared with cytosine arabinoside (Ara-C) and vincristine (VCR), which are well-established therapeutics against hematopoietic tumors. The importance of reactive oxygen species (ROS) production for the toxicity of each agent was investigated by using an inhibitor of ROS production, N-acetyl-L-cysteine (NAC). Results: Andro reduced the viability of THP-1 and H929 in a concentration-dependent manner. H929 viability was highly susceptible to Andro, although only slightly susceptible to Ara-C. The agents Andro, Ara-C, and VCR each induced apoptosis, as shown by cellular shrinkage, DNA fragmentation, and increases in annexin V-binding, caspase-3/7 activity, ROS production, and mitochondrial membrane depolarization. Whereas Ara-C and VCR increased the percentages of cells in the G0/G1 and G2/M phases, respectively, Andro showed little or no detectable effect on cell cycle progression. The apoptotic activities of Andro were largely suppressed by NAC, an inhibitor of ROS production, whereas NAC hardly affected the apoptotic activities of Ara-C and VCR. Conclusions: Andro induces ROS-dependent apoptosis in monocytic leukemia THP-1 and multiple myeloma H929 cells, underlining its potential as a therapeutic agent for treating hematopoietic tumors. The high toxicity for H929 cells, by a mechanism that is different from that of Ara-C and VCR, is encouraging for further studies on the use of Andro against multiple myeloma.
Collapse
Affiliation(s)
- Hiroki Doi
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Taei Matsui
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Johannes M. Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
| | - Atsushi Ogasawara
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Yuki Higashimoto
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Seiji Imamura
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Tamae Ohye
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Hiromu Takematsu
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Itsuro Katsuda
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Hidehiko Akiyama
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| |
Collapse
|
5
|
Yu Y, Liu A, Dhawan G, Mei H, Zhang W, Izawa K, Soloshonok VA, Han J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
7
|
Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci 2021; 15:656921. [PMID: 33854417 PMCID: PMC8039148 DOI: 10.3389/fnins.2021.656921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD, United States
- Aevis Bio, Inc., Daejeon, South Korea
| | | | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
8
|
Heim C, Maiwald S, Steinebach C, Collins MK, Strope J, Chau CH, Figg WD, Gütschow M, Hartmann MD. On the correlation of cereblon binding, fluorination and antiangiogenic properties of immunomodulatory drugs. Biochem Biophys Res Commun 2021; 534:67-72. [PMID: 33310190 PMCID: PMC7815984 DOI: 10.1016/j.bbrc.2020.11.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022]
Abstract
Cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, is a target of thalidomide and thalidomide-derived immunomodulatory drugs (IMiDs). The binding of these IMiDs to CRBN alters the substrate specificity of the ligase, thereby mediating multiple effects that are exploited in cancer therapy. However, to date, it is not clear which other possible targets might be involved in the efficacy of IMiDs. One especially prominent effect of a number of thalidomide analogs is their ability to inhibit angiogenesis, which is typically enhanced in fluorinated analogs. So far, the involvement of CRBN in antiangiogenic effects is under debate. Here, starting from a systematic set of thalidomide analogs and employing a quantitative in vitro CRBN-binding assay, we study the correlation of fluorination, CRBN binding and antiangiogenic effects. We clearly identify fluorination to correlate both with CRBN binding affinity and with antiangiogenic effects, but do not find a correlation between the latter two phenomena, indicating that the main target for the antiangiogenic effects of thalidomide analogs still remains to be identified.
Collapse
Affiliation(s)
- Christopher Heim
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Samuel Maiwald
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Matthew K Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
9
|
Zhang X, Gao Y, Hu X, Ji C, Liu Y, Yu J. Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α‐ and β‐Amino Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Cong‐Bin Ji
- School of Chemistry and Environmental Sciences Shangrao Normal University Jiangxi 334001 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University Haikou 571158 People's Republic of China
| |
Collapse
|
10
|
Umemoto T, O’Hagan D, Thrasher JS. Professor Norio Shibata, Nagoya Institute of Technology – Recipient of the 2019 American Chemical Society Award for Creative Work in Fluorine Chemistry. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Inoue M, Sumii Y, Shibata N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS OMEGA 2020; 5:10633-10640. [PMID: 32455181 PMCID: PMC7240833 DOI: 10.1021/acsomega.0c00830] [Citation(s) in RCA: 912] [Impact Index Per Article: 182.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/10/2020] [Indexed: 05/04/2023]
Abstract
Inspired by the success of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s, fluorine-containing pharmaceuticals, which are also known as fluoro-pharmaceuticals, have been attracting attention for more than half of a century. Presently, about 20% of the commercial pharmaceuticals are fluoro-pharmaceuticals. In this mini-review, we analyze the prevalence of fluoro-pharmaceuticals in the market and categorize them into several groups based on the chemotype of the fluoro-functional groups, their therapeutic purpose, and the presence of heterocycles and/or chirality to highlight the structural motifs, patterns, and promising trends in fluorine-based drug design. Our database contains 340 fluoro-pharmaceuticals, from the first fluoro-pharmaceutical, Florinef, to the latest fluoro-pharmaceuticals registered in 2019 and drugs that have been withdrawn. The names and chemical structures of all the 340 fluorinated drugs discussed are provided in the Supporting Information.
Collapse
Affiliation(s)
- Munenori Inoue
- Sagami
Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
- E-mail:
| | - Yuji Sumii
- Department
of Life Science and Applied Chemistry, Department of Nanopharmaceutical
Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Norio Shibata
- Department
of Life Science and Applied Chemistry, Department of Nanopharmaceutical
Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
- Institute
of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
- E-mail:
| |
Collapse
|
12
|
Similar Safety Profile of the Enantiomeric N-Aminoalkyl Derivatives of Trans-2-Aminocyclohexan-1-ol Demonstrating Anticonvulsant Activity. Molecules 2019; 24:molecules24132505. [PMID: 31323993 PMCID: PMC6651381 DOI: 10.3390/molecules24132505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is one of the most common neurological disorder in the world. Many antiepileptic drugs cause multiple adverse effects. Moreover, multidrug resistance is a serious problem in epilepsy treatment. In the present study we evaluated the safety profile of three (1–3) new chiral N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol demonstrating anticonvulsant activity. Our aim was also to determine differences between the enantiomeric compounds with respect to their safety profile. The results of the study indicated that compounds 1–3 are non-cytotoxic for astrocytes, although they exhibit cytotoxic activity against human glioblastoma cells. Moreover, 1–3 did not affect the viability of HepG2 cells and did not produce adducts with glutathione. Compounds 1–3 demonstrated no mutagenic activity either in the Salmonella typhimurium or in Vibrio harveyi tests. Additionally, the compounds displayed a strong or moderate antimutagenic effect. Finally, the P-glycoprotein (P-gp) ATPase assay demonstrated that both enantiomers are potent P-gp inhibitors. To sum up, our results indicate that the newly synthesized derivatives may be considered promising candidates for further research on anticonvulsant drug discovery and development. Our study indicated the similar safety profile of the enantiomeric N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol, although in the previous studies both enantiomers differ in their biotransformation pathways and pharmacological activity.
Collapse
|
13
|
Punna N, Harada K, Zhou J, Shibata N. Pd-Catalyzed Decarboxylative Cyclization of Trifluoromethyl Vinyl Benzoxazinanones with Sulfur Ylides: Access to Trifluoromethyl Dihydroquinolines. Org Lett 2019; 21:1515-1520. [DOI: 10.1021/acs.orglett.9b00330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kyosuke Harada
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
14
|
Understanding the Thalidomide Chirality in Biological Processes by the Self-disproportionation of Enantiomers. Sci Rep 2018; 8:17131. [PMID: 30459439 PMCID: PMC6244226 DOI: 10.1038/s41598-018-35457-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Twenty years after the thalidomide disaster in the late 1950s, Blaschke et al. reported that only the (S)-enantiomer of thalidomide is teratogenic. However, other work has shown that the enantiomers of thalidomide interconvert in vivo, which begs the question: why is teratogen activity not observed in animal experiments that use (R)-thalidomide given the ready in vivo racemization (“thalidomide paradox”)? Herein, we disclose a hypothesis to explain this “thalidomide paradox” through the in-vivo self-disproportionation of enantiomers. Upon stirring a 20% ee solution of thalidomide in a given solvent, significant enantiomeric enrichment of up to 98% ee was observed reproducibly in solution. We hypothesize that a fraction of thalidomide enantiomers epimerizes in vivo, followed by precipitation of racemic thalidomide in (R/S)-heterodimeric form. Thus, racemic thalidomide is most likely removed from biological processes upon racemic precipitation in (R/S)-heterodimeric form. On the other hand, enantiomerically pure thalidomide remains in solution, affording the observed biological experimental results: the (S)-enantiomer is teratogenic, while the (R)-enantiomer is not.
Collapse
|
15
|
|
16
|
Klika KD, Wzorek A, Soloshonok VA. Internal chirality descriptors iR
and iS
and ire
and isi
. A proposed notation to extend the usefulness of the R
/S
system by retaining the sense of stereochemistry in cases of ligand ranking changes. Chirality 2018; 30:1054-1066. [DOI: 10.1002/chir.22982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Karel D. Klika
- Molecular Structure Analysis; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Alicja Wzorek
- Institute of Chemistry; Jan Kochanowski University in Kielce; Kielce Poland
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I; University of the Basque Country UPV/EHU; San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; Bilbao Spain
| |
Collapse
|
17
|
Das P, Tokunaga E, Akiyama H, Doi H, Saito N, Shibata N. Synthesis of fluoro-functionalized diaryl-λ 3-iodonium salts and their cytotoxicity against human lymphoma U937 cells. Beilstein J Org Chem 2018; 14:364-372. [PMID: 29507641 PMCID: PMC5815272 DOI: 10.3762/bjoc.14.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Conscious of the potential bioactivity of fluorine, an investigation was conducted using various fluorine-containing diaryliodonium salts in order to study and compare their biological activity against human lymphoma U937 cells. Most of the compounds tested are well-known reagents for fluoro-functionalized arylation reactions in synthetic organic chemistry, but their biological properties are not fully understood. Herein, after initially investigating 18 fluoro-functionalized reagents, we discovered that the ortho-fluoro-functionalized diaryliodonium salt reagents showed remarkable cytotoxicity in vitro. These results led us to synthesize more compounds, previously unknown sterically demanding diaryliodonium salts having a pentafluorosulfanyl (SF5) functional group at the ortho-position, that is, unsymmetrical ortho-SF5 phenylaryl-λ3-iodonium salts. Newly synthesized mesityl(2-(pentafluoro-λ6-sulfanyl)phenyl)iodonium exhibited the greatest potency in vitro against U937 cells. Evaluation of the cytotoxicity of selected phenylaryl-λ3-iodonium salts against AGLCL (a normal human B cell line) was also examined.
Collapse
Affiliation(s)
- Prajwalita Das
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Hidehiko Akiyama
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Hiroki Doi
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Norimichi Saito
- Pharmaceutical Division, Ube Industries, Ltd. Seavans North Bldg., 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
18
|
Ding R, Wolf C. Organocatalytic Asymmetric Synthesis of α-Oxetanyl and α-Azetidinyl Tertiary Alkyl Fluorides and Chlorides. Org Lett 2018; 20:892-895. [PMID: 29360370 PMCID: PMC5937693 DOI: 10.1021/acs.orglett.8b00039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric thiourea and squaramide catalysis provides access to synthetically versatile α-oxetanyl and α-azetidinyl alkyl halides exhibiting a tetrasubstituted chiral carbon center with high yields and enantioselectivities. The products are readily transformed with negligible erosion of enantiopurity and excellent diastereoselectivity to a diverse group of multifunctional compounds including fluorooxindoles with two contiguous chirality centers, fluorinated heterocyclic spiranes, and polyspiro compounds.
Collapse
Affiliation(s)
- Ransheng Ding
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, USA
| |
Collapse
|
19
|
Han J, Kitagawa O, Wzorek A, Klika KD, Soloshonok VA. The self-disproportionation of enantiomers (SDE): a menace or an opportunity? Chem Sci 2018; 9:1718-1739. [PMID: 29675218 PMCID: PMC5892310 DOI: 10.1039/c7sc05138g] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023] Open
Abstract
Herein we report on the well-documented, yet not widely known, phenomenon of the self-disproportionation of enantiomers (SDE): the spontaneous fractionation of scalemic material into enantioenriched and -depleted fractions when any physicochemical process is applied.
Herein we report on the well-documented, yet not widely known, phenomenon of the self-disproportionation of enantiomers (SDE): the spontaneous fractionation of scalemic material into enantioenriched and -depleted fractions when any physicochemical process is applied. The SDE has implications ranging from the origins of prebiotic homochirality to unconventional enantiopurification methods, though the risks of altering the enantiomeric excess (ee) unintentionally, regrettably, remain greatly unappreciated. While recrystallization is well known as an SDE process, occurrences of the SDE in other processes are much less recognized, e.g. sublimation and even distillation. But the most common process that many workers seem to be completely ignorant of is SDE via chromatography and reports have included all manner of structures, all types of interactions, and all forms of chromatography, including GC. The SDE can be either a blessing – as a means to obtain enantiopure samples from scalemates – or a curse, as unwitting alteration of the ee leads to errors in the reporting of results and/or misinterpretation of the system under study. Thus the ramifications of the SDE are relevant to any area involving chirality – natural products, asymmetric synthesis, etc. Moreover, there is grave concern regarding errors in the literature, in addition to the possible occurrence of valid results which may have been overlooked and thus remain unreported, as well as the potential for the SDE to alter the ee, particularly via chromatography, and the following concepts will be conveyed: (1) the SDE occurs under totally achiral conditions of (a) precipitation, (b) centrifugation, (c) evaporation, (d) distillation, (e) crystallization, (f) sublimation, and (g) achiral chromatography (e.g. column, flash, MPLC, HPLC, SEC, GC, etc.). (2) The SDE cannot be controlled simply by experimental accuracy and ignorance of the SDE unavoidably leads to mistakes in the recorded and reported stereochemical outcome of enantioselective transformations. (3) The magnitude of the SDE (the difference between the extremes of enantioenrichment and -depletion) can be controlled and used to: (a) minimize mistakes in the recorded experimental values and (b) to develop unconventional and preparatively superior methods for enantiopurification. (4) The magnitude of the SDE cannot be predicted but can be expected for compounds possessing SDE-phoric groups or which have a general tendency for strong hydrogen or halogen bonds or dipole–dipole or aromatic π–π interactions. (5) An SDE test and the rigorous reporting and description of applied physicochemical processes should become part of standard experimental practice to prevent the erroneous reporting of the stereochemical outcome of enantioselective catalytic reactions and the chirooptical properties of scalemates. New directions in the study of the SDE, including halogen bonding-based interactions and novel, unconventional enantiopurification methods such as pseudo-SDE (chiral selector-assisted SDE resolution of racemates), are also reported.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering , State Key Laboratory of Coordination Chemistry , Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China .
| | - Osamu Kitagawa
- Department of Applied Chemistry , Shibaura Institute of Technology , 3-7-5 Toyosu, Kohto-ku , Tokyo 135-8548 , Japan
| | - Alicja Wzorek
- Institute of Chemistry , Jan Kochanowski University in Kielce , Świętokrzyska 15G , 25-406 Kielce , Poland.,Department of Organic Chemistry I , Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3 , 20018 San Sebastián , Spain .
| | - Karel D Klika
- Molecular Structure Analysis , German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280 , D-69009 Heidelberg , Germany .
| | - Vadim A Soloshonok
- Department of Organic Chemistry I , Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3 , 20018 San Sebastián , Spain . .,IKERBASQUE, Basque Foundation for Science , Alameda Urquijo 36-5, Plaza, Bizkaia , 48011 Bilbao , Spain
| |
Collapse
|