1
|
Muangkaew W, Thanomsridetchai N, Tangwattanachuleeporn M, Ampawong S, Sukphopetch P. Unveiling Lodderomyces elongisporus as an Emerging Yeast Pathogen: A Holistic Approach to Microbiological Diagnostic Strategies. Mycopathologia 2024; 189:94. [PMID: 39466469 PMCID: PMC11519285 DOI: 10.1007/s11046-024-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Lodderomyces elongisporus, first isolated in 1952, has increasingly been recognized as a significant pathogen, with a notable rise in human infections since the 1970s. Initially misidentified as Candida parapsilosis due to morphological similarities, L. elongisporus has now been conclusively established as a distinct species, largely due to advancements in molecular biology, particularly DNA sequencing. This review traces the detection history of L. elongisporus, from the earliest documented cases to the most recent reports, underscoring its role as a causative agent in human infections. It also explores therapeutic strategies that have demonstrated efficacy, alongside instances of environmental contamination reported in international literature. A critical evaluation of diagnostic methodologies essential for precise identification is provided, including culture-based techniques such as colony morphology on Sabouraud Dextrose Agar (SDA) and chromogenic media, coupled with microscopic assessments using Lactophenol Cotton Blue (LPCB) and Gram staining. The ultrastructure of L. elongisporus, as observed under Scanning Electron Microscopy (SEM), is also discussed. Furthermore, non-culture-based diagnostics, such as sugar utilization tests (API 20C AUX and the innovative in-house arabinose-based "Loddy" test) and antifungal susceptibility profiling, are reviewed, with a particular focus on molecular tools like ITS-DNA sequencing and MALDI-TOF MS, which, despite their higher costs, offer unparalleled specificity. The accurate distinction and characterization of L. elongisporus are paramount, particularly in vulnerable and immunocompromised patients, where misdiagnosis can lead to severe consequences. This review advocates for intensified research efforts to develop more accessible diagnostic tools and deepen our understanding of this emerging pathogen, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Larcombe DE, Bohovych IM, Pradhan A, Ma Q, Hickey E, Leaves I, Cameron G, Avelar GM, de Assis LJ, Childers DS, Bain JM, Lagree K, Mitchell AP, Netea MG, Erwig LP, Gow NAR, Brown AJP. Glucose-enhanced oxidative stress resistance-A protective anticipatory response that enhances the fitness of Candida albicans during systemic infection. PLoS Pathog 2023; 19:e1011505. [PMID: 37428810 PMCID: PMC10358912 DOI: 10.1371/journal.ppat.1011505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.
Collapse
Affiliation(s)
- Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Iryna M. Bohovych
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Gary Cameron
- Rowett Institute, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, One Chapel Place, London, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| |
Collapse
|
3
|
de Andrade IB, Figueiredo-Carvalho MHG, Chaves ALDS, Coelho RA, Almeida-Silva F, Zancopé-Oliveira RM, Frases S, Brito-Santos F, Almeida-Paes R. Metabolic and phenotypic plasticity may contribute for the higher virulence of Trichosporon asahii over other Trichosporonaceae members. Mycoses 2022; 66:430-440. [PMID: 36564594 DOI: 10.1111/myc.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Trichosporonaceae family comprises a large number of basidiomycetes widely distributed in nature. Some of its members, especially Trichosporon asahii, have the ability to cause human infections. This ability is related to a series of virulence factors, which include lytic enzymes production, biofilm formation, resistance to oxidising agents, melanin and glucuronoxylomannan in the cell wall, metabolic plasticity and phenotypic switching. The last two are poorly addressed within human pathogenic Trichosporonaceae. OBJECTIVE These factors were herein studied to contribute with the knowledge of these emerging pathogens and to uncover mechanisms that would explain the higher frequency of T. asahii in human infections. METHODS We included 79 clinical isolates phenotypically identified as Trichosporon spp. and performed their molecular identification. Lactate and N-acetyl glucosamine were the carbon sources of metabolic plasticity studies. Morphologically altered colonies after subcultures and incubation at 37°C indicated phenotypic switching. RESULTS AND CONCLUSION The predominant species was T. asahii (n = 65), followed by Trichosporon inkin (n = 4), Apiotrichum montevideense (n = 3), Trichosporon japonicum (n = 2), Trichosporon faecale (n = 2), Cutaneotrichosporon debeurmannianum (n = 1), Trichosporon ovoides (n = 1) and Cutaneotrichosporon arboriforme (n = 1). T. asahii isolates had statistically higher growth on lactate and N-acetylglucosamine and on glucose during the first 72 h of culture. T. asahii, T. inkin and T. japonicum isolates were able to perform phenotypic switching. These results expand the virulence knowledge of Trichosporonaceae members and point for a role for metabolic plasticity and phenotypic switching on the trichosporonosis pathogenesis.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alessandra Leal da Silva Chaves
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Análises Clínicas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| | | | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. Microbiol Mol Biol Rev 2022; 86:e0000721. [PMID: 35195440 PMCID: PMC8941940 DOI: 10.1128/mmbr.00007-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating-type switching is a natural but unusual genetic control process that regulates cell identity in ascomycete yeasts. It involves physically replacing one small piece of genomic DNA by another, resulting in replacement of the master regulatory genes in the mating pathway and hence a switch of cell type and mating behavior. In this review, we concentrate on recent progress that has been made on understanding the origins and evolution of mating-type switching systems in budding yeasts (subphylum Saccharomycotina). Because of the unusual nature and the complexity of the mechanism in Saccharomyces cerevisiae, mating-type switching was assumed until recently to have originated only once or twice during yeast evolution. However, comparative genomics analysis now shows that switching mechanisms arose many times independently-at least 11 times in budding yeasts and once in fission yeasts-a dramatic example of convergent evolution. Most of these lineages switch mating types by a flip/flop mechanism that inverts a section of a chromosome and is simpler than the well-characterized 3-locus cassette mechanism (MAT/HML/HMR) used by S. cerevisiae. Mating-type switching (secondary homothallism) is one of the two possible mechanisms by which a yeast species can become self-fertile. The other mechanism (primary homothallism) has also emerged independently in multiple evolutionary lineages of budding yeasts, indicating that homothallism has been favored strongly by natural selection. Recent work shows that HO endonuclease, which makes the double-strand DNA break that initiates switching at the S. cerevisiae MAT locus, evolved from an unusual mobile genetic element that originally targeted a glycolytic gene, FBA1.
Collapse
|
5
|
Dear T, Joe Yu Y, Pandey S, Fuller J, Devlin MK. The first described case of Lodderomyces elongisporus meningitis. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2021; 6:221-228. [PMID: 36337753 PMCID: PMC9615464 DOI: 10.3138/jammi-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 06/16/2023]
Abstract
We describe the first documented case of meningitis caused by Lodderomyces elongisporus. Identification of L. elongisporus was made on the basis of an arachnoid biopsy with pathology samples sent for fungal internal transcribed spacer sequencing after multiple central nervous system (CNS) fungal culture specimens were negative. After final diagnosis, treatment was transitioned from amphotericin to fluconazole, which, combined with insertion of lumbar drain followed by a permanent ventriculopleural shunt, resulted in significant clinical improvement. Our report reviews the literature of (1) cases of L. elongisporus, which almost exclusively describe fungemia or endocarditis; (2) CNS infections caused by Candida parapsilosis, an organism with which L. elongisporus was previously conflated; and (3) management of fungal meningitis-associated hydrocephalus.
Collapse
Affiliation(s)
- Taylor Dear
- Department of Medicine, Western University, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| | - Yeyao Joe Yu
- London Health Sciences Centre, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Sachin Pandey
- London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine Imaging, Western University, London, Ontario, Canada
| | - Jeff Fuller
- London Health Sciences Centre, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Megan K Devlin
- Department of Medicine, Western University, London, Ontario, Canada
- Division of Infectious Diseases, Western University, London, Ontario, Canada
- St. Joseph’s Health Centre, London, Ontario, Canada
| |
Collapse
|
6
|
Lehtoranta L, Hibberd AA, Yeung N, Laitila A, Maukonen J, Ouwehand AC. Short communication: Characterization of vaginal fungal communities in healthy women and women with bacterial vaginosis (BV); a pilot study. Microb Pathog 2021; 161:105055. [PMID: 34146644 DOI: 10.1016/j.micpath.2021.105055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The role of the vaginal fungal community, the mycobiota, in women's health is an emerging area of research. Utilization of novel molecular technology enables more in-depth characterization and identification of fungal diversity, and their potential associations to health. The present study is a substudy of a larger observational clinical trial investigating the vaginal microbiota composition before and after antibiotic treatment for Bacterial Vaginosis (BV) infection in comparison to the microbiota of healthy women (Clinicaltrials.gov identifier: NCT03187). Here, we characterized the vaginal mycobiota by sequencing the internal transcribed spacer (ITS) 2 region from vaginal microbial DNA collected from healthy women and women with BV and in relation to their treatment with oral metronidazole. Interestingly, both ascomycetous and basidiomycetous yeasts and filamentous fungi consisting of more than 30 different species were detectable from 21 out of 94 vaginal swab samples. The mycobiota was dominated by Candida species (>60% of relative abundance) and especially with Candida albicans in both study groups. The abundance of C. albicans was inversely correlated with fungal diversity but did not correlate with Nugent scores. Metronidazole did not seem to have a major effect on the relative abundance of C. albicans. The results revealed the diversity of the fungal community within healthy and BV-infected women, which is worth exploring further.
Collapse
Affiliation(s)
- Liisa Lehtoranta
- IFF Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland.
| | - Ashley A Hibberd
- IFF Health & Biosciences, International Flavors & Fragrances, 4300 Duncan Avenue, Saint Louis, Missouri 63110, United States
| | - Nicolas Yeung
- IFF Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland
| | - Arja Laitila
- IFF Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland
| | - Johanna Maukonen
- IFF Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland
| | - Arthur C Ouwehand
- IFF Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland
| |
Collapse
|
7
|
Krassowski T, Kominek J, Shen XX, Opulente DA, Zhou X, Rokas A, Hittinger CT, Wolfe KH. Multiple Reinventions of Mating-type Switching during Budding Yeast Evolution. Curr Biol 2019; 29:2555-2562.e8. [PMID: 31353182 PMCID: PMC6692504 DOI: 10.1016/j.cub.2019.06.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
Abstract
Cell type in budding yeasts is determined by the genotype at the mating-type (MAT) locus, but yeast species differ widely in their mating compatibility systems and life cycles. Among sexual yeasts, heterothallic species are those in which haploid strains fall into two distinct and stable mating types (MATa and MATα), whereas homothallic species are those that can switch mating types or that appear not to have distinct mating types [1, 2]. The evolutionary history of these mating compatibility systems is uncertain, particularly regarding the number and direction of transitions between homothallism and heterothallism, and regarding whether the process of mating-type switching had a single origin [3-5]. Here, we inferred the mating compatibility systems of 332 budding yeast species from their genome sequences. By reference to a robust phylogenomic tree [6], we detected evolutionary transitions between heterothallism and homothallism, and among different forms of homothallism. We find that mating-type switching has arisen independently at least 11 times during yeast evolution and that transitions from heterothallism to homothallism greatly outnumber transitions in the opposite direction (31 versus 3). Although the 3-locus MAT-HML-HMR mechanism of mating-type switching as seen in Saccharomyces cerevisiae had a single evolutionary origin in budding yeasts, simpler "flip/flop" mechanisms of switching evolved separately in at least 10 other groups of yeasts. These results point to the adaptive value of homothallism and mating-type switching to unicellular fungi.
Collapse
Affiliation(s)
- Tadeusz Krassowski
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland; Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kenneth H Wolfe
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
8
|
Genetic Diversity and Antifungal Susceptibility of Candida parapsilosis Sensu Stricto Isolated from Bloodstream Infections in Turkish Patients. Mycopathologia 2018; 183:701-708. [PMID: 29725811 DOI: 10.1007/s11046-018-0261-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Candida parapsilosis sensu stricto is an emerging cause of hospital-acquired Candida infections, predominantly in southern Europe, South America, and Asia. We investigated the genetic diversity and antifungal susceptibility profile of 170 independent C. parapsilosis sensu stricto strains obtained from patients with candidemia who were treated at the Ege University Hospital in Izmir, Turkey, between 2006 and 2014. The identity of each strain was confirmed via PCR amplification and digestion of the secondary alcohol dehydrogenase-encoding gene. The 24-h geometric mean minimum inhibitory concentrations of the antifungal agents, in increasing order, were as follows: posaconazole, 0.10 µg/mL; voriconazole, 0.21 µg/mL; caspofungin, 0.38 µg/mL; amphotericin B, 0.61 µg/mL; anidulafungin, 0.68 µg/mL; and fluconazole, 2.95 µg/mL. Microsatellite genotyping of the isolates (using fluorescently labeled primers and a panel of four different short-nucleotide repeat fragments) identified 25, 17, 17, and 8 different allelic genotypes at the CP6, B5, CP4, and CP1 locus, respectively. Posaconazole, caspofungin, and amphotericin B showed the greatest in vitro activity of the tested systemic azole, echinocandin, and polyene agents, respectively, and the observed antifungal susceptibility of the isolates was shown to be independent of their isolation source. We obtained a combined discriminatory power of 0.99 with a total of 130 genotypes for 170 isolates tested. Finally, microsatellite profiling analysis confirmed the presence of identical genotype between separate isolates, supporting that effective surveillance and infection-prevention programs are essential to limit the impact of C. parapsilosis sensu stricto on hospitalized patients' health.
Collapse
|