1
|
Nagarajan N, Guda C. Identification of potential inhibitors for drug-resistant EGFR mutations in non-small cell lung cancer using whole exome sequencing data. Front Pharmacol 2024; 15:1428158. [PMID: 39130636 PMCID: PMC11310931 DOI: 10.3389/fphar.2024.1428158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) gene mutations are prevalent in about 50% of lung adenocarcinoma patients. Highly effective tyrosine kinase inhibitors (TKIs) targeting the EGFR protein have revolutionized treatment for the prevalent and aggressive lung malignancy. However, the emergence of new EGFR mutations and the rapid development of additional drug resistance mechanisms pose substantial challenge to the effective treatment of NSCLC. To investigate the underlying causes of drug resistance, we utilized next-generation sequencing data to analyse the genetic alterations in different tumor genomic states under the pressure of drug selection. This study involved a comprehensive analysis of whole exome sequencing data (WES) from NSCLC patients before and after treatment with afatinib and osimertinib with a goal to identify drug resistance mutations from the post-treatment WES data. We identified five EGFR single-point mutations (L718A, G724E, G724K, K745L, V851D) and one double mutation (T790M/L858R) associated with drug resistance. Through molecular docking, we observed that mutations, G724E, K745L, V851D, and T790M/L858R, have negatively affected the binding affinity with the FDA-approved drugs. Further, molecular dynamic simulations revealed the detrimental impact of these mutations on the binding efficacy. Finally, we conducted virtual screening against structurally similar compounds to afatinib and osimertinib and identified three compounds (CID 71496460, 73292362, and 73292545) that showed the potential to selectively inhibit EGFR despite the drug-resistance mutations. The WES-based study provides additional insight to understand the drug resistance mechanisms driven by tumor mutations and helps develop potential lead compounds to inhibit EGFR in the presence of drug resistance mutations.
Collapse
Affiliation(s)
- Nagasundaram Nagarajan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Rubio K, Romero-Olmedo AJ, Sarvari P, Swaminathan G, Ranvir VP, Rogel-Ayala DG, Cordero J, Günther S, Mehta A, Bassaly B, Braubach P, Wygrecka M, Gattenlöhner S, Tresch A, Braun T, Dobreva G, Rivera MN, Singh I, Graumann J, Barreto G. Non-canonical integrin signaling activates EGFR and RAS-MAPK-ERK signaling in small cell lung cancer. Theranostics 2023; 13:2384-2407. [PMID: 37215577 PMCID: PMC10196829 DOI: 10.7150/thno.79493] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Small cell lung cancer (SCLC) is an extremely aggressive cancer type with a patient median survival of 6-12 months. Epidermal growth factor (EGF) signaling plays an important role in triggering SCLC. In addition, growth factor-dependent signals and alpha-, beta-integrin (ITGA, ITGB) heterodimer receptors functionally cooperate and integrate their signaling pathways. However, the precise role of integrins in EGF receptor (EGFR) activation in SCLC remains elusive. Methods: We analyzed human precision-cut lung slices (hPCLS), retrospectively collected human lung tissue samples and cell lines by classical methods of molecular biology and biochemistry. In addition, we performed RNA-sequencing-based transcriptomic analysis in human lung cancer cells and human lung tissue samples, as well as high-resolution mass spectrometric analysis of the protein cargo from extracellular vesicles (EVs) that were isolated from human lung cancer cells. Results: Our results demonstrate that non-canonical ITGB2 signaling activates EGFR and RAS/MAPK/ERK signaling in SCLC. Further, we identified a novel SCLC gene expression signature consisting of 93 transcripts that were induced by ITGB2, which may be used for stratification of SCLC patients and prognosis prediction of LC patients. We also found a cell-cell communication mechanism based on EVs containing ITGB2, which were secreted by SCLC cells and induced in control human lung tissue RAS/MAPK/ERK signaling and SCLC markers. Conclusions: We uncovered a mechanism of ITGB2-mediated EGFR activation in SCLC that explains EGFR-inhibitor resistance independently of EGFR mutations, suggesting the development of therapies targeting ITGB2 for patients with this extremely aggressive lung cancer type.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| | - Addi J. Romero-Olmedo
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Department of Medicine, Philipps-University Marburg; Marburg, Germany
| | - Pouya Sarvari
- Independent Researcher, collaborator of International Laboratory EPIGEN-CONCYTEP
| | | | - Vikas P. Ranvir
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Diana G. Rogel-Ayala
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Aditi Mehta
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University of Munich; Munich, Germany
| | - Birgit Bassaly
- Institute for Pathology, Justus Liebig University; 35392 Gießen, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School; Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network; Hanover, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center; Giessen, Germany
- Institute of Lung Health, German Center for Lung Research (DZL); Giessen, Germany
| | | | - Achim Tresch
- CECAD, University of Cologne; Cologne, Germany
- Faculty of Medicine and University Hospital, University of Cologne; Cologne, Germany
- Center for Data and Simulation Science, University of Cologne; Cologne, Germany
| | - Thomas Braun
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Miguel N. Rivera
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University Marburg; 35043 Marburg, Germany
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| |
Collapse
|
3
|
Identification of Ultrasound-Sensitive Prognostic Markers of LAML and Construction of Prognostic Risk Model Based on WGCNA. JOURNAL OF ONCOLOGY 2023; 2023:2353249. [PMID: 36816364 PMCID: PMC9937759 DOI: 10.1155/2023/2353249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 11/25/2022] [Indexed: 02/12/2023]
Abstract
Background Acute myeloid leukemia (LAML) is the most widely known acute leukemia in adults. Chemotherapy is the main treatment method, but eventually many individuals who have achieved remission relapse, the disease will ultimately transform into refractory leukemia. Therefore, for the improvement of the clinical outcome of patients, it is crucial to identify novel prognostic markers. Methods The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were utilized to retrieve RNA-Seq information and clinical follow-up details for patients with acute myeloid leukemia, respectively, whereas samples that received or did not receive ultrasound treatment were analyzed using differential expression analysis. For consistent clustering analysis, the ConsensusClusterPlus package was utilized, while by utilizing weighted correlation network analysis (WGCNA), important modules were found and the generation of the coexpression network of hub gene was generated using Cytoscape. CIBERSORT, ESTIMATE, and xCell algorithms of the "IOBR" R package were employed for the calculation of the relative quantity of immune infiltrating cells, whereas the mutation frequency of cells was estimated by means of the "maftools" R package. The pathway enrichment score was calculated using the single sample Gene Set Enrichment Analysis (ssGSEA) algorithm of the "Gene Set Variation Analysis (GSVA)" R package. The IC50 value of the drug was predicted by utilizing the "pRRophetic." The indications linked with prognosis were selected by means of the least absolute shrinkage and selection operator (Lasso) Cox analysis. Results Two categories of samples were created as follows: Cluster 1 and Cluster 2 depending on the differential gene consistent clustering of ultrasound treatment. The prognosis of patients in Cluster 2 was better than that in Cluster 1, and a considerable variation was observed in the immune microenvironment of Cluster 1 and Cluster 2. Lasso analysis finally obtained an 8-gene risk model (GASK1A, LPO, LTK, PRRT4, UGT3A2, BLOCK1S1, G6PD, and UNC93B1). The model acted as an independent risk factor for the patients' prognosis, and it showed good robustness in different datasets. Considerable variations were observed in the abundance of immune cell infiltration, genome mutation, pathway enrichment score, and chemotherapeutic drug resistance between the low and high-risk groups in accordance with the risk score (RS). Additionally, model-based RSs in the immunotherapy cohort were significantly different between complete remission (CR) and other response groups. Conclusion The prognosis of people with LAML can be predicted using the 8-gene signature.
Collapse
|
4
|
Du S, Zhu C, Ren X, Chen X, Cui X, Guan S. Regulation of secretory pathway kinase or kinase-like proteins in human cancers. Front Immunol 2023; 14:942849. [PMID: 36825005 PMCID: PMC9941534 DOI: 10.3389/fimmu.2023.942849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Secretory pathway kinase or kinase-like proteins (SPKKPs) are effective in the lumen of the endoplasmic reticulum (ER), Golgi apparatus (GA), and extracellular space. These proteins are involved in secretory signaling pathways and are distinctive from typical protein kinases. Various reports have shown that SPKKPs regulate the tumorigenesis and progression of human cancer via the phosphorylation of various substrates, which is essential in physiological and pathological processes. Emerging evidence has revealed that the expression of SPKKPs in human cancers is regulated by multiple factors. This review summarizes the current understanding of the contribution of SPKKPs in tumorigenesis and the progression of immunity. With the epidemic trend of immunotherapy, targeting SPKKPs may be a novel approach to anticancer therapy. This study briefly discusses the recent advances regarding SPKKPs.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
6
|
Raja Sharin RNFS, Khan J, Ibahim MJ, Muhamad M, Bowen J, Wan Mohamad Zain WNI. Role of ErbB1 in the Underlying Mechanism of Lapatinib-Induced Diarrhoea: A Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4165808. [PMID: 35800225 PMCID: PMC9256418 DOI: 10.1155/2022/4165808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Lapatinib, an orally administered small-molecule tyrosine kinase inhibitor (SM-TKI), is an effective treatment for ErbB2-positive breast cancer. However, its efficacy as one of the targeted cancer therapies has been hampered by several adverse effects, especially gastrointestinal toxicity, commonly manifested as diarrhoea. Although it can be generally tolerated, diarrhoea is reported as the most common and most impactful on a patient's quality of life and associated with treatment interruption. Severe diarrhoea can result in malabsorption, leading to dehydration, fatigue, and even death. ErbB1 is an epidermal growth factor profoundly expressed in normal gut epithelium while lapatinib is a dual ErbB1/ErbB2 tyrosine kinase inhibitor. Thus, ErbB1 inhibition by lapatinib may affect gut homeostasis leading to diarrhoea. Nevertheless, the underlying mechanisms remain unclear. This review article provides evidence of the possible mechanisms of lapatinib-induced diarrhoea that may be related to/or modulated by ErbB1. Insight regarding the involvement of ErbB1 in the pathophysiological changes such as inflammation and intestinal permeability as the underlying cause of diarrhoea is covered in this article.
Collapse
Affiliation(s)
- Raja Nur Firzanah Syaza Raja Sharin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Jesmine Khan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Johari Ibahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mudiana Muhamad
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Joanne Bowen
- Discipline of Physiology, School of Biomedicine, University of Adelaide, South Australia 5005, Australia
| | - Wan Nor I'zzah Wan Mohamad Zain
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
7
|
Karimpour M, Ravanbakhsh R, Maydanchi M, Rajabi A, Azizi F, Saber A. Cancer driver gene and non-coding RNA alterations as biomarkers of brain metastasis in lung cancer: A review of the literature. Biomed Pharmacother 2021; 143:112190. [PMID: 34560543 DOI: 10.1016/j.biopha.2021.112190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Brain metastasis (BM) is the most common event in patients with lung cancer. Despite multimodal treatments and advances in systemic therapies, development of BM remains one of the main factors associated with poor prognosis and mortality in patients with lung cancer. Therefore, better understanding of mechanisms involved in lung cancer brain metastasis (LCBM) is of great importance to suppress cancer cells and to improve the overall survival of patients. Several cancer-related genes such as EGFR and KRAS have been proposed as potential predictors of LCBM. In addition, there is ample evidence supporting crucial roles of non-coding RNAs (ncRNAs) in mediating LCBM. In this review, we provide comprehensive information on risk assessment, predictive, and prognostic panels for early detection of BM in patients with lung cancer. Moreover, we present an overview of LCBM molecular mechanisms, cancer driver genes, and ncRNAs which may predict the risk of BM in lung cancer patients. Recent clinical studies have focused on determining mechanisms involved in LCBM and their association with diagnosis, prognosis, and treatment outcomes. These studies have shown that alterations in EGFR, KRAS, BRAF, and ALK, as the most frequent coding gene alterations, and dysregulation of ncRNAs such as miR-423, miR-330-3p, miR-145, piR-651, and MALAT1 can be considered as potential biomarkers of LCBM.
Collapse
Affiliation(s)
- Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Melika Maydanchi
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Faezeh Azizi
- Genetics Office, Non-Communicable Disease Control Department, Public Health Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Saber
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran.
| |
Collapse
|
8
|
Du S, Guan S, Zhu C, Guo Q, Cao J, Guan G, Cheng W, Cheng P, Wu A. Secretory Pathway Kinase FAM20C, a Marker for Glioma Invasion and Malignancy, Predicts Poor Prognosis of Glioma. Onco Targets Ther 2020; 13:11755-11768. [PMID: 33239887 PMCID: PMC7680683 DOI: 10.2147/ott.s275452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Glioblastoma (GBM) is the most lethal primary cancer in adult central nervous system, and new strategies are desperately needed. The secretory pathway kinase or kinase-like proteins (SPKKPs) have been shown to mediate multiple physiological functions by phosphorylating extracellular proteins and proteoglycans. However, their roles in cancers, especially GBM, remain poorly defined. Methods The least absolute shrinkage and selection operator (LASSO) regression was employed for establishing the SPKKPs signature for IDH wild type (wt) GBM prognosis. Integrative analyses with multiple datasets were employed to identify the core member of this gene family in glioma. The receiver operator characteristic (ROC) curves and immunohistochemistry were further used for evaluating its association with progressive malignancy in glioma and GBM patients’ survival, respectively. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to interpret its functions in GBM, which were further verified in vitro. Results A SPKKPs classifier was constructed with 3 genes of this family. This signature could effectively distinguish IDH wt GBM survival. Family with sequence similarity 20 C (FAM20C) was further identified as the core member of this family in glioma. Elevated FAM20C expression was not only closely correlated with glioma malignancy progression and the mesenchymal subtype of GBM but also indicated unfavorable survival of GBM patients. FAM20C was also found to be associated with the disrupted immune response in GBM microenvironment and was required for the migration of glioma and immune cells. Conclusion These data indicate that the potential of FAM20C serving as a predictive molecule and a therapeutic target for GBM.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jingyuan Cao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, People's Republic of China.,College of Applied Technology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| |
Collapse
|
9
|
Cheng F, Yu J, Zhang X, Dai Z, Fang A. CircSEC31A Promotes the Malignant Progression of Non-Small Cell Lung Cancer Through Regulating SEC31A Expression via Sponging miR-376a. Cancer Manag Res 2020; 12:11527-11539. [PMID: 33204164 PMCID: PMC7667003 DOI: 10.2147/cmar.s280124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) have recently been shown as important regulators in the pathogenesis of non-small cell lung cancer (NSCLC). The purpose of this work was to explore the precise parts played by circRNA SEC31 homolog A (circSEC31A, hsa_circ_0001421) in NSCLC malignant progression. Methods The expression levels of circSEC31A, miR-376a and SEC31 homolog A (SEC31A) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot. Subcellular fractionation assay was used to determine the subcellular localization of circSEC31A, and RNase R assay was performed to assess the stability of circSEC31A. Cell migration and invasion were detected by transwell assay, and cell apoptosis was evaluated using flow cytometry. Measurement of glucose consumption, lactate production and adenosine triphosphate (ATP) level were done using corresponding assay kits. The targeted interactions among circSEC31A, miR-376a and SEC31A were confirmed by the dual-luciferase reporter and RNA pull-down assays. Animal studies were performed to observe the role of circSEC31A in tumor growth in vivo. Results Our data indicated that circSEC31A and SEC31A were upregulated in NSCLC tissues and cells. CircSEC31A knockdown suppressed NSCLC cell migration, invasion, glycolysis and promoted apoptosis in vitro, as well as hindered tumor growth in vivo. Mechanistically, circSEC31A directly interacted with miR-376a, and circSEC31A depletion regulated NSCLC cell malignant progression by miR-376a. Moreover, SEC31A was a functional target of miR-376a, and it mediated the regulatory impact of miR-376a overexpression on NSCLC cell progression. Furthermore, circSEC31A controlled SEC31A expression through acting as a miR-376a sponge. Conclusion Our findings first identified that the knockdown of circSEC31A suppressed NSCLC malignant progression at least partly through modulating SEC31A expression by acting as a miR-376a sponge, providing a novel molecular target of NSCLC therapy.
Collapse
Affiliation(s)
- Fengfeng Cheng
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, People's Republic of China
| | - Jing Yu
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, People's Republic of China
| | - Xiaoying Zhang
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, People's Republic of China
| | - Zongyan Dai
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, People's Republic of China
| | - Aiju Fang
- Department of Pathology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, People's Republic of China
| |
Collapse
|
10
|
Liu B, Chen D, Chen S, Saber A, Haisma H. Transcriptional activation of cyclin D1 via HER2/HER3 contributes to EGFR-TKI resistance in lung cancer. Biochem Pharmacol 2020; 178:114095. [PMID: 32535106 DOI: 10.1016/j.bcp.2020.114095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Several different mechanisms are implicated in the resistance of lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), and only few have been functionally investigated. Here, using genetically knocked out EGFR and TKI-resistant lung cancer cells, we show that loss of wild-type EGFR attenuates cell proliferation, migration and 3D-spheroid formation, whereas loss of mutant EGFR or resistance to TKIs reinforces those processes. Consistently, disruption of wild-type EGFR leads to suppression of HER2/HER3, while mutant EGFR ablation or resistance to TKIs increases HER2/HER3 expression, compensating for EGFR loss. Furthermore, HER2/HER3 nuclear translocation mediates overexpression of cyclin D1, leading to tumor cell survival and drug resistance. Cyclin D1/CDK4/6 inhibition resensitizes erlotinib-resistant (ER) cells to erlotinib. Analysis of cyclin D1 expression in patients with non-small cell lung carcinoma (NSCLC) showed that its expression is negatively associated with overall survival and disease-free survival. Our results provide biological and mechanistic insights into targeting EGFR and TKI resistance.
Collapse
Affiliation(s)
- Bin Liu
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Deng Chen
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Shipeng Chen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer Immunotherapy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ali Saber
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Hidde Haisma
- Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
11
|
Liu B, Diaz Arguello OA, Chen D, Chen S, Saber A, Haisma HJ. CRISPR-mediated ablation of overexpressed EGFR in combination with sunitinib significantly suppresses renal cell carcinoma proliferation. PLoS One 2020; 15:e0232985. [PMID: 32413049 PMCID: PMC7228069 DOI: 10.1371/journal.pone.0232985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Receptor tyrosine kinases, such as VEGFR, PDGFR and EGFR, play important roles in renal cancer. In this study, we investigated EGFR knockout as a therapeutic approach in renal cell carcinoma (RCC). We showed that a renal cell carcinoma cell line (RC21) has higher expression of EGFR as compared to other frequently used cell lines such as HEK293, A549, Hela and DLD1. Ablation of EGFR by CRISPR/Cas9 significantly restrained tumor cell growth and activated the MAPK (pERK1/2) pathway. The VEGFR and PDGFR inhibitor, sunitinib, attenuated the expression of MAPK (pERK1/2) and pAKT induced by EGFR loss and further inhibited EGFR-/- cell proliferation. We showed that loss of EGFR eventually leads to resistance to SAHA and cisplatin. Furthermore, EGFR loss induced G2/M phase arrest and resulted in an increased resistance to TNF-related apoptosis-inducing ligand (TRAIL) in renal cell carcinoma. Thus, ablation of overexpressed EGFR by CRISPR/Cas9 alone or in combination with sunitinib may be a new treatment option for renal cell carcinoma.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
| | - Olivia Adaly Diaz Arguello
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
| | - Siwei Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
| | - Hidde J. Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Pleasance E, Titmuss E, Williamson L, Kwan H, Culibrk L, Zhao EY, Dixon K, Fan K, Bowlby R, Jones MR, Shen Y, Grewal JK, Ashkani J, Wee K, Grisdale CJ, Thibodeau ML, Bozoky Z, Pearson H, Majounie E, Vira T, Shenwai R, Mungall KL, Chuah E, Davies A, Warren M, Reisle C, Bonakdar M, Taylor GA, Csizmok V, Chan SK, Zong Z, Bilobram S, Muhammadzadeh A, D’Souza D, Corbett RD, MacMillan D, Carreira M, Choo C, Bleile D, Sadeghi S, Zhang W, Wong T, Cheng D, Brown SD, Holt RA, Moore RA, Mungall AJ, Zhao Y, Nelson J, Fok A, Ma Y, Lee MKC, Lavoie JM, Mendis S, Karasinska JM, Deol B, Fisic A, Schaeffer DF, Yip S, Schrader K, Regier DA, Weymann D, Chia S, Gelmon K, Tinker A, Sun S, Lim H, Renouf DJ, Laskin J, Jones SJM, Marra MA. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. ACTA ACUST UNITED AC 2020; 1:452-468. [DOI: 10.1038/s43018-020-0050-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023]
|
13
|
Zhai X, Ward RA, Doig P, Argyrou A. Insight into the Therapeutic Selectivity of the Irreversible EGFR Tyrosine Kinase Inhibitor Osimertinib through Enzyme Kinetic Studies. Biochemistry 2020; 59:1428-1441. [DOI: 10.1021/acs.biochem.0c00104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiang Zhai
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Richard A. Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Peter Doig
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Argyrides Argyrou
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
14
|
Snezhkina AV, Lukyanova EN, Fedorova MS, Kalinin DV, Melnikova NV, Stepanov OA, Kiseleva MV, Kaprin AD, Pudova EA, Kudryavtseva AV. Novel Genes Associated with the Development of Carotid Paragangliomas. Mol Biol 2019. [DOI: 10.1134/s0026893319040137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Kolesnikova M, Sen'kova A, Tairova S, Ovchinnikov V, Pospelova T, Zenkova M. Clinical and Prognostic Significance of Cell Sensitivity to Chemotherapy Detected in vitro on Treatment Response and Survival of Leukemia Patients. J Pers Med 2019; 9:jpm9020024. [PMID: 31067780 PMCID: PMC6617197 DOI: 10.3390/jpm9020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is a major challenge in leukemia treatment. The objective of this study was to identity predictors of MDR to allow for rapid and economical assessment of the efficacy of planned antitumor therapy for leukemia patients. The study included 113 patients with acute and chronic leukemias. Prior to antitumor therapy, we measured the sensitivity of tumor cells of patients to the panel of chemotherapeutic drugs, together with MDR1 mRNA and P-glycoprotein (P-gp) expression as one of the mechanisms of MDR, and compared these data with the response to therapy. The scales for leukemia patients according to therapy response, drug sensitivity of tumor cells, MDR1 mRNA and P-gp levels, and the presence of unfavorable immunological and cytogenetic markers were introduced for subsequent correlation analysis. We show that the drug resistance of tumor cells of leukemia patients estimated in vitro at diagnosis correlates with a poor response to chemotherapy and is usually combined with aberrant and immature immunological markers, cytogenetic abnormalities, and a high expression of MDR1 mRNA and P-gp. All together, these factors indicate unfavorable prognosis and low survival of leukemia patients. Thus, the sensitivity of tumor cells to chemotherapeutic drugs measured in vitro at diagnosis may have prognostic value for individual types of leukemia.
Collapse
Affiliation(s)
- Maria Kolesnikova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Aleksandra Sen'kova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| | - Sofia Tairova
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Viktor Ovchinnikov
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Tatiana Pospelova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Marina Zenkova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
16
|
Mutational Evolution in Relapsed Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2018; 10:cancers10110459. [PMID: 30463380 PMCID: PMC6265691 DOI: 10.3390/cancers10110459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Current genomic models in diffuse large B-cell lymphoma (DLBCL) are based on single tumor biopsies, which might underestimate heterogeneity. Data on mutational evolution largely remains unknown. An exploratory study using whole exome sequencing on paired (primary and relapse) formalin fixed paraffin embedded DLBCL biopsies (n = 14) of 6 patients was performed to globally assess the mutational evolution and to identify gene mutations specific for relapse samples from patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone. A minority of the mutations detected in the primary sample (median 7.6%, range 4.8–66.2%) could not be detected in the matching relapse sample. Relapsed DLBCL samples showed a mild increase of mutations (median 12.5%, range 9.4–87.6%) as compared to primary tumor biopsies. We identified 264 genes possibly related to therapy resistance, including tyrosine kinases (n = 18), (transmembrane) glycoproteins (n = 73), and genes involved in the JAK-STAT pathway (n = 7). Among the potentially resistance related genes were PIM1, SOCS1, and MYC, which have been reported to convey a risk for treatment failure. In conclusion, we show modest temporal heterogeneity between paired tumor samples with the acquisition of new mutations and identification of genes possibly related to therapy resistance. The mutational evolution could have implications for treatment decisions and development of novel targeted drugs.
Collapse
|
17
|
Wei Z, Liu T, Lei J, Wu Y, Wang S, Liao K. Fam198a, a member of secreted kinase, secrets through caveolae biogenesis pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:968-975. [PMID: 30188967 DOI: 10.1093/abbs/gmy105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 01/21/2023] Open
Abstract
Fam198a is a member of four-jointed protein kinases, a secreted protein kinase family. It was identified as a caveolae-associated protein and colocalized with cavin-1 and caveolin-1 in both tissues and cells. The newly synthesized Fam198a precursor in endoplasmic reticulum (ER) was transported by caveolae biogenesis vesicles to Golgi apparatus in which it was proteolytically cleaved into the secreted mature form. The amino acid mutation analysis identified Arg 120 and 437 as the proteolytic sites in Fam198a precursor during maturation. In mouse embryo fibroblasts (MEFs) obtained from cavin-1-/- or caveolin-1-/- mice, Fam198a precursor was retained in ER and no mature Fam198a could be formed in these cells. Ectopic expression of exogenous cavin-1 in cavin-1-/- MEFs restored the blocked Fam198a post-translational process and secretion. Cavin-1 was also required for Fam198a secretion after its maturation in Golgi apparatus. Ectopic expression of cavin-1 in A549 cells restored the blocked Fam198a secretion. These results suggest that protein secretion is an important function for caveolae biogenesis pathway and the disruption of caveolae system will affect those functions played by the secreted proteins.
Collapse
Affiliation(s)
- Zhuang Wei
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Liu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jigang Lei
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yuan Wu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shilong Wang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Kan Liao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Attili I, Karachaliou N, Conte P, Bonanno L, Rosell R. Therapeutic approaches for T790M mutation positive non-small-cell lung cancer. Expert Rev Anticancer Ther 2018; 18:1021-1030. [PMID: 30079781 DOI: 10.1080/14737140.2018.1508347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) mutation positive non-small cell lung cancer (NSCLC) is a subset of lung cancer with demonstrated response to targeted therapies. However, resistance to the first targeted approach usually occurs within the first year, and it is associated in 50-60% of cases to the T790M resistance mutation. Areas covered: The review provides an overview on the significance of the presence of the T790M mutation, its detection, treatment options and subsequent mechanisms of resistance. Expert commentary: Osimertinib is the current treatment option for T790M mutation positive NSCLC after progression to first or second-generation EGFR TKIs, with activity also on brain metastasis. However, the scenario is in continuous evolution and results from clinical trials are awaited in first-line setting and in combination strategies.
Collapse
Affiliation(s)
- Ilaria Attili
- a Department of Surgical, Oncological and Gastroenterological Sciences , University of Padova , Padova , Italy
| | - Niki Karachaliou
- b Instituto Oncológico Dr Rosell (IOR) , University Hospital Sagrat Cor , Barcelona , Spain.,c Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology , Quirón-Dexeus University Institute , Barcelona , Spain
| | - PierFranco Conte
- a Department of Surgical, Oncological and Gastroenterological Sciences , University of Padova , Padova , Italy
| | - Laura Bonanno
- d Medical Oncology 2 , Istituto Oncologico Veneto, IRCCS , Padova , Italy
| | - Rafael Rosell
- c Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology , Quirón-Dexeus University Institute , Barcelona , Spain.,e Institut d'Investigació en Ciències Germans Trias i Pujol , Badalona , Spain.,f Instituto Oncológico Dr Rosell (IOR) , Quirón-Dexeus University Institute , Barcelona , Spain.,g Institut Català d'Oncologia , Hospital Germans Trias i Pujol , Badalona , Spain
| |
Collapse
|
19
|
Arasada RR, Shilo K, Yamada T, Zhang J, Yano S, Ghanem R, Wang W, Takeuchi S, Fukuda K, Katakami N, Tomii K, Ogushi F, Nishioka Y, Talabere T, Misra S, Duan W, Fadda P, Rahman MA, Nana-Sinkam P, Evans J, Amann J, Tchekneva EE, Dikov MM, Carbone DP. Notch3-dependent β-catenin signaling mediates EGFR TKI drug persistence in EGFR mutant NSCLC. Nat Commun 2018; 9:3198. [PMID: 30097569 PMCID: PMC6090531 DOI: 10.1038/s41467-018-05626-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
EGFR tyrosine kinase inhibitors cause dramatic responses in EGFR-mutant lung cancer, but resistance universally develops. The involvement of β-catenin in EGFR TKI resistance has been previously reported, however, the precise mechanism by which β-catenin activation contributes to EGFR TKI resistance is not clear. Here, we show that EGFR inhibition results in the activation of β-catenin signaling in a Notch3-dependent manner, which facilitates the survival of a subset of cells that we call "adaptive persisters". We previously reported that EGFR-TKI treatment rapidly activates Notch3, and here we describe the physical association of Notch3 with β-catenin, leading to increased stability and activation of β-catenin. We demonstrate that the combination of EGFR-TKI and a β-catenin inhibitor inhibits the development of these adaptive persisters, decreases tumor burden, improves recurrence free survival, and overall survival in xenograft models. These results supports combined EGFR-TKI and β-catenin inhibition in patients with EGFR mutant lung cancer.
Collapse
Affiliation(s)
- Rajeswara Rao Arasada
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Tadaaki Yamada
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Seiji Yano
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Rashelle Ghanem
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Walter Wang
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Shinji Takeuchi
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Kanazawa University Cancer Research Institute, Kanazawa, 920-0934, Japan
| | - Nobuyuki Katakami
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Kobe, 650-0047, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, 650-0047, Japan
| | - Fumitaka Ogushi
- Division of Pulmonary Medicine, National Hospital Organization National Kochi Hospital, Kochi, 780-8077, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Tiffany Talabere
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Shrilekha Misra
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Wenrui Duan
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Paolo Fadda
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Mohammad A Rahman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and the Center for Critical Care Medicine, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and the Center for Critical Care Medicine, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Jason Evans
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Joseph Amann
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Elena E Tchekneva
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Mikhail M Dikov
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - David P Carbone
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Lai Y, Zhao Z, Zeng T, Liang X, Chen D, Duan X, Zeng G, Wu W. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int 2018. [PMID: 29527128 PMCID: PMC5838927 DOI: 10.1186/s12935-018-0530-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC), and is frequently accompanied by the genetic features of von Hippel–Lindau (VHL) loss. VHL loss increases the expression of hypoxia-inducible factors (HIFs) and their targets, including epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF). The primary treatment for metastatic RCC (mRCC) is molecular-targeted therapy, especially anti-angiogenic therapy. VEGF monoclonal antibodies and VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) are the main drugs used in anti-angiogenic therapy. However, crosstalk between VEGFR and other tyrosine kinase or downstream pathways produce resistance to TKI treatment, and the multi-target inhibitors, HIF inhibitors or combination strategies are promising strategies for mRCC. HIFs are upstream of the crosstalk between the growth factors, and these factors may regulate the expression of VEGR, EGF, PDGF and other growth factors. The frequent VHL loss in ccRCC increases HIF expression, and HIFs may be an ideal candidate to overcome the TKI resistance. The combination of HIF inhibitors and immune checkpoint inhibitors is also anticipated. Various clinical trials of programmed cell death protein 1 inhibitors are planned. The present study reviews the effects of current and potential TKIs on mRCC, with a focus on VEGF/VEGFR and other targets for mRCC therapy.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Dong Chen
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| |
Collapse
|