1
|
Zhang Z, Tan R, Xiong Z, Feng Y, Chen L. Dysregulation of autophagy during photoaging reduce oxidative stress and inflammatory damage caused by UV. Front Pharmacol 2025; 16:1562845. [PMID: 40421222 PMCID: PMC12104874 DOI: 10.3389/fphar.2025.1562845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Photoaging, the premature aging of skin due to chronic ultraviolet (UV) exposure, is a growing concern in dermatology and cosmetic science. While UV radiation is known to induce DNA damage, oxidative stress, and inflammation in skin cells, recent research unveils a promising countermeasure: autophagy. This review explores the intricate relationship between autophagy and photoaging, highlighting how this cellular recycling process can mitigate UV-induced damage. We begin by examining the differential impacts of UVA and UVB radiation on skin cells and the role of oxidative stress in accelerating photoaging. Next, we delve into the molecular mechanisms of autophagy, including its various forms and regulatory pathways. Central to this review is the discussion of autophagy's protective functions, such as the clearance of damaged organelles and proteins, and its role in maintaining genomic integrity. Furthermore, we address the current challenges in harnessing autophagy for therapeutic purposes, including the need for selective autophagy inducers and a deeper understanding of its context-dependent effects. By synthesizing recent advancements and proposing future research directions, this review underscores the potential of autophagy modulation as a novel strategy to prevent and treat photoaging. This comprehensive analysis aims to inspire further investigation into autophagy-based interventions, offering new hope for preserving skin health in the face of environmental stressors.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Run Tan
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zuanyu Xiong
- Department of Medical Aesthetics, Nanbu People‘s Hospital, Nanchong, China
| | - Yanyan Feng
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
3
|
Poirier A, Picard C, Labonté A, Aubry I, Auld D, Zetterberg H, Blennow K, Tremblay ML, Poirier J. PTPRS is a novel marker for early Tau pathology and synaptic integrity in Alzheimer's disease. Sci Rep 2024; 14:14718. [PMID: 38926456 PMCID: PMC11208446 DOI: 10.1038/s41598-024-65104-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower p(181)Tau and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.
Collapse
Affiliation(s)
- Alexandre Poirier
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montréal, Canada
- McGill University, Montréal, QC, Canada
| | - Daniel Auld
- McGill University, Montréal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, QC, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, SAR, People's Republic of China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Michel L Tremblay
- Division of Experimental Medicine, Faculty of Medicine and Health Science, McGill University, Montréal, QC, Canada.
- Goodman Cancer Institute, McGill University, Montréal, Canada.
- McGill University, Montréal, QC, Canada.
- Department of Biochemistry, McGill University, Montréal, Canada.
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, QC, Canada.
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada.
- McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Almeida MF, Farizatto KLG, Almeida RS, Bahr BA. Lifestyle strategies to promote proteostasis and reduce the risk of Alzheimer's disease and other proteinopathies. Ageing Res Rev 2024; 93:102162. [PMID: 38070831 DOI: 10.1016/j.arr.2023.102162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Unhealthy lifestyle choices, poor diet, and aging can have negative influences on cognition, gradually increasing the risk for mild cognitive impairment (MCI) and the continuum comprising early dementia. Aging is the greatest risk factor for age-related dementias such as Alzheimer's disease, and the aging process is known to be influenced by life events that can positively or negatively affect age-related diseases. Remarkably, life experiences that make the brain vulnerable to dementia, such as seizure episodes, neurotoxin exposures, metabolic disorders, and trauma-inducing events (e.g. traumatic injuries or mild neurotrauma from a fall or blast exposure), have been associated with negative effects on proteostasis and synaptic integrity. Functional compromise of the autophagy-lysosomal pathway, a major contributor to proteostasis, has been implicated in Alzheimer's disease, Parkinson's disease, obesity-related pathology, Huntington's disease, as well as in synaptic degeneration which is the best correlate of cognitive decline. Correspondingly, pharmacological and non-pharmacological strategies that positively modulate lysosomal proteases are recognized as synaptoprotective through degradative clearance of pathogenic proteins. Here, we discuss life-associated vulnerabilities that influence key hallmarks of brain aging and the increased burden of age-related dementias. Additionally, we discuss exercise and diet among the lifestyle strategies that regulate proteostasis as well as synaptic integrity, leading to evident prevention of cognitive deficits during brain aging in pre-clinical models.
Collapse
Affiliation(s)
- Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology & Marine Biology, and the Integrative, Comparative & Marine Biology Program, University of North Carolina - Wilmington, Wilmington, NC 28409, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA
| | - Renato S Almeida
- Department of Biosciences, University of Taubate, Taubate, SP 12020-270, Brazil
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology, University of North Carolina - Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
5
|
Awad HH, Desouky MA, Zidan A, Bassem M, Qasem A, Farouk M, AlDeab H, Fouad M, Hany C, Basem N, Nader R, Alkalleny A, Reda V, George MY. Neuromodulatory effect of vardenafil on aluminium chloride/D-galactose induced Alzheimer's disease in rats: emphasis on amyloid-beta, p-tau, PI3K/Akt/p53 pathway, endoplasmic reticulum stress, and cellular senescence. Inflammopharmacology 2023; 31:2653-2673. [PMID: 37460908 PMCID: PMC10518298 DOI: 10.1007/s10787-023-01287-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 09/26/2023]
Abstract
Dysregulation of protein homeostasis, proteostasis, is a distinctive hallmark of many neurodegenerative disorders and aging. Deleteriously, the accumulation of aberrant proteins in Alzheimer's disease (AD) is accompanied with a marked collapse in proteostasis network. The current study explored the potential therapeutic effect of vardenafil (VAR), a phosphodiesterase-5 inhibitor, in AlCl3/D-galactose (D-gal)-induced AD in rats and its possible underlying mechanisms. The impact of VAR treatment on neurobehavioral function, hippocampal tissue architecture, and the activity of the cholinergic system main enzymes were assessed utilizing VAR at doses of 0.3 mg/kg and 1 mg/kg. Additionally, the expression level of amyloid-beta and phosphorylated tau proteins in the hippocampus were figured out. Accordingly, VAR higher dose was selected to contemplate the possible underlying mechanisms. Intriguingly, VAR elevated the cyclic guanosine monophosphate level in the hippocampus and averted the repressed proteasome activity by AlCl3/D-gal; hence, VAR might alleviate the burden of toxic protein aggregates in AD. In addition, a substantial reduction in the activating transcription factor 6-mediated endoplasmic reticulum stress was demonstrated with VAR treatment. Notably, VAR counteracted the AlCl3/D-gal-induced depletion of nuclear factor erythroid 2-related factor 2 level. Moreover, the anti-senescence activity of VAR was demonstrated via its ability to restore the balance of the redox circuit. The modulation of phosphatidylinositol-3-kinase/protein kinase B/p53 pathway and the reduction of nuclear factor kappa B level, the key regulator of senescence-associated secretory phenotype mediators release, with VAR treatment were also elucidated. Altogether, these findings insinuate the possible therapeutic benefits of VAR in AD management.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Alaa Zidan
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariam Bassem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amaal Qasem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona Farouk
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy AlDeab
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Miral Fouad
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cherry Hany
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada Basem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rita Nader
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashrakat Alkalleny
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Verina Reda
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Anwar F, Al-Abbasi FA, Naqvi S, Sheikh RA, Alhayyani S, Asseri AH, Asar TO, Kumar V. Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma. Int J Nanomedicine 2023; 18:2737-2756. [PMID: 37250469 PMCID: PMC10211371 DOI: 10.2147/ijn.s405454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India
| |
Collapse
|
7
|
Amaral O, Martins M, Oliveira AR, Duarte AJ, Mondragão-Rodrigues I, Macedo MF. The Biology of Lysosomes: From Order to Disorder. Biomedicines 2023; 11:213. [PMID: 36672721 PMCID: PMC9856021 DOI: 10.3390/biomedicines11010213] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Since its discovery in 1955, the understanding of the lysosome has continuously increased. Once considered a mere waste removal system, the lysosome is now recognised as a highly crucial cellular component for signalling and energy metabolism. This notable evolution raises the need for a summarized review of the lysosome's biology. As such, throughout this article, we will be compiling the current knowledge regarding the lysosome's biogenesis and functions. The comprehension of this organelle's inner mechanisms is crucial to perceive how its impairment can give rise to lysosomal disease (LD). In this review, we highlight some examples of LD fine-tuned mechanisms that are already established, as well as others, which are still under investigation. Even though the understanding of the lysosome and its pathologies has expanded through the years, some of its intrinsic molecular aspects remain unknown. In order to illustrate the complexity of the lysosomal diseases we provide a few examples that have challenged the established single gene-single genetic disorder model. As such, we believe there is a strong need for further investigation of the exact abnormalities in the pathological pathways in lysosomal disease.
Collapse
Affiliation(s)
- Olga Amaral
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Martins
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Rita Oliveira
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Joana Duarte
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Inês Mondragão-Rodrigues
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - M. Fátima Macedo
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Odfalk KF, Bieniek KF, Hopp SC. Microglia: Friend and foe in tauopathy. Prog Neurobiol 2022; 216:102306. [PMID: 35714860 PMCID: PMC9378545 DOI: 10.1016/j.pneurobio.2022.102306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Aggregation of misfolded microtubule associated protein tau into abnormal intracellular inclusions defines a class of neurodegenerative diseases known as tauopathies. The consistent spatiotemporal progression of tau pathology in Alzheimer's disease (AD) led to the hypothesis that tau aggregates spread in the brain via bioactive tau "seeds" underlying advancing disease course. Recent studies implicate microglia, the resident immune cells of the central nervous system, in both negative and positive regulation of tau pathology. Polymorphisms in genes that alter microglial function are associated with the development of AD and other tauopathies. Experimental manipulation of microglia function can alter tau pathology and microglia-mediated neuroinflammatory cascades can exacerbate tau pathology. Microglia also exert protective functions by mitigating tau spread: microglia internalize tau seeds and have the capacity to degrade them. However, when microglia fail to degrade these tau seeds there are deleterious consequences, including secretion of exosomes containing tau that can spread to neurons. This review explores the intersection of microglia and tau from the perspective of neuropathology, neuroimaging, genetics, transcriptomics, and molecular biology. As tau-targeted therapies such as anti-tau antibodies advance through clinical trials, it is critical to understand the interaction between tau and microglia.
Collapse
Affiliation(s)
- Kristian F Odfalk
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 897] [Impact Index Per Article: 224.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
10
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Endosomal-lysosomal dysfunction in metabolic diseases and Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:303-324. [PMID: 32739009 DOI: 10.1016/bs.irn.2020.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endosomal-lysosomal pathways and related autophagic processes are responsible for proteostasis, involving complexes between lysosomes and autophagosomes. Lysosomes are a key component of homeostasis, involved in cell signaling, metabolism, and quality control, and they experience functional compromise in metabolic diseases, aging, and neurodegenerative diseases. Many genetic mutations and risk factor genes associated with proteinopathies, as well as with metabolic diseases like diabetes, negatively influence endocytic trafficking and autophagic clearance. In contrast, health-improving exercise induces autophagy-lysosomal degradation, perhaps promoting efficient digestion of injured organelles so that undamaged organelles ensure cellular healthiness. Reductions in lysosomal hydrolases are implicated in Alzheimer's, Parkinson's, and lysosomal storage diseases, as well as obesity-related pathology, and members of the cathepsin enzyme family are involved in clearing both Aβ42 and α-synuclein. Upregulation of cathepsin hydrolases improves synaptic and memory functions in models of dementia and in exercising humans, thus identifying lysosomal-related systems as vital for healthy cognitive aging.
Collapse
|
12
|
Nie R, Wu Z, Ni J, Zeng F, Yu W, Zhang Y, Kadowaki T, Kashiwazaki H, Teeling JL, Zhou Y. Porphyromonas gingivalis Infection Induces Amyloid-β Accumulation in Monocytes/Macrophages. J Alzheimers Dis 2019; 72:479-494. [DOI: 10.3233/jad-190298] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ran Nie
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Fan Zeng
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Weixian Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Yufeng Zhang
- Gerontal Department of Stomatology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Jessica L. Teeling
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
13
|
Lamani M, Malamas MS, Farah SI, Shukla VG, Almeida MF, Weerts CM, Anderson J, Wood JT, Farizatto KLG, Bahr BA, Makriyannis A. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorg Med Chem 2019; 27:115096. [PMID: 31629610 DOI: 10.1016/j.bmc.2019.115096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/30/2022]
Abstract
FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.
Collapse
Affiliation(s)
- Manjunath Lamani
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael S Malamas
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA.
| | - Shrouq I Farah
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Vidyanand G Shukla
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Catherine M Weerts
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Joseph Anderson
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - JodiAnne T Wood
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| |
Collapse
|
14
|
Hwang J, Estick CM, Ikonne US, Butler D, Pait MC, Elliott LH, Ruiz S, Smith K, Rentschler KM, Mundell C, Almeida MF, Stumbling Bear N, Locklear JP, Abumohsen Y, Ivey CM, Farizatto KLG, Bahr BA. The Role of Lysosomes in a Broad Disease-Modifying Approach Evaluated across Transgenic Mouse Models of Alzheimer's Disease and Parkinson's Disease and Models of Mild Cognitive Impairment. Int J Mol Sci 2019; 20:E4432. [PMID: 31505809 PMCID: PMC6770842 DOI: 10.3390/ijms20184432] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer's disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs. amyloid precursor protein/presenilin-1 (APP/PS1) mice that express mutant proteins linked to familial AD. Also, lysosomal modulation was evaluated for inducing synaptic and behavioral improvements in transgenic models of AD and Parkinson's disease, and in models of mild cognitive impairment (MCI). Amyloid plaques were surrounded by swollen organelles positive for the lysosome-associated membrane protein 1 (LAMP1) in the APP/PS1 cortex and hippocampus, regions with robust synaptic deterioration. Within neurons, lysosomes contain the amyloid β 42 (Aβ42) degradation product Aβ38, and this indicator of Aβ42 detoxification was augmented by Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD) as it enhanced the lysosomal hydrolase cathepsin B (CatB). PADK promoted Aβ42 colocalization with CatB in lysosomes that formed clusters in neurons, while reducing Aβ deposits as well. PADK also reduced amyloidogenic peptides and α-synuclein in correspondence with restored synaptic markers, and both synaptic and cognitive measures were improved in the APP/PS1 and MCI models. These findings indicate that lysosomal perturbation contributes to synaptic and cognitive decay, whereas safely enhancing protein clearance through modulated CatB ameliorates the compromised synapses and cognition, thus supporting early CatB upregulation as a disease-modifying therapy that may also slow the MCI to dementia continuum.
Collapse
Affiliation(s)
- Jeannie Hwang
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA
| | - Candice M Estick
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Uzoma S Ikonne
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - David Butler
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Morgan C Pait
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Lyndsie H Elliott
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Sarah Ruiz
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Kaitlan Smith
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Molecular Biotechnology Program University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Katherine M Rentschler
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Cary Mundell
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Michael F Almeida
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Nicole Stumbling Bear
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - James P Locklear
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Yara Abumohsen
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Cecily M Ivey
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Karen L G Farizatto
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Ben A Bahr
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA.
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA.
- Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
- Molecular Biotechnology Program University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
15
|
Kechko OI, Petrushanko IY, Brower CS, Adzhubei AA, Moskalev AA, Piatkov KI, Mitkevich VA, Makarov AA. Beta-amyloid induces apoptosis of neuronal cells by inhibition of the Arg/N-end rule pathway proteolytic activity. Aging (Albany NY) 2019; 11:6134-6152. [PMID: 31446431 PMCID: PMC6738421 DOI: 10.18632/aging.102177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is accompanied by the dysfunction of intracellular protein homeostasis systems, in particular the ubiquitin-proteasome system (UPS). Beta-amyloid peptide (Aβ), which is involved in the processes of neurodegeneration in AD, is a substrate of this system, however its effect on UPS activity is still poorly explored. Here we found that Aβ peptides inhibited the proteolytic activity of the antiapoptotic Arg/N-end rule pathway that is a part of UPS. We identified arginyltransferase Ate1 as a specific component of the Arg/N-end rule pathway targeted by Aβs. Aβ bearing the familial English H6R mutation, known to cause early-onset AD, had an even greater inhibitory effect on protein degradation through the Arg/N-end rule pathway than intact Aβ. This effect was associated with a significant decrease in Ate1-1 and Ate1-3 catalytic activity. We also found that the loss of Ate1 in neuroblastoma Neuro-2a cells eliminated the apoptosis-inducing effects of Aβ peptides. Together, our results show that the apoptotic effect of Aβ peptides is linked to their impairment of Ate1 catalytic activity leading to suppression of the Arg/N-end rule pathway proteolytic activity and ultimately cell death.
Collapse
Affiliation(s)
- Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexei A Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Biology, Komi Science Center, Russian Academy of Sciences, Syktyvkar 167000, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Konstantin I Piatkov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
16
|
Farizatto KLG, Almeida MF, Long RT, Bahr BA. Early Synaptic Alterations and Selective Adhesion Signaling in Hippocampal Dendritic Zones Following Organophosphate Exposure. Sci Rep 2019; 9:6532. [PMID: 31024077 PMCID: PMC6484076 DOI: 10.1038/s41598-019-42934-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 11/09/2022] Open
Abstract
Organophosphates account for many of the world's deadliest poisons. They inhibit acetylcholinesterase causing cholinergic crises that lead to seizures and death, while survivors commonly experience long-term neurological problems. Here, we treated brain explants with the organophosphate compound paraoxon and uncovered a unique mechanism of neurotoxicity. Paraoxon-exposed hippocampal slice cultures exhibited progressive declines in synaptophysin, synapsin II, and PSD-95, whereas reduction in GluR1 was slower and NeuN and Nissl staining showed no indications of neuronal damage. The distinctive synaptotoxicity was observed in dendritic zones of CA1 and dentate gyrus. Interestingly, declines in synapsin II dendritic labeling correlated with increased staining for β1 integrin, a component of adhesion receptors that regulate synapse maintenance and plasticity. The paraoxon-induced β1 integrin response was targeted to synapses, and the two-fold increase in β1 integrin was selective as other synaptic adhesion molecules were unchanged. Additionally, β1 integrin-cofilin signaling was triggered by the exposure and correlations were found between the extent of synaptic decline and the level of β1 integrin responses. These findings identified organophosphate-mediated early and lasting synaptotoxicity which can explain delayed neurological dysfunction later in life. They also suggest that the interplay between synaptotoxic events and compensatory adhesion responses influences neuronal fate in exposed individuals.
Collapse
Affiliation(s)
- Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA
| | - Ronald T Long
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, North Carolina, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, North Carolina, USA. .,Department of Biology, University of North Carolina-Pembroke, Pembroke, North Carolina, USA. .,Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, North Carolina, USA.
| |
Collapse
|
17
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
18
|
Lowry JR, Klegeris A. Emerging roles of microglial cathepsins in neurodegenerative disease. Brain Res Bull 2018; 139:144-156. [DOI: 10.1016/j.brainresbull.2018.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/23/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
|
19
|
Miquel S, Champ C, Day J, Aarts E, Bahr BA, Bakker M, Bánáti D, Calabrese V, Cederholm T, Cryan J, Dye L, Farrimond JA, Korosi A, Layé S, Maudsley S, Milenkovic D, Mohajeri MH, Sijben J, Solomon A, Spencer JPE, Thuret S, Vanden Berghe W, Vauzour D, Vellas B, Wesnes K, Willatts P, Wittenberg R, Geurts L. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res Rev 2018; 42:40-55. [PMID: 29248758 DOI: 10.1016/j.arr.2017.12.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ageing is a highly complex process marked by a temporal cascade of events, which promote alterations in the normal functioning of an individual organism. The triggers of normal brain ageing are not well understood, even less so the factors which initiate and steer the neuronal degeneration, which underpin disorders such as dementia. A wealth of data on how nutrients and diets may support cognitive function and preserve brain health are available, yet the molecular mechanisms underlying their biological action in both normal ageing, age-related cognitive decline, and in the development of neurodegenerative disorders have not been clearly elucidated. OBJECTIVES This review aims to summarise the current state of knowledge of vulnerabilities that predispose towards dysfunctional brain ageing, highlight potential protective mechanisms, and discuss dietary interventions that may be used as therapies. A special focus of this paper is on the impact of nutrition on neuroprotection and the underlying molecular mechanisms, and this focus reflects the discussions held during the 2nd workshop 'Nutrition for the Ageing Brain: Functional Aspects and Mechanisms' in Copenhagen in June 2016. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). CONCLUSION Coupling studies of cognitive ageing with studies investigating the effect of nutrition and dietary interventions as strategies targeting specific mechanisms, such as neurogenesis, protein clearance, inflammation, and non-coding and microRNAs is of high value. Future research on the impact of nutrition on cognitive ageing will need to adopt a longitudinal approach and multimodal nutritional interventions will likely need to be imposed in early-life to observe significant impact in older age.
Collapse
Affiliation(s)
- Sophie Miquel
- Mars-Wrigley, 1132 W. Blackhawk Street, Chicago, IL 60642, United States
| | - Claire Champ
- Human Appetite Research Unit, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jon Day
- Cerebrus Associates Limited, The White House, 2 Meadrow, Godalming, Surrey, GU7 3HN, United Kingdom
| | - Esther Aarts
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Ben A Bahr
- Biotechnology Research and Training Centre, University of North Carolina - Pembroke, United States
| | - Martijntje Bakker
- The Netherlands Organisation for Health Research and Development, Laan van Nieuw Oost-Indië 334, 2593 CE The Hague, The Netherlands
| | - Diána Bánáti
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium
| | - Vittorio Calabrese
- University of Catania, Department of Biomedical and Biotechnological Sciences, Biological Tower - Via Santa Sofia, 97, Catania, Italy
| | - Tommy Cederholm
- University of Uppsala, Institutionen för folkhälso- och vårdvetenskap, Klinisk nutrition och metabolism, Uppsala Science Park, 751 85 Uppsala, Sweden
| | - John Cryan
- Anatomy & Neuroscience, University College Cork, 386 Western Gateway Building, Cork, Ireland
| | - Louise Dye
- Human Appetite Research Unit, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA Bordeaux University, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Stuart Maudsley
- Department of Biomedical Research and VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Gebouw V, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Dragan Milenkovic
- INRA, Human Nutrition Unit, UCA, F-63003, Clermont-Ferrand, France; Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, United States
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland
| | - John Sijben
- Nutricia Research, Nutricia Advanced Medical Nutrition, PO Box 80141, 3508TC, Utrecht, The Netherlands
| | - Alina Solomon
- Aging Research Center, Karolinska Institutet, Gävlegatan 16, SE-113 30 Stockholm, Sweden
| | - Jeremy P E Spencer
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - Sandrine Thuret
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, The Maurice Wohl Clinical Neuroscience Institute,125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Wim Vanden Berghe
- PPES, Department Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - David Vauzour
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Bruno Vellas
- Department of Geriatric Medicine, CHU Toulouse, Gerontopole, Toulouse, France
| | - Keith Wesnes
- Wesnes Cognition Limited, Little Paddock, Streatley on Thames, RG8 9RD, United Kingdom; Medical School, University of Exeter, Exeter, United Kingdom; Department of Psychology, Northumbria University, Newcastle, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia; Medicinal Plant Research Group, Newcastle University, United Kingdom
| | - Peter Willatts
- School of Psychology, University of Dundee Nethergate, Dundee, DD1 4HN, United Kingdom
| | - Raphael Wittenberg
- London School of Economics and Political Science, Personal Social Services Research Unit, London, United Kingdom
| | - Lucie Geurts
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium.
| |
Collapse
|
20
|
Romine H, Rentschler KM, Smith K, Edwards A, Colvin C, Farizatto K, Pait MC, Butler D, Bahr BA. Potential Alzheimer's Disease Therapeutics Among Weak Cysteine Protease Inhibitors Exhibit Mechanistic Differences Regarding Extent of Cathepsin B Up-Regulation and Ability to Block Calpain. ACTA ACUST UNITED AC 2017; 13:38-59. [PMID: 29805718 DOI: 10.19044/esj.2017.c1p5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cysteine protease inhibitors have long been part of drug discovery programs for Alzheimer's disease (AD), traumatic brain injury (TBI), and other disorders. Select inhibitors reduce accumulating proteins and AD pathology in mouse models. One such compound, Z-Phe-Aladiazomethylketone (PADK), exhibits a very weak IC50 (9-11 μM) towards cathepsin B (CatB), but curiously PADK causes marked up-regulation of the Aβ-degrading CatB and improves spatial memory. Potential therapeutic and weak inhibitor E64d (14 μM IC50) also up-regulates CatB. PADK and E64d were compared regarding the blockage of calcium-induced cytoskeletal deterioration in brain samples, monitoring the 150-kDa spectrin breakdown product (SBDP) known to be produced by calpain. PADK had little to no effect on SBDP production at 10-100 μM. In contrast, E64d caused a dose-dependent decline in SBDP levels with an IC50 of 3-6 μM, closely matching its reported potency for inhibiting μ-calpain. Calpain also cleaves the cytoskeletal organizing protein gephyrin, producing 49-kDa (GnBDP49) and 18-kDa (GnBDP18) breakdown products. PADK had no apparent effect on calcium-induced gephyrin fragments whereas E64d blocked their production. E64d also protected the parent gephyrin in correspondence with reduced BDP levels. The findings of this study indicate that PADK's positive and selective effects on CatB are consistent with human studies showing exercise elevates CatB and such elevation correlates with improved memory. On the other hand, E64d exhibits both marginal CatB enhancement and potent calpain inhibition. This dual effect may be beneficial for treating AD. Alternatively, the potent action on calpain-related pathology may explain E64d's protection in AD and TBI models.
Collapse
Affiliation(s)
- Heather Romine
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | | | - Kaitlan Smith
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Ayanna Edwards
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Camille Colvin
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Karen Farizatto
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Morgan C Pait
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - David Butler
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Ben A Bahr
- William C. Friday Laboratory, University of North Carolina - Pembroke, North Carolina, USA
| |
Collapse
|
21
|
Wang C, Telpoukhovskaia MA, Bahr BA, Chen X, Gan L. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Curr Opin Neurobiol 2017; 48:52-58. [PMID: 29028540 DOI: 10.1016/j.conb.2017.09.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Endo-lysosomal pathways are essential in maintaining protein homeostasis in the cell. Numerous genes in the endo-lysosomal pathways have been found to associate with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Mutations of these genes lead to dysfunction in multiple steps of the endo-lysosomal network: autophagy, endocytic trafficking and lysosomal degradation, resulting in accumulation of pathogenic proteins. Although the exact pathogenic mechanism varies for different disease-associated genes, dysfunction of the endo-lysosomal pathways represents a converging mechanism shared by these diseases. Therefore, strategies that correct or compensate for endo-lysosomal dysfunction may be promising therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Chao Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maria A Telpoukhovskaia
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, NC, USA
| | - Xu Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Li Gan
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|