1
|
Chen Q, Wang H, Liu Q, Luo C. CTHRC1: a key player in colorectal cancer progression and immune evasion. Front Immunol 2025; 16:1579661. [PMID: 40201173 PMCID: PMC11975584 DOI: 10.3389/fimmu.2025.1579661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The multifunctional secreted protein, collagen triple helix repeat containing 1 (CTHRC1), has recently emerged as a significant focus within oncology research. CTHRC1 expression in tumors is governed by a complex interplay of regulatory signals, including methylation, glycosylation, and notably, non-coding RNAs, which constitute its predominant regulatory mechanism. Colorectal cancer (CRC), a highly prevalent epithelial malignancy, sees CTHRC1 influencing tumor progression and metastasis through its modulation of several downstream signaling cascades, such as Wnt/PCP, TGF-β/Smad, and MEK/ERK pathways. Furthermore, CTHRC1 contributes to immune evasion in CRC via diverse mechanisms. It is intricately associated with macrophage phenotypic switching within the tumor microenvironment (TME), favoring M2 macrophage polarization and facilitating the infiltration of T cells and neutrophils. CTHRC1 is also instrumental in immune escape by driving the remodeling of the extracellular matrix through interactions with cancer-associated fibroblasts. Additionally, CTHRC1's roles extend to the regulation of hypoxia-related pathways, metabolism of glycolysis and fatty acids, and involvement in tumor angiogenesis, all of which support tumor immune evasion. Considering its multifaceted activities, CTHRC1 emerges as a promising therapeutic target in CRC, with the potential to enhance the outcomes of existing radiotherapeutic and immunotherapeutic regimens. This review endeavors to delineate the mechanistic and therapeutic landscapes of CTHRC1 in CRC. Through a comprehensive discussion of CTHRC1's diverse functions, we aim to provide insights that could pave the way for innovative approaches in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Singh CK, Fernandez S, Chhabra G, Zaemisch GR, Nihal A, Swanlund J, Ansari N, Said Z, Chang H, Ahmad N. The role of collagen triple helix repeat containing 1 (CTHRC1) in cancer development and progression. Expert Opin Ther Targets 2024; 28:419-435. [PMID: 38686865 PMCID: PMC11189736 DOI: 10.1080/14728222.2024.2349686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Chandra K. Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sofia Fernandez
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Ayaan Nihal
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jenna Swanlund
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Naveed Ansari
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Zan Said
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Zhao X, Li H, Chen X, Wu Y, Wang L, Li J. Long non-coding RNA MSTRG.5970.28 regulates proliferation and apoptosis of goose follicle granulosa cells via the miR-133a-3p/ANOS1 pathway. Poult Sci 2023; 102:102451. [PMID: 36634463 PMCID: PMC9841053 DOI: 10.1016/j.psj.2022.102451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
The development of follicles in the ovaries is a critical determinant of poultry egg production. There are existing studies on the follicular development patterns in poultry, but the specific regulatory mechanisms still need further study. In a previous study, we identified long non-coding RNA (lncRNA) MSTRG.5970.28, anosmin 1 (ANOS1), and its predicted target miR-133a-3p that may be associated with goose ovary development. However, the function of MSTRG.5970.28 in goose granulosa cells and its regulatory mechanisms affecting granulosa cell proliferation and apoptosis have not been reported. In the present study, MSTRG.5970.28 and miR-133a-3p overexpression and interference vectors were constructed. Combined with reverse-transcription real-time quantitative PCR (RT-qPCR), a dual luciferase activity assay, Cell Counting Kit-8 (CCK-8), and flow cytometric analysis, we investigated the role of the MSTRG.5970.28-miR-133a-3p-ANOS1 axis in goose follicular granulosa cells and the associated regulatory mechanisms. MSTRG.5970.28 was found to be localized in the cytoplasm and its expression was influenced by reproductive hormones. The targeting relationship among MSTRG.5970.28, ANOS1, and miR-133a-3p were verified by a dual luciferase activity assay. CCK-8 and apoptosis assays showed that MSTRG.5970.28 inhibited the proliferation and promoted apoptosis of goose granulosa cells. The regulatory role of miR-133a-3p on granulosa cell proliferation and apoptosis was opposite to MSTRG.5970.28. We found that the proliferative and apoptotic effects of granulosa cells caused by MSTRG.5970.28 overexpression were attenuated by miR-133a-3p. MSTRG.5970.28 functions as a competitive endogenous RNA that regulates ANOS1 expression by sponging miR-133a-3p and thus exerts regulatory functions in granulosa cells. In sum, the present study identified lncRNA MSTRG.5970.28 as associated with goose ovary development, which affects the expression of ANOS1 by targeting miR-133a-3p, thereby influencing the proliferation and apoptosis of goose granulosa cells.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yingping Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Ling Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Peng D, Wei C, Zhang X, Li S, Liang H, Zheng X, Jiang S, Han L. Pan-cancer analysis combined with experiments predicts CTHRC1 as a therapeutic target for human cancers. Cancer Cell Int 2021; 21:566. [PMID: 34702252 PMCID: PMC8549344 DOI: 10.1186/s12935-021-02266-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The function of collagen triple helix repeat containing 1 (CTHRC1) as an oncogene has been reported in a growing number of publications. Bioinformatics methods represent a beneficial approach to examine the mechanism and function of the CTHRC1 gene in the disease process of cancers from a pan-cancer perspective. METHODS In this study, using the online databases UCSC, NCBI, HPA, TIMER2, Oncomine, GEPIA, UALCAN, cBioPortal, COSMIC, MEXPRESS, STRING, CCLE, LinkedOmics, GTEx, TCGA, CGGA, and SangerBox, we focused on the relationship between CTHRC1 and tumorigenesis, progression, methylation, immunity, and prognosis. qPCR was used to detect CTHRC1 expression in glioma tissues and cell lines. RESULTS The pan-cancer analysis showed that CTHRC1 was overexpressed in most tumors, and a significant correlation was observed between CTHRC1 expression and the prognosis of patients with cancer. CTHRC1 genetic alterations occur in diverse tumors and are associated with tumor progression. Levels of CTHRC1 promoter methylation were decreased in most cancer tissues compared with normal tissues. In addition, CTHRC1 coordinated the activity of ICP genes through diverse signal transduction pathways, was also associated with immune cell infiltration and the tumor microenvironment, and potentially represented a promising immunotherapy target. We identified CTHRC1-related genes across cancers using the GEPIA2 tool. The single-gene GO analysis of CTHRC1 across cancers showed that it was involved in some signaling pathways and biological processes, such as the Wnt signaling pathway, cell migration, and positive regulation of protein binding. The expression and function of CTHRC1 were also further verified in glioma tissues and cell lines. CONCLUSIONS CTHRC1 is overexpressed in various cancer types and functions as an important oncogene that may promote tumorigenesis and development through different mechanisms. CTHRC1 may represent an important therapeutic target for human cancers.
Collapse
Affiliation(s)
- Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Shenghui Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jiankang Road, Jining, Shandong 272000 People’s Republic of China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| |
Collapse
|
5
|
He W, Yu Y, Huang W, Feng G, Li J. The Pseudogene DUXAP8 Promotes Colorectal Cancer Cell Proliferation, Invasion, and Migration by Inducing Epithelial-Mesenchymal Transition Through Interacting with EZH2 and H3K27me3. Onco Targets Ther 2020; 13:11059-11070. [PMID: 33149618 PMCID: PMC7605666 DOI: 10.2147/ott.s235643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third leading cause of cancer death worldwide. The long noncoding RNA (lncRNA) DUXAP8 has been reported to play an important role in CRC. This study investigated the mechanism by which this lncRNA regulates CRC progression. Methods The levels of lncRNA DUXAP8 in CRC tissues and cell lines were detected by qRT-PCR. We then knocked down or forced overexpression of DUXAP8, and the resultant effect on cell proliferation was determined by the Edu assay and a cell cycle analysis, and the effect on cell apoptosis was determined by flow cytometry. The cell invasion/migration ability and the epithelial-to-mesenchymal transition (EMT) markers were determined by Transwell/wound healing assays and Western blotting. CHIP and RNA pull-down assays were performed to determine the binding of Zeste gene enhancer 2 (EZH2) and trimethylated histone H3 to Lys27 (H3K27me3) in the E-cadherin promoter regions, or to DUXAP8. Results The levels of lncRNA DUXAP8 were significantly increased in CRC tissues and CRC cell lines. Knockdown of lncRNA DUXAP8 inhibited cell proliferation and the EMT process, and increased cell apoptosis, and overexpression of lncRNA DUXAP8 had an opposite effect. Both ChIP and RNA pull-down assays showed that the E-cadherin promoter region was bound by H3K27me3 and EZH2, which restrained E-cadherin expression. However, that binding was suppressed and E-cadherin expression was markedly induced by lncRNA DUXAP8 knockdown. Furthermore, lncRNA DUXAP8 could interact with EZH2 and H3K27me3. Conclusion Our data indicated that lncRNA DUXAP8 could induce the progression of CRC by negatively regulating E-cadherin via interaction with EZH2 and H3K27me3. These findings suggest lncRNA DUXAP8 as target for treating CRC.
Collapse
Affiliation(s)
- Wenjing He
- Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yi Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wei Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Guoliang Feng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
6
|
The Role of CTHRC1 in Regulation of Multiple Signaling and Tumor Progression and Metastasis. Mediators Inflamm 2020; 2020:9578701. [PMID: 32848510 PMCID: PMC7441421 DOI: 10.1155/2020/9578701] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1) has been identified as cancer-related protein. CTHRC1 expresses mainly in adventitial fibroblasts and neointimal smooth muscle cells of balloon-injured vessels and promotes cell migration and tissue repair in response to injury. CTHRC1 plays a pivotal role in some pathophysiological processes, including increasing bone mass, preventing myelination, and reversing collagen synthesis in many tumor cells. The ascended expression of CTHRC1 is related to tumorigenesis, proliferation, invasion, and metastasis in various human malignancies, including gastric cancer, pancreatic cancer, hepatocellular carcinoma, keloid, breast cancer, colorectal cancer, epithelial ovarian cancer, esophageal squamous cell carcinoma, cervical cancer, non-small-cell lung carcinoma, and melanoma. And molecules that regulate the expression of CTHRC1 include miRNAs, lncRNAs, WAIF1, and DPAGT1. Many reports have pointed that CTHRC1 could exert different effects through several signaling pathways such as TGF-β, Wnt, integrin β/FAK, Src/FAK, MEK/ERK, PI3K/AKT/ERK, HIF-1α, and PKC-δ/ERK signaling pathways. As a participant in tissue remodeling or immune response, CTHRC1 may promote early-stage cancer. Several recent studies have identified CTHRC1 as an effectual prognostic biomarker for predicting tumor recurrence or metastasis. It is worth noting that CTHRC1 has different cellular localization and mechanisms of action in different cells and different microenvironments. In this article, we focus on the advances in the signaling pathways mediated by CTHRC1 in tumors.
Collapse
|
7
|
Kanda M, Suh YS, Park DJ, Tanaka C, Ahn SH, Kong SH, Lee HJ, Kobayashi D, Fujiwara M, Shimada H, Cho B, Murotani K, Kim HH, Yang HK, Kodera Y. Serum levels of ANOS1 serve as a diagnostic biomarker of gastric cancer: a prospective multicenter observational study. Gastric Cancer 2020; 23:203-211. [PMID: 31377880 DOI: 10.1007/s10120-019-00995-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Development of high-performance serum biomarkers will likely improve treatment outcomes of patients with gastric cancer (GC). We previously identified the candidate serum markers, anosmin 1 (ANOS1), dihydropyrimidinase-like 3 (DPYSL3), and melanoma-associated antigen D2 (MAGE-D2) and evaluated their clinical significance through a single-center retrospective analysis. Here we conducted a prospective multicenter observational study aimed at validating the diagnostic performance of these potential markers. METHODS We analyzed serum levels before and after surgery of the three potential biomarkers in patients with GC and healthy volunteers. Quantification of serum and GC tissue levels was performed using an ELISA. RESULTS Area under the curve (AUC) values that discriminated patients with GC from healthy controls were - 0.7058, 0.6188, and 0.5031 for ANOS1, DPYSL3, and MAGED2, respectively. The sensitivity and specificity of the ANOS1 assay were 0.36 and 0.85, respectively. The AUC value of ANOS1 that discriminated patients with stage I GC from healthy controls was 0.7131. Serum ANOS1 levels were significantly elevated in patients with stage I GC compared with those of healthy controls (median 1179 ng/ml and 461 ng/ml, respectively, P < 0.0001) and decreased after resection of primary GC lesions (P < 0.0001). The combination of serum ANOS1 and DPYSL3 levels increased the AUC value that discriminated patients with GC from healthy controls. Serum levels of ANOS1 did not significantly correlate with those of carcinoembryonic antigen, carbohydrate antigen 19-9, or other markers of inflammation. CONCLUSIONS Serum levels of ANOS1 may serve as a useful diagnostic tool for managing GC.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Ota City, Japan
| | - BeLong Cho
- Department of Family Medicine, Center for Health Promotion and Optimal Aging, Seoul National University College of Medicine and Hospital, Seoul, Korea
- Institute On Aging, Seoul National University College of Medicine, Seoul, Korea
| | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Kurume, Japan
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
8
|
Serum Expression of β-Catenin Is a Potential Detection Marker in Patients with Colorectal Cancer. DISEASE MARKERS 2019; 2019:5070524. [PMID: 31781302 PMCID: PMC6855041 DOI: 10.1155/2019/5070524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Object To investigate the correlation between the level of serum β-catenin and the disease progression of colorectal polyp (CRP) and colorectal cancer (CRC) and find its potential diagnostic value. Methods A total of 327 clinical serum samples and their electronic medical records were collected. Detecting by enzyme-linked immunosorbent assay (ELISA), the correlations of serum β-catenin with tumor marker carcinoembryonic antigen (CEA) and CRC clinicopathological parameters and the receiver operating characteristic (ROC) curve were analyzed. Results Serum β-catenin levels in the CRP and CRC patients were significantly higher than those in the healthy control (HC) group (P < 0.05 and P < 0.001). Compared with CRP, serum β-catenin level in CRC was also increased (P < 0.05). However, there was no significant difference in gender, age, location, tumor size, Dukes staging, or metastasis (P > 0.05) between serum β-catenin and clinical parameters of CRC. There was no correlation between serum β-catenin levels and CEA in CRC patients (P = 0.14). ROC curve analysis showed that serum β-catenin possessed the maximum diagnostic efficiency in CRP (AUC = 0.73, P < 0.05) with 86.41% sensitivity and 51.56% specificity. β-Catenin combined with CEA had the highest diagnostic efficiency (AUC = 0.88, P < 0.05) with 81.88% sensitivity and 73.44% specificity. With CRC patients from CRP patients, ROC analysis of the combining detection (AUC = 0.70, P < 0.05) had the 70% sensitivity and 84.5% specificity. Conclusion The serum β-catenin levels are gradually increased in CRP and CRC, while there is no correlation between its levels and CRC disease process. Single serum β-catenin or combined CEA would be one of the potential candidate biomarkers for colorectal disease diagnosis.
Collapse
|
9
|
Berral-Gonzalez A, Riffo-Campos AL, Ayala G. OMICfpp: a fuzzy approach for paired RNA-Seq counts. BMC Genomics 2019; 20:259. [PMID: 30940089 PMCID: PMC6444640 DOI: 10.1186/s12864-019-5496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RNA sequencing is a widely used technology for differential expression analysis. However, the RNA-Seq do not provide accurate absolute measurements and the results can be different for each pipeline used. The major problem in statistical analysis of RNA-Seq and in the omics data in general, is the small sample size with respect to the large number of variables. In addition, experimental design must be taken into account and few tools consider it. RESULTS We propose OMICfpp, a method for the statistical analysis of RNA-Seq paired design data. First, we obtain a p-value for each case-control pair using a binomial test. These p-values are aggregated using an ordered weighted average (OWA) with a given orness previously chosen. The aggregated p-value from the original data is compared with the aggregated p-value obtained using the same method applied to random pairs. These new pairs are generated using between-pairs and complete randomization distributions. This randomization p-value is used as a raw p-value to test the differential expression of each gene. The OMICfpp method is evaluated using public data sets of 68 sample pairs from patients with colorectal cancer. We validate our results through bibliographic search of the reported genes and using simulated data set. Furthermore, we compared our results with those obtained by the methods edgeR and DESeq2 for paired samples. Finally, we propose new target genes to validate these as gene expression signatures in colorectal cancer. OMICfpp is available at http://www.uv.es/ayala/software/OMICfpp_0.2.tar.gz . CONCLUSIONS Our study shows that OMICfpp is an accurate method for differential expression analysis in RNA-Seq data with paired design. In addition, we propose the use of randomized p-values pattern graphic as a powerful and robust method to select the target genes for experimental validation.
Collapse
Affiliation(s)
- Alberto Berral-Gonzalez
- Grupo de Investigación Bioinformática y Genómica Funcional. Laboratorio 19. Centro de Investigación del Cáncer (CiC-IBMCC, Universidad de Salamanca-CSIC, Campus Universitario Miguel de Unamuno s/n, Salamanca, 37007 Spain
| | - Angela L. Riffo-Campos
- Universidad de La Frontera. Centro De Excelencia de Modelación y Computación Científica, C/ Montevideo 740, Temuco, Chile
| | - Guillermo Ayala
- Universidad de Valencia. Departamento de Estadística e Investigación Operativa, Avda. Vicent Andrés Estellés, 1, Burjasot, 46100 Spain
| |
Collapse
|