1
|
Tancos MA, McMahon MB, Garrett WM, Luster DG, Rogers EE. Comparative Secretome Analyses of Toxigenic and Atoxigenic Rathayibacter Species. PHYTOPATHOLOGY 2021; 111:1530-1540. [PMID: 33499664 DOI: 10.1094/phyto-11-20-0495-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogenic Rathayibacter species are unique bacterial plant pathogens because they are obligately vectored by plant parasitic anguinid nematodes to the developing seedheads of forage grasses and cereals. This understudied group of plant-associated Actinomycetes includes the neurotoxigenic plant pathogen R. toxicus, which causes annual ryegrass toxicity in grazing livestock. R. toxicus is currently endemic to Australia and is listed as a plant pathogen select agent by the U.S. Department of Agriculture-Animal and Plant Health Inspection Service. The complex Rathayibacter disease cycle requires intimate interactions with the nematode vector and plant hosts, which warrants an increased understanding of the secretory and surface-associated proteins that mediate these diverse eukaryotic interactions. Here we present the first comparative secretome analysis for this complex, nematode-vectored Rathayibacter genus that compares the three agronomically damaging toxigenic and atoxigenic Rathayibacter species, R. toxicus, R. iranicus, and R. tritici. The exoproteomic comparison identified 1,423 unique proteins between the three species via liquid chromatography-tandem mass spectrometry, leading to the identification of putative pathogenicity-related proteins and proteins that may mediate nematode attachment. Of the uniquely identified proteins, 94 homologous proteins were conserved between the three Rathayibacter exoproteomes and comprised between 43.4 and 58.6% of total protein abundance. Comparative analyses revealed both conserved and uniquely expressed extracellular proteins, which, interestingly, had more similarities to extracellular proteins commonly associated with bacterial animal pathogens than classic plant pathogens. This comparative exoproteome analysis will facilitate the characterization of proteins essential for vector attachment and host colonization and assist in the development of serological diagnostic assays.
Collapse
Affiliation(s)
- Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| | - Michael B McMahon
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD
| | - Douglas G Luster
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| | - Elizabeth E Rogers
- Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD
| |
Collapse
|
2
|
Price NPJ, Jackson MA, Hartman TM, Brändén G, Ek M, Koch AA, Kennedy PD. Branched Chain Lipid Metabolism As a Determinant of the N-Acyl Variation of Streptomyces Natural Products. ACS Chem Biol 2021; 16:116-124. [PMID: 33411499 DOI: 10.1021/acschembio.0c00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Branched-chain fatty acids (BCFA) are encountered in Gram-positive bacteria, but less so in other organisms. The bacterial BCFA in membranes are typically saturated, with both odd- and even-numbered carbon chain lengths, and with methyl branches at either the ω-1 (iso) or ω-2 (anteiso) positions. The acylation with BCFA also contributes to the structural diversity of microbial natural products and potentially modulates biological activity. For the tunicamycin (TUN) family of natural products, the toxicity toward eukaryotes is highly dependent upon N-acylation with trans-2,3-unsaturated BCFA. The loss of the 2,3-unsaturation gives modified TUN with reduced eukaryotic toxicity but crucially with retention of the synergistic enhancement of the β-lactam group of antibiotics. Here, we infer from genomics, mass spectrometry, and deuterium labeling that the trans-2,3-unsaturated TUN variants and the saturated cellular lipids found in TUN-producing Streptomyces are derived from the same pool of BCFA metabolites. Moreover, non-natural primers of BCFA metabolism are selectively incorporated into the cellular lipids of TUN-producing Streptomyces and concomitantly produce structurally novel neo-branched TUN N-acyl variants.
Collapse
Affiliation(s)
- Neil P. J. Price
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Michael A. Jackson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Trina M. Hartman
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Ek
- Structure, Biophysics & FBLG, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Aaron A. Koch
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| | - Paul D. Kennedy
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| |
Collapse
|
3
|
Yasuhara-Bell J, Arif M, Busot GY, Mann R, Rodoni B, Stack JP. Comparative Genomic Analysis Confirms Five Genetic Populations of the Select Agent, Rathayibacter toxicus. Microorganisms 2020; 8:E366. [PMID: 32150860 PMCID: PMC7143919 DOI: 10.3390/microorganisms8030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/01/2023] Open
Abstract
Rathayibacter toxicus is a Gram-positive, nematode-vectored bacterium that infects several grass species in the family Poaceae. Unique in its genus, R. toxicus has the smallest genome, possesses a complete CRISPR-Cas system, a vancomycin-resistance cassette, produces tunicamycin, a corynetoxin responsible for livestock deaths in Australia, and is designated a Select Agent in the United States. In-depth, genome-wide analyses performed in this study support the previously designated five genetic populations, with a core genome comprising approximately 80% of the genome for all populations. Results varied as a function of the type of analysis and when using different bioinformatics tools for the same analysis; e.g., some programs failed to identify specific genomic regions that were actually present. The software variance highlights the need to verify bioinformatics results by additional methods; e.g., PCR, mapping genes to genomes, use of multiple algorithms). These analyses suggest the following relationships among populations: RT-IV ↔ RT-I ↔ RT-II ↔ RT-III ↔ RT-V, with RT-IV and RT-V being the most unrelated. This is the most comprehensive analysis of R. toxicus that included populations RT-I and RT-V. Future studies require underrepresented populations and more recent isolates from varied hosts and geographic locations.
Collapse
Affiliation(s)
- Jarred Yasuhara-Bell
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| | - Mohammad Arif
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Plant and Environmental Protection Sciences, University of Hawai`i at Mānoa, Honolulu, HI 96822, USA
| | - Grethel Y. Busot
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| | - Rachel Mann
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Jobs, Precincts and Regions, Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio Centre, La Trobe University, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - Brendan Rodoni
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Jobs, Precincts and Regions, Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio Centre, La Trobe University, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - James P. Stack
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| |
Collapse
|
4
|
Luster DG, McMahon MB, Carter ML, Sechler AJ, Rogers EE, Schroeder BK, Murray TD. Immunoreagents for development of a diagnostic assay specific for Rathayibacter toxicus. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1714554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Douglas G. Luster
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, USA
| | - Michael B. McMahon
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, USA
| | - Melissa L. Carter
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, USA
| | - Aaron J. Sechler
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, USA
| | - Elizabeth E. Rogers
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, USA
| | - Brenda K. Schroeder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Timothy D. Murray
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Tancos MA, Sechler AJ, Davis EW, Chang JH, Schroeder BK, Murray TD, Rogers EE. The Identification and Conservation of Tunicaminyluracil-Related Biosynthetic Gene Clusters in Several Rathayibacter Species Collected From Australia, Africa, Eurasia, and North America. Front Microbiol 2020; 10:2914. [PMID: 31998251 PMCID: PMC6965331 DOI: 10.3389/fmicb.2019.02914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/03/2019] [Indexed: 01/12/2023] Open
Abstract
Tunicaminyluracil antibiotics are a novel class of toxigenic glycolipids that are synthesized by several soil-associated Actinomycetes. The acquisition of a tunicaminyluracil biosynthetic gene cluster (TGC) in Rathayibacter toxicus has led to the emergence of the only described, naturally occurring tunicaminyluracil-associated mammalian disease, annual ryegrass toxicity of livestock. Endemic to Australia, R. toxicus is obligately vectored by Anguinid seed gall nematodes to the developing seedheads of forage grasses, in which the bacteria synthesize tunicaminyluracils that may subsequently be consumed by livestock and result in high rates of mortality and morbidity. The potential impact of R. toxicus on U.S. agriculture has led the U.S. Department of Agriculture - Animal and Plant Health Inspection Service to list R. toxicus as a Plant Pathogen Select Agent. R. toxicus is the only characterized phytopathogenic bacterium to produce tunicaminyluracils, but numerous R. toxicus-like livestock poisonings outside Australia suggest additional bacterial sources of tunicaminyluracils may exist. To investigate the conservation of the TGC in R. toxicus and whether the TGC is present in other Rathayibacter species, we analyzed genome sequences of members of the Rathayibacter genus. Putative TGCs were identified in genome sequences of R. toxicus, R. iranicus, R. agropyri, and an undescribed South African Rathayibacter species. In the latter three species, the putative TGCs have homologs of tunicaminyluracil-related genes essential for toxin production, but the TGCs differ in gene number and order. The TGCs appear at least partially functional because in contrast to atoxigenic species, TGC-containing Rathayibacter species were each able to tolerate exogenous applications of tunicamycin from Streptomyces chartreusis. The North American R. agropyri TGC shows extensive diversity among the sequenced isolates, with presense/absense polymorphisms in multiple genes or even the whole TGC. R. agropyri TGC structure does not appear to correlate with date or location of isolate collection. The conservation and identification of tunicaminyluracil-related gene clusters in three additional Rathayibacter species isolated from South Africa, the Middle East, and the United States, suggests a wider global distribution of potentially neurotoxigenic plant-associated bacteria. This potential for additional endemic and exotic toxigenic Rathayibacter species could have widespread and severe implications for agriculture.
Collapse
Affiliation(s)
- Matthew A. Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, United States
| | - Aaron J. Sechler
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, United States
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brenda K. Schroeder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Timothy D. Murray
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth E. Rogers
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, United States
| |
Collapse
|
6
|
Thapa SP, Davis EW, Lyu Q, Weisberg AJ, Stevens DM, Clarke CR, Coaker G, Chang JH. The Evolution, Ecology, and Mechanisms of Infection by Gram-Positive, Plant-Associated Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:341-365. [PMID: 31283433 DOI: 10.1146/annurev-phyto-082718-100124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gram-positive bacteria are prominent members of plant-associated microbial communities. Although many are hypothesized to be beneficial, some are causative agents of economically important diseases of crop plants. Because the features of Gram-positive bacteria are fundamentally different relative to those of Gram-negative bacteria, the evolution and ecology as well as the mechanisms used to colonize and infect plants also differ. Here, we discuss recent advances in our understanding of Gram-positive, plant-associated bacteria and provide a framework for future research directions on these important plant symbionts.
Collapse
Affiliation(s)
- Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| | - Qingyang Lyu
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Danielle M Stevens
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Integrative Genetics and Genomics, University of California, Davis, California 95616, USA
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
7
|
Abstract
Rathayibacter toxicus is a toxin-producing species found in Australia and is often fatal to grazing animals. The threat of introduction of the species into the United States led to its inclusion in the Federal Select Agent Program, which makes R. toxicus a highly regulated species. This work provides novel insights into the evolution of R. toxicus. R. toxicus is the only species in the genus to have acquired a CRISPR adaptive immune system to protect against bacteriophages. Results suggest that coexistence with the bacteriophage NCPPB3778 led to the massive shrinkage of the R. toxicus genome, species divergence, and the maintenance of low genetic diversity in extant bacterial groups. This work contributes to an understanding of the evolution and ecology of an agriculturally important species of bacteria. Rathayibacter toxicus is a species of Gram-positive, corynetoxin-producing bacteria that causes annual ryegrass toxicity, a disease often fatal to grazing animals. A phylogenomic approach was employed to model the evolution of R. toxicus to explain the low genetic diversity observed among isolates collected during a 30-year period of sampling in three regions of Australia, gain insight into the taxonomy of Rathayibacter, and provide a framework for studying these bacteria. Analyses of a data set of more than 100 sequenced Rathayibacter genomes indicated that Rathayibacter forms nine species-level groups. R. toxicus is the most genetically distant, and evidence suggested that this species experienced a dramatic event in its evolution. Its genome is significantly reduced in size but is colinear to those of sister species. Moreover, R. toxicus has low intergroup genomic diversity and almost no intragroup genomic diversity between ecologically separated isolates. R. toxicus is the only species of the genus that encodes a clustered regularly interspaced short palindromic repeat (CRISPR) locus and that is known to host a bacteriophage parasite. The spacers, which represent a chronological history of infections, were characterized for information on past events. We propose a three-stage process that emphasizes the importance of the bacteriophage and CRISPR in the genome reduction and low genetic diversity of the R. toxicus species.
Collapse
|
8
|
Fennessey CM, McMahon MB, Sechler AJ, Kaiser J, Garrett WM, Tancos MA, Luster DG, Rogers EE, Schneider WL. Partial Proteome of the Corynetoxin-Producing Gram-Positive Bacterium, Rathayibacter toxicus. Proteomics 2018; 18. [PMID: 29327412 DOI: 10.1002/pmic.201700350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Indexed: 11/12/2022]
Abstract
Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry it up to the seed head of the host plant. ARGT is caused by a tunicamycin-like corynetoxin that is produced in R. toxicus-infected seed galls. We analyzed protein expression in R. toxicus under stationary growth phase conditions to obtain a more complete understanding of the biology of this organism and identify potential targets for immunoassay development. A total of 323 unique proteins were identified, including those with putative roles in secondary metabolism and pathogenicity. The proteome analysis for this complex phytopathogenic Gram-positive bacterium will facilitate in the characterization of proteins necessary for host colonization and toxin production, and assist in the development of diagnostic assays. Data are available via ProteomeXchange with identifier PXD004238.
Collapse
Affiliation(s)
- Christine M Fennessey
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA.,AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael B McMahon
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Aaron J Sechler
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Jaclyn Kaiser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wesley M Garrett
- USDA, ARS, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, USA
| | - Matthew A Tancos
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Douglas G Luster
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Elizabeth E Rogers
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - William L Schneider
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| |
Collapse
|