1
|
Eida S, Fukuda M, Katayama I, Takagi Y, Sasaki M, Mori H, Kawakami M, Nishino T, Ariji Y, Sumi M. Metastatic Lymph Node Detection on Ultrasound Images Using YOLOv7 in Patients with Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:274. [PMID: 38254765 PMCID: PMC10813890 DOI: 10.3390/cancers16020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Ultrasonography is the preferred modality for detailed evaluation of enlarged lymph nodes (LNs) identified on computed tomography and/or magnetic resonance imaging, owing to its high spatial resolution. However, the diagnostic performance of ultrasonography depends on the examiner's expertise. To support the ultrasonographic diagnosis, we developed YOLOv7-based deep learning models for metastatic LN detection on ultrasonography and compared their detection performance with that of highly experienced radiologists and less experienced residents. We enrolled 462 B- and D-mode ultrasound images of 261 metastatic and 279 non-metastatic histopathologically confirmed LNs from 126 patients with head and neck squamous cell carcinoma. The YOLOv7-based B- and D-mode models were optimized using B- and D-mode training and validation images and their detection performance for metastatic LNs was evaluated using B- and D-mode testing images, respectively. The D-mode model's performance was comparable to that of radiologists and superior to that of residents' reading of D-mode images, whereas the B-mode model's performance was higher than that of residents but lower than that of radiologists on B-mode images. Thus, YOLOv7-based B- and D-mode models can assist less experienced residents in ultrasonographic diagnoses. The D-mode model could raise the diagnostic performance of residents to the same level as experienced radiologists.
Collapse
Affiliation(s)
- Sato Eida
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Motoki Fukuda
- Department of Oral Radiology, Osaka Dental University, 1-5-17 Otemae, Chuo-ku, Osaka 540-0008, Japan; (M.F.); (Y.A.)
| | - Ikuo Katayama
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Yukinori Takagi
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Miho Sasaki
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Hiroki Mori
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Maki Kawakami
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Tatsuyoshi Nishino
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| | - Yoshiko Ariji
- Department of Oral Radiology, Osaka Dental University, 1-5-17 Otemae, Chuo-ku, Osaka 540-0008, Japan; (M.F.); (Y.A.)
| | - Misa Sumi
- Department of Radiology and Biomedical Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (S.E.); (I.K.); (Y.T.); (M.S.); (H.M.); (M.K.); (T.N.)
| |
Collapse
|
2
|
Seppälä M, Jauhiainen L, Tervo S, Al-Samadi A, Rautiainen M, Salo T, Lehti K, Monni O, Hautaniemi S, Tynninen O, Mäkitie A, Mäkinen LK, Paavonen T, Toppila-Salmi S. The expression and prognostic relevance of CDH3 in tongue squamous cell carcinoma. APMIS 2021; 129:717-728. [PMID: 34580913 DOI: 10.1111/apm.13176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
P-cadherin (CDH3) is a cell-to-cell adhesion molecule that regulates several cellular homeostatic processes in normal tissues. Lack of CDH3 expression is associated with aggressive behavior in oral squamous cell carcinoma (OSCC). Previous studies have shown that CDH3 is downregulated in high-grade OSCC and its reduced expression is predictive for poorer survival. The aim of this study was to evaluate the expression and prognostic relevance of CDH3 in tongue squamous cell carcinoma (TSCC). A retrospective series of 211 TSCC and 50 lymph node samples were stained immunohistochemically with polyclonal antibody (anti-CDH3). CDH3 expression was assessed semi-quantitatively with light microscopy. Fisher's exact test was used to compare patient and tumor characteristics, and the correlations were tested by Spearman correlation. Survival curves were drawn by the Kaplan-Meier method and analyzed by the log-rank test. Univariate and multivariate Cox regression was used to estimate the association between CDH3 expression and survival. CDH3 expression did not affect TSCC patient's disease-specific survival or overall survival. Strong CDH3 expression in the primary tumor predicted poor disease-specific and overall survival in patients with recurrent disease. CDH3 expression in lymph nodes without metastasis was negative in all cases. CDH3 expression was positive in all lymph node metastases with extranodal extension. In contrast to previous report about the prognostic value of CDH3 in OSCC, we were not able to validate the result in TSCC.
Collapse
Affiliation(s)
- Miia Seppälä
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Laura Jauhiainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Sanni Tervo
- Department of Pathology, University of Tampere, Tampere, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus Rautiainen
- Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Tuula Salo
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Antti Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki, HUS Helsinki University Hospital, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Laura K Mäkinen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Paavonen
- Department of Pathology, Fimlab Laboratories and Department of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, Haartman Institute University of Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Is there a patient population with squamous cell carcinoma of the head and neck region who might benefit from de-intensification of postoperative radiotherapy? : A monocentric retrospective analysis of a previously defined low-risk patient population treated with standard-of-care radiotherapy. Strahlenther Onkol 2019; 195:482-495. [PMID: 30610355 DOI: 10.1007/s00066-018-1415-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The aim of this retrospective study was to evaluate the clinical outcome of a previously defined low-risk patient population with completely resected (R0) squamous cell carcinoma of the oral cavity, oropharynx, larynx (pT1-3, pN0-pN2b), hypopharynx (pT1-2, pN0-pN1), and the indication for postoperative radio(chemo)therapy. PATIENTS AND METHODS According to predefined criteria, 99 patients with head and neck squamous cell carcinoma (SCC) who were treated at our institution from January 1, 2005 to December 31, 2014, were available for analysis. The Kaplan-Meier method was used for calculating survival and incidence rates. For univariate comparative analysis, the log-rank test was used for analyzing prognostic clinicopathologic parameters. RESULTS Median follow-up was 67 months. Cumulative overall (OS) and disease-free survival (DFS) were 97.9%/94.7%/88.0% and 96.9%/92.6%/84.7% after 1, 2, and 5 years, respectively. Cumulative incidence of loco-regional recurrence (LRR), distant metastases (DM), and second cancer (SC) were 1.0%/1.0%/4.9%, 0.0%/3.4%/5.8%, and 2.1%/4.2%/13.1%, respectively. In univariate comparative analysis, location of the primary tumor in the oropharynx was a significant predictor for increased OS (p = 0.043) and DFS (p = 0.048). CONCLUSION Considering the low disease relapse rates and high rates of therapy-induced late side effects, as well as the increased risk of developing SC, a prospective multicentric trial investigating de-escalation of radiotherapy in this clearly defined low-risk patient population was started and is still recruiting patients (DIREKHT-Trial, NCT02528955).
Collapse
|