1
|
Li Z, Wang Q, Knebel D, Veit D, Ulrich Y. Division of labour in colony defence in a clonal ant. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230270. [PMID: 40109105 PMCID: PMC11969388 DOI: 10.1098/rstb.2023.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 08/27/2024] [Indexed: 03/22/2025] Open
Abstract
Division of labour (DOL) plays a key role across all scales of biological organization, but how its expression varies across contexts is still poorly understood. Here, we measure DOL in a crucial task, colony defence, in a social insect that affords precise experimental control over individual and colony traits, the clonal raider ant (Ooceraea biroi). We find that DOL in defence behaviour emerges within colonies of near-identical workers, likely reflecting variation in individual response thresholds, and that it increases with colony size. Additionally, colonies with pupae show higher defence levels than those without brood. However, we do not find evidence for a behavioural syndrome linking defence with exploration and activity, as previously reported in other systems. By showing how colony composition and size affect group response to potential threats, our findings highlight the role of the social context in shaping DOL.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
- Zimai Li
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena07743, Germany
| | - Qi Wang
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena07743, Germany
| | - Daniel Knebel
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
- Max Planck Institute for the History of Science, Berlin14195, Germany
| | - Daniel Veit
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Yuko Ulrich
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|
2
|
Kannan K, Galizia CG, Nouvian M. Consistency and individuality of honeybee stinging behaviour across time and social contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241295. [PMID: 39881791 PMCID: PMC11774586 DOI: 10.1098/rsos.241295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Whether individuals exhibit consistent behavioural variation is a central question in the field of animal behaviour. This question is particularly interesting in the case of social animals, as their behaviour may be strongly modulated by the collective. In this study, we ask whether honeybees exhibit individual differences in stinging behaviour. We demonstrate that bees are relatively stable in their decision to sting-or not-in a specific context and show temporal consistency suggestive of an internal state modulation. We also investigated how social factors such as the alarm pheromone or another bee modulated this behaviour. The presence of alarm pheromone increased the likelihood of a bee to sting but this response decayed over trials, while the presence of a conspecific decreased individual stinging likelihood. These factors, however, did not alter stinging consistency. We therefore propose that social modulation acts by shifting the stinging threshold of individuals. Finally, experimental manipulation of group composition with respect to the ratio of aggressive and gentle bees within a group did not affect the behaviour of focal bees. Overall, our results establish honeybee stinging behaviour as a promising model for studying mechanistically how collective and individual traits interact to regulate individual variability.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- International Max Plank Research School for Quantitative Behaviour Ecology and Evolution, Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Hill L, Gérard M, Hildebrandt F, Baird E. Bumblebee cognitive abilities are robust to changes in colony size. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
Eusocial insect colonies act as a superorganism, which can improve their ability to buffer the negative impact of some anthropogenic stressors. However, this buffering effect can be affected by anthropogenic factors that reduce their colony size. A reduction in colony size is known to negatively affect several parameters like brood maintenance or thermoregulation, but the effects on behaviour and cognition have been largely overlooked. It remains unclear how a sudden change in group size, such as that which might be caused by anthropogenic stressors, affects individual behaviour within a colony. In this study, the bumblebee Bombus terrestris was used to study the effect of social group size on behaviour by comparing the associative learning capabilities of individuals from colonies that were unmanipulated, reduced to a normal size (a colony of 100 workers) or reduced to a critically low but functional size (a colony of 20 workers). The results demonstrated that workers from the different treatments performed equally well in associative learning tasks, which also included no significant differences in the learning capacity of workers that had fully developed after the colony size manipulation. Furthermore, we found that the size of workers had no impact on associative learning ability. The learning abilities of bumblebee workers were thus resilient to the colony reduction they encountered. Our study is a first step towards understanding how eusocial insect cognition can be impacted by drastic reductions in colony size.
Significance statement
While anthropogenic stressors can reduce the colony size of eusocial insects, the impact of this reduction is poorly studied, particularly among bumblebees. We hypothesised that colony size reduction would affect the cognitive capacity of worker bumblebees as a result of fewer social interactions or potential undernourishment. Using differential conditioning, we showed that drastic reductions in colony size have no effect on the associative learning capabilities of the bumblebee Bombus terrestris and that this was the same for individuals that were tested just after the colony reduction and individuals that fully developed under the colony size reduction. We also showed that body size did not affect learning capabilities. This resilience could be an efficient buffer against the ongoing impacts of global change.
Collapse
|
4
|
Petrov T, Hajnal M, Klein J, Šafránek D, Nouvian M. Extracting individual characteristics from population data reveals a negative social effect during honeybee defence. PLoS Comput Biol 2022; 18:e1010305. [PMID: 36107824 PMCID: PMC9477262 DOI: 10.1371/journal.pcbi.1010305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Honeybees protect their colony against vertebrates by mass stinging and they coordinate their actions during this crucial event thanks to an alarm pheromone carried directly on the stinger, which is therefore released upon stinging. The pheromone then recruits nearby bees so that more and more bees participate in the defence. However, a quantitative understanding of how an individual bee adapts its stinging response during the course of an attack is still a challenge: Typically, only the group behaviour is effectively measurable in experiment; Further, linking the observed group behaviour with individual responses requires a probabilistic model enumerating a combinatorial number of possible group contexts during the defence; Finally, extracting the individual characteristics from group observations requires novel methods for parameter inference. We first experimentally observed the behaviour of groups of bees confronted with a fake predator inside an arena and quantified their defensive reaction by counting the number of stingers embedded in the dummy at the end of a trial. We propose a biologically plausible model of this phenomenon, which transparently links the choice of each individual bee to sting or not, to its group context at the time of the decision. Then, we propose an efficient method for inferring the parameters of the model from the experimental data. Finally, we use this methodology to investigate the effect of group size on stinging initiation and alarm pheromone recruitment. Our findings shed light on how the social context influences stinging behaviour, by quantifying how the alarm pheromone concentration level affects the decision of each bee to sting or not in a given group size. We show that recruitment is curbed as group size grows, thus suggesting that the presence of nestmates is integrated as a negative cue by individual bees. Moreover, the unique integration of exact and statistical methods provides a quantitative characterisation of uncertainty associated to each of the inferred parameters. In this paper, our interdisciplinary team has significantly improved the understanding of how honeybees coordinate their actions during defence. Our first step was to measure the output behaviour of groups of bees under controlled experimental conditions. We then developed a model and methodology that allow us to quantify how the responsiveness to the alarm pheromone evolves during a defensive event, for a given group size. We show that recruitment becomes less effective as group size increases, thus revealing the existence of a negative social effect that acts on top of alarm pheromone communication. Our contribution is thus two-fold: on the computational side, we provide new tools to extract individual characteristics from population data, which is a challenging issue in the study of collective behaviour. On the biological side, we provide evidence that bees weight in their social context when making the decision to sting. We hypothesize that this may be an important mechanism to prevent recruitment from spinning out of control, ultimately preserving the colony from workforce depletion.
Collapse
Affiliation(s)
- Tatjana Petrov
- Department of Computer and Information Sciences, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- * E-mail: (TP); (DŠ); (MN)
| | - Matej Hajnal
- Department of Computer and Information Sciences, University of Konstanz, Konstanz, Germany
- Systems Biology Laboratory, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Julia Klein
- Department of Computer and Information Sciences, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - David Šafránek
- Systems Biology Laboratory, Faculty of Informatics, Masaryk University, Brno, Czech Republic
- * E-mail: (TP); (DŠ); (MN)
| | - Morgane Nouvian
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- * E-mail: (TP); (DŠ); (MN)
| |
Collapse
|
5
|
Using weapons instead of perfume: chemical association strategies of the myrmecophilous bug Scolopostethus pacificus (Rhyparochromidae). CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00374-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Walsh JT, Garonski A, Jackan C, Linksvayer TA. The Collective Behavior of Ant Groups Depends on Group Genotypic Composition. J Hered 2021; 113:102-108. [PMID: 34634803 DOI: 10.1093/jhered/esab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022] Open
Abstract
Recently, researchers have documented variation between groups in collective behavior. However, how genetic variation within and between groups contributes to population-level variation for collective behavior remains unclear. Understanding how genetic variation of group members relates to group-level phenotypes is evolutionarily important because there is increasing evidence that group-level behavioral variation influences fitness and that the genetic architecture of group-level traits can affect the evolutionary dynamics of traits. Social insects are ideal for studying the complex relationship between individual and group-level variation because they exhibit behavioral variation at multiple scales of organization. To explore how the genetic composition of groups affects collective behavior, we constructed groups of pharaoh ants (Monomorium pharaonis) from 33 genetically distinct colonies of known pedigree. The groups consisted of either all workers from the same single colony or workers from two genetically different colonies, and we assayed the exploration and aggression of the groups. We found that collective exploration, but not aggression, depended on the specific genotypic combination of group members, i.e., we found evidence for genotype-by-genotype epistasis for exploration. Group collective behavior did not depend on the pedigree relatedness between genotypes within groups. Overall, this study highlights that specific combinations of genotypes influence group-level phenotypes, emphasizing the importance of considering nonadditive effects of genotypic interactions between group members.
Collapse
Affiliation(s)
- Justin T Walsh
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Garonski
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Jackan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Behavioral responses to numerical differences when two invasive ants meet: the case of Lasius neglectus and Linepithema humile. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02412-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractTwo of the world’s most invasive ants, Linepithema humile and Lasius neglectus, are destined to overlap in range as they continue to spread throughout Europe. Although L. humile arrived first, and is therefore more numerically abundant, L. neglectus is the more behaviorally dominant of the two. We performed lab trials to determine whether L. humile could use numerical abundance to overcome the behavioral dominance of L. neglectus and whether the ants’ behavioral patterns shifted when the species co-occurred. We found that L. neglectus was more aggressive when less abundant, whereas the opposite was true of L. humile. When L. neglectus was outnumbered, it employed aggressive behaviors, such as biting or chemical attacks, more frequently than L. humile; it also utilized a behavioral sequence that included mandible opening and biting. Our results for these species support the hypothesis that species modulate their behavior towards competitors, which facilitates the understanding of how multiple invasive ant species can co-occur in a given area. Moreover, our study shows that the co-occurrence of invasive species could result from the use of two strategies: (1) the Bourgeois strategy, in which aggressiveness changes based on numerical dominance and (2) the dear-enemy strategy, in which aggressiveness is reduced when competitors co-occur. Since these strategies may lead to territory partitioning, we suggest that the behavioral flexibility displayed by both species when they overlap may allow local co-occurrence and increase their likelihood of co-occurrence during their range expansion in Europe, which could have a negative cumulative impact on invaded areas.
Collapse
|
8
|
Walsh JT, Garnier S, Linksvayer TA. Ant Collective Behavior Is Heritable and Shaped by Selection. Am Nat 2020; 196:541-554. [PMID: 33064586 DOI: 10.1086/710709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variation in collective behavior is heritable and has fitness consequences-the two prerequisites for evolution by natural selection-is largely unknown. We used a new pharaoh ant (Monomorium pharaonis) mapping population to estimate the heritability, genetic correlations, and fitness consequences of three collective behaviors (foraging, aggression, and exploration), as well as of body size, sex ratio, and caste ratio. Heritability estimates for the collective behaviors were moderate, ranging from 0.17 to 0.32, but lower than our estimates for the heritability of caste ratio, sex ratio, and body size of new workers, queens, and males. Moreover, variation in collective behaviors among colonies was phenotypically correlated, suggesting that selection may shape multiple colony collective behaviors simultaneously. Finally, we found evidence for directional selection that was similar in strength to estimates of selection in natural populations. Altogether, our study begins to elucidate the genetic architecture of collective behavior and is one of the first studies to demonstrate that it is shaped by selection.
Collapse
|
9
|
Kolenda K, Salata S, Kujawa K, Kuśmierek N, Smolis A, Kadej M. Deadly trap or sweet home? The case of discarded containers as novelty microhabitats for ants. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Neupert S, Hornung M, Grenwille Millar J, Kleineidam CJ. Learning Distinct Chemical Labels of Nestmates in Ants. Front Behav Neurosci 2018; 12:191. [PMID: 30210320 PMCID: PMC6123487 DOI: 10.3389/fnbeh.2018.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/06/2018] [Indexed: 12/04/2022] Open
Abstract
Colony coherence is essential for eusocial insects because it supports the inclusive fitness of colony members. Ants quickly and reliably recognize who belongs to the colony (nestmates) and who is an outsider (non-nestmates) based on chemical recognition cues (cuticular hydrocarbons: CHCs) which as a whole constitute a chemical label. The process of nestmate recognition often is described as matching a neural template with the label. In this study, we tested the prevailing view that ants use commonalities in the colony odor that are present in the CHC profile of all individuals of a colony or whether different CHC profiles are learned independently. We created and manipulated sub-colonies by adding one or two different hydrocarbons that were not present in the original colony odor of our Camponotus floridanus colony and later tested workers of the sub-colonies in one-on-one encounters for aggressive responses. We found that workers adjust their nestmate recognition by learning novel, manipulated CHC profiles, but still accept workers with the previous CHC profile. Workers from a sub-colony with two additional components showed aggression against workers with only one of the two components added to their CHC profile. Thus, additional components as well as the lack of a component can alter a label as “non-nestmate.” Our results suggest that ants have multiple-templates to recognize nestmates carrying distinct labels. This finding is in contrast to what previously has been proposed, i.e., a widening of the acceptance range of one template. We conclude that nestmate recognition in ants is a partitioned (multiple-template) process of the olfactory system that allows discrimination and categorization of nestmates by differences in their CHC profiles. Our findings have strong implications for our understanding of the underlying mechanisms of colony coherence and task allocation because they illustrate the importance of individual experience and task associated differences in the CHC profiles that can be instructive for the organization of insect societies.
Collapse
Affiliation(s)
- Stefanie Neupert
- Department of Neurobiology/Zoology, Universität Konstanz, Konstanz, Germany
| | - Manuel Hornung
- Department of Neurobiology/Zoology, Universität Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
11
|
Neupert S, DeMilto A, Drijfhout F, Speller S, Adams RM. Host colony integration: Megalomyrmex guest ant parasites maintain peace with their host using weaponry. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|