1
|
Tang R, Jin Y, Xu K, Wu L, Chen X, Guo Y, Li G, Li J. Aberrant functional connectivity patterns in the pregenual anterior cingulate cortex and anterior midcingulate cortex of patients with irritable bowel syndrome accompanied by depressive symptoms. Brain Imaging Behav 2025; 19:279-290. [PMID: 39775692 DOI: 10.1007/s11682-024-00964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Irritable bowel syndrome (IBS) is a common brain-gut disorder often accompanied by depressive symptoms, with atrophy and hyperactivity of the anterior cingulate gyrus (ACC) being key drivers of both IBS and its psychiatric comorbidities. This study aimed to investigate the functional connectivity (FC) patterns of pregenual ACC (pgACC) and anterior midcingulate cortex (aMCC) in IBS patients with depressive symptoms (DEP-IBS). A whole-brain FC analysis was conducted using pgACC and aMCC as regions of interest in three groups: 28 DEP-IBS patients, 21 IBS patients without depressive symptoms (nDEP-IBS), and 36 matched healthy controls (HCs). Partial correlation and mediation analyses were performed between abnormal FC and clinical symptoms. The ability of aberrant FC to identify IBS and its psychiatric comorbidity was evaluated using receiver operating characteristic (ROC) curve. DEP-IBS patients exhibited increased pgACC-related FC in the left medial prefrontal cortex (mPFC) and aMCC-related FC in the right middle frontal gyrus, angular gyrus and cerebellum, while showing decreased aMCC-related FC in the right precentral gyrus, superior parietal gyrus and precuneus. Both patient groups demonstrated increased FC between aMCC and left dorsolateral prefrontal cortex (dlPFC), effectively distinguishing them from HCs (AUC = 0.755). The FC between pgACC and left mPFC partially mediated the relationship between gastrointestinal and depressive symptoms, effectively distinguishing DEP-IBS from nDEP-IBS patients (AUC = 0.808). Aberrant FC within the emotional arousal network may serve as a neurobiological marker for IBS with comorbid depression. Furthermore, abnormal FC between the aMCC and the dlPFC may underlie the neural mechanism of IBS.
Collapse
Affiliation(s)
- Ruoyu Tang
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yihan Jin
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kuanghui Xu
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liqiang Wu
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaofei Chen
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yun Guo
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guodong Li
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Li
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, Hangzhou, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Gao Z, Cui MJ, Wang HJ, Zhang J, Xu C, Ji LX. Investigating Brain Structure and Functional Alterations in the Transition from Acute to Chronic Neck Pain: A Resting-State fMRI Study. J Pain Res 2025; 18:579-587. [PMID: 39926191 PMCID: PMC11806704 DOI: 10.2147/jpr.s500924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Purpose The objective of this research is to delve into the central pathological mechanisms involved in the transformation from acute to chronic pain. Patients and Methods This study enrolled 86 individuals with acute neck pain and 89 with chronic neck pain. Utilizing a 3.0T MR scanner, we obtained three-dimensional T1-weighted imaging (3D-T1WI) images and analyzed structural differences between the two groups with Freesurfer software to evaluate alterations in cortical thickness. Additionally, Blood Oxygen Level-Dependent functional Magnetic Resonance Imaging (BOLD-fMRI) images were acquired to assess intergroup differences in low-frequency amplitude using DPARSF software. Results Chronic neck pain patients exhibited increased cortical thickness in the left rostral middle frontal, left isthmus cingulate, left superior frontal, and right precuneus regions compared to those with acute neck pain. Low-frequency amplitude measures revealed decreased activity in the left dorsolateral superior frontal gyrus and left postcentral gyrus, among other areas, and increased activity in the right middle frontal gyrus and the opercular part of the right inferior frontal gyrus. Conclusion Our findings indicate that dysfunction and structural changes in the limbic system and prefrontal cortex may play a pivotal role in the progression from acute to chronic neck pain. These insights provide a significant new direction for understanding the central mechanisms underlying pain chronicity.
Collapse
Affiliation(s)
- Zhen Gao
- Experimental Management Center, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, 030024, People’s Republic of China
| | - Meng-Jie Cui
- Second Clinical Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, 030024, People’s Republic of China
| | - Hai-Jun Wang
- Second Clinical Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, 030024, People’s Republic of China
| | - Jing Zhang
- Acupuncture and Moxibustion Department II, Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, 030024, People’s Republic of China
| | - Cheng Xu
- Radiology Department, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Lai-Xi Ji
- Second Clinical Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, 030024, People’s Republic of China
| |
Collapse
|
3
|
Karaivazoglou K, Aggeletopoulou I, Triantos C. Interoceptive Processing in Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:7633. [PMID: 39062876 PMCID: PMC11277500 DOI: 10.3390/ijms25147633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by chronic gastrointestinal symptoms in the absence of overt pathology and affect a significant percentage of the worldwide population. They are commonly accompanied by co-morbid psychiatric symptomatology and are associated with significant suffering and great healthcare services utilization. There is growing evidence that dysregulation of the gut-brain axis and disturbances in the processing of afferent interoceptive signals lie at the heart of these disorders. In this context, the aim of the current review was to detect and critically review original articles focusing on the role of interoception in the pathophysiology of FGIDs. Our search yielded 38 relevant studies. FGID patients displayed increased visceral sensitivity, enhanced attention to gastrointestinal interoceptive cues, and greater emotional arousal when coping with gut-derived sensations. Neuroimaging studies have shown significant structural and functional changes in regions of the interoceptive network, while molecular and genetic studies have revealed significant associations between interoceptive signaling and deficits in excitatory neurotransmission, altered endocrine and immune physiological pathways, and aberrant expression of transient receptor potential channel genes. Finally, there were emerging data suggesting that interoception-based interventions may reduce physical symptoms and improve quality of life and should be integrated into FGID clinical management practices.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
4
|
Haleem N, Lundervold AJ, Lied GA, Hillestad EMR, Bjorkevoll M, Bjørsvik BR, Teige ES, Brønstad I, Steinsvik EK, Nagaraja BH, Hausken T, Berentsen B, Lundervold A. A psychological symptom based machine learning model for clinical evaluation of irritable bowel syndrome. OPEN RESEARCH EUROPE 2023; 3:19. [PMID: 37645508 PMCID: PMC10457559 DOI: 10.12688/openreseurope.15009.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 08/31/2023]
Abstract
Background: Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by recurrent abdominal pain associated with alterations in stool form and/or stool frequency. Co-morbidities such as anxiety, depression, fatigue, and insomnia are frequently reported by patients suffering from IBS. Identification of these symptoms should thus be an integral part of an IBS assessment. However, an optimal tool to screen for core psychological symptoms in IBS is still missing. Here, we aim to develop a psychological symptom based machine learning model to efficiently help clinicians to identify patients suffering from IBS. Methods: We developed a machine learning workflow to select the most significant psychological features associated with IBS in a dataset including 49 patients with IBS and 35 healthy controls. These features were used to train three different types of machine learning models: logistic regression, decision trees and support vector machine classifiers; which were validated on a holdout validation dataset and an unseen test set. The performance of these models was compared in terms of balanced accuracy scores. Results: A logistic regression model including a combination of symptom features associated with anxiety and fatigue resulted in a balanced accuracy score of 0.93 (0.81-1.0) on unseen test data and outperformed the other comparable models. The same model correctly identified all patients with IBS in a test set (recall score 1) and misclassified one non-IBS subject (precision score 0.91). A complementary post-hoc leave-one-out cross validation analysis including the same symptom features showed similar, but slightly inferior results (balanced accuracy 0.84, recall 0.88, precision 0.86). Conclusions: Inclusion of machine learning based psychological evaluation can complement and improve existing clinical procedure for diagnosis of IBS.
Collapse
Affiliation(s)
- Noman Haleem
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Astri J. Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Gülen Arslan Lied
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Maja Bjorkevoll
- Center of International Health, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ben René Bjørsvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Erica Sande Teige
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Brønstad
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Center for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Kjelsvik Steinsvik
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Center for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bharath Halandur Nagaraja
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Center for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Birgitte Berentsen
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Center for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Rodrigue AL, Mathias SR, Knowles EEM, Mollon J, Almasy L, Schultz L, Turner J, Calhoun V, Glahn DC. Specificity of Psychiatric Polygenic Risk Scores and their Effects on Associated Risk Phenotypes. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519455 PMCID: PMC10382704 DOI: 10.1016/j.bpsgos.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Polygenic risk scores (PRSs) are indices of genetic liability for illness, but their clinical utility for predicting risk for a specific psychiatric disorder is limited. Genetic overlap among disorders and their effects on allied phenotypes may be a possible explanation, but this has been difficult to quantify given focus on singular disorders and/or allied phenotypes. Methods We constructed PRSs for 5 psychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, attention-deficit/hyperactivity disorder) and 3 nonpsychiatric control traits (height, type II diabetes, irritable bowel disease) in the UK Biobank (N = 31,616) and quantified associations between PRSs and phenotypes allied with mental illness: behavioral (symptoms, cognition, trauma) and brain measures from magnetic resonance imaging. We then evaluated the extent of specificity among PRSs and their effects on these allied phenotypes. Results Correlations among psychiatric PRSs replicated previous work, with overlap between schizophrenia and bipolar disorder, which was distinct from overlap between autism spectrum disorder and attention-deficit/hyperactivity disorder; overlap between psychiatric and control PRSs was minimal. There was, however, substantial overlap of PRS effects on allied phenotypes among psychiatric disorders and among psychiatric disorders and control traits, where the extent and pattern of overlap was phenotype specific. Conclusions Results show that genetic distinctions between psychiatric disorders and between psychiatric disorders and control traits exist, but this does not extend to their effects on allied phenotypes. Although overlap can be informative, work is needed to construct PRSs that will function at the level of specificity needed for clinical application.
Collapse
|
6
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
7
|
Barazanji N, Paul Hamilton J, Icenhour A, Simon RA, Bednarska O, Tapper S, Tisell A, Lundberg P, Engström M, Walter S. Irritable bowel syndrome in women: Association between decreased insular subregion volumes and gastrointestinal symptoms. NEUROIMAGE: CLINICAL 2022; 35:103128. [PMID: 36002966 PMCID: PMC9421502 DOI: 10.1016/j.nicl.2022.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
All insular subregions are smaller in IBS compared to healthy women. Insular volume associates with GI symptoms independent of psychiatric comorbidity. GI symptoms associate with anterior but not posterior insular volume. More nausea associated with smaller dorsal anterior insula bilaterally. Insula in major depression is not significantly smaller than in healthy women.
Objective Irritable bowel syndrome (IBS) is a chronic pain disorder characterized by disturbed interactions between the gut and the brain with depression as a common comorbidity. In both IBS and depression, structural brain alterations of the insular cortices, key structures for pain processing and interoception, have been demonstrated but the specificity of these findings remains unclear. We compared the gray matter volume (GMV) of insular cortex (IC) subregions in IBS women and healthy controls (HC) and examined relations to gastrointestinal (GI) symptoms and glutamate + glutamine (Glx) concentrations. We further analyzed GMV of IC subregions in women with major depression (MDD) compared to HC and addressed possible differences between depression, IBS, IBS with depression and HC. Design Women with IBS (n = 75), MDD (n = 41) and their respective HC (n = 39 and n = 43) underwent structural brain MRI. IC subregion volumes were estimated using statistical parametric mapping software. General linear model approaches were applied to IC volumetric data and FDR-corrected partial correlation analyses assessed relations between GMV, GI symptoms and Glx concentrations. Results IBS patients had significantly smaller IC subregions than HC in both hemispheres but there was no significant difference between MDD compared with IBS and HC for any insular subregion. In IBS, the dorsal anterior insular volumes were negatively correlated with symptoms of nausea and pain, and the left ventral subregion showed a positive correlation with straining to defecate, while the posterior subregion volumes showed no relation to symptoms. In the anterior insula, concentration of Glx showed positive correlations with GMV bilaterally in HC and with GMV of the right anterior insula in IBS. Conclusion As the interoceptive cortex, the insula shows substantial and disease-specific structural differences in patients with chronic interoceptive visceral pain. Particularly changes in the anterior proportions might be related to chronic exposure to or enhanced salience towards adverse interoceptive visceral signals and could be linked to biochemical changes, calling for further multimodal and longitudinal work.
Collapse
|
8
|
Altered Structural Covariance of Insula, Cerebellum and Prefrontal Cortex Is Associated with Somatic Symptom Levels in Irritable Bowel Syndrome (IBS). Brain Sci 2021; 11:brainsci11121580. [PMID: 34942882 PMCID: PMC8699158 DOI: 10.3390/brainsci11121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Somatization, defined as the presence of multiple somatic symptoms, frequently occurs in irritable bowel syndrome (IBS) and may constitute the clinical manifestation of a neurobiological sensitization process. Brain imaging data was acquired with T1 weighted 3 tesla MRI, and gray matter morphometry were analyzed using FreeSurfer. We investigated differences in networks of structural covariance, based on graph analysis, between regional gray matter volumes in IBS-related brain regions between IBS patients with high and low somatization levels, and compared them to healthy controls (HCs). When comparing IBS low somatization (N = 31), IBS high somatization (N = 35), and HCs (N = 31), we found: (1) higher centrality and neighbourhood connectivity of prefrontal cortex subregions in IBS high somatization compared to healthy controls; (2) higher centrality of left cerebellum in IBS low somatization compared to both IBS high somatization and healthy controls; (3) higher centrality of the anterior insula in healthy controls compared to both IBS groups, and in IBS low compared to IBS high somatization. The altered structural covariance of prefrontal cortex and anterior insula in IBS high somatization implicates that prefrontal processes may be more important than insular in the neurobiological sensitization process associated with IBS high somatization.
Collapse
|
9
|
Simis M, Imamura M, Sampaio de Melo P, Marduy A, Battistella L, Fregni F. Deficit of Inhibition as a Marker of Neuroplasticity (DEFINE Study) in Rehabilitation: A Longitudinal Cohort Study Protocol. Front Neurol 2021; 12:695406. [PMID: 34434160 PMCID: PMC8380986 DOI: 10.3389/fneur.2021.695406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Brain plasticity is an intrinsic property of the nervous system, which is modified during its lifetime. This is one mechanism of recuperation after injuries with an important role in rehabilitation. Evidence suggests that injuries in the nervous system disturb the stability between inhibition and excitability essential for the recuperation process of neuroplasticity. However, the mechanisms involved in this balance are not completely understood and, besides the advancement in the field, the knowledge has had a low impact on the rehabilitation practice. Therefore, the understanding of the relationship between biomarkers and functional disability may help to optimize and individualize treatments and build consistent studies in the future. Methods: This cohort study, the deficit of inhibition as a marker of neuroplasticity study, will follow four groups (stroke, spinal cord injury, limb amputation, and osteoarthritis) to understand the neuroplasticity mechanisms involved in motor rehabilitation. We will recruit 500 subjects (including 100 age- and sex-matched controls). A battery of neurophysiological assessments, transcranial magnetic stimulation, electroencephalography, functional near-infrared spectroscopy, and magnetic resonance imaging, is going to be used to assess plasticity on the motor cortex before and after rehabilitation. One of the main hypotheses in this cohort is that the level of intracortical inhibition is related to functional deficits. We expect to develop a better understanding of the neuroplasticity mechanisms involved in the rehabilitation, and we expect to build neurophysiological “transdiagnostic” biomarkers, especially the markers of inhibition, which will have great relevance in the scientific and therapeutic improvement in rehabilitation. The relationship between neurophysiological and clinical outcomes will be analyzed using linear and logistic regression models. Discussion: By evaluating the reliability of electroencephalography, functional near-infrared spectroscopy, transcranial magnetic stimulation, and magnetic resonance imaging measures as possible biomarkers for neurologic rehabilitation in different neurologic disorders, this study will aid in the understanding of brain plasticity mechanisms in rehabilitation, allowing more effective approaches and screening methods to take place.
Collapse
Affiliation(s)
- Marcel Simis
- Núcleo de Estudos Avançados em Reabilitação, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Imamura
- Núcleo de Estudos Avançados em Reabilitação, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Sampaio de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Linamara Battistella
- Núcleo de Estudos Avançados em Reabilitação, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Grinsvall C, Ryu HJ, Van Oudenhove L, Labus JS, Gupta A, Ljungberg M, Törnblom H, Mayer EA, Simrén M. Association between pain sensitivity and gray matter properties in the sensorimotor network in women with irritable bowel syndrome. Neurogastroenterol Motil 2021; 33:e14027. [PMID: 33174312 PMCID: PMC8047895 DOI: 10.1111/nmo.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/26/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Enhanced perception of visceral stimuli is an important feature of Irritable Bowel Syndrome (IBS), but it is not known whether visceral sensitivity is associated with regional structural brain properties in IBS. METHODS Structural brain magnetic resonance imaging data from 216 women with IBS and 138 healthy women were parcellated with FreeSurfer to define regional gray matter morphometry (volume, cortical thickness, surface area and mean curvature) in the sensorimotor network. General linear models were used to detect group differences between IBS and health. In a second set of 48 female IBS patients, pain threshold, pain intensity ratings during rectal balloon distension, and reported levels of abdominal pain and bloating were correlated with brain regions that showed differences between IBS and health in the first data set. KEY RESULTS Several statistically significant differences between IBS patients and healthy controls were found, mainly higher gray matter volume and cortical thickness in primary somatosensory cortex, secondary somatosensory cortex, and subcortical regions, and lesser gray matter volume, surface area and cortical thickness in posterior insula and superior frontal gyrus. Pain intensity ratings during rectal distension were associated with left primary somatosensory cortical thickness, and pain threshold was associated with right nucleus accumbens volume. CONCLUSIONS AND INFERENCES Regional gray matter differences in sensorimotor network are associated with visceral sensitivity and may represent neuroplastic changes in female IBS patients.
Collapse
Affiliation(s)
- Cecilia Grinsvall
- Department of Internal Medicine & Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Hyo Jin Ryu
- Vatche and Tamar Manoukian Division of Digestive DiseasesDavid Geffen School at UCLALos AngelesCAUSA
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Jennifer S. Labus
- Vatche and Tamar Manoukian Division of Digestive DiseasesDavid Geffen School at UCLALos AngelesCAUSA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive DiseasesDavid Geffen School at UCLALos AngelesCAUSA
| | - Maria Ljungberg
- Department of Radiation PhysicsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Medical Physics and Biomedical EngineeringDiagnostic ImagingSahlgrenska University HospitalMR CentreGothenburgSweden
| | - Hans Törnblom
- Department of Internal Medicine & Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Emeran A. Mayer
- Vatche and Tamar Manoukian Division of Digestive DiseasesDavid Geffen School at UCLALos AngelesCAUSA
| | - Magnus Simrén
- Department of Internal Medicine & Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Center for Functional Gastrointestinal and Motility DisordersUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
11
|
Delineating conditions and subtypes in chronic pain using neuroimaging. Pain Rep 2019; 4:e768. [PMID: 31579859 PMCID: PMC6727994 DOI: 10.1097/pr9.0000000000000768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Differentiating subtypes of chronic pain still remains a challenge—both from a subjective and objective point of view. Personalized medicine is the current goal of modern medical care and is limited by the subjective nature of patient self-reporting of symptoms and behavioral evaluation. Physiology-focused techniques such as genome and epigenetic analyses inform the delineation of pain groups; however, except under rare circumstances, they have diluted effects that again, share a common reliance on behavioral evaluation. The application of structural neuroimaging towards distinguishing pain subtypes is a growing field and may inform pain-group classification through the analysis of brain regions showing hypertrophic and atrophic changes in the presence of pain. Analytical techniques such as machine-learning classifiers have the capacity to process large volumes of data and delineate diagnostically relevant information from neuroimaging analysis. The issue of defining a “brain type” is an emerging field aimed at interpreting observed brain changes and delineating their clinical identity/significance. In this review, 2 chronic pain conditions (migraine and irritable bowel syndrome) with similar clinical phenotypes are compared in terms of their structural neuroimaging findings. Independent investigations are compared with findings from application of machine-learning algorithms. Findings are discussed in terms of differentiating patient subgroups using neuroimaging data in patients with chronic pain and how they may be applied towards defining a personalized pain signature that helps segregate patient subgroups (eg, migraine with and without aura, with or without nausea; irritable bowel syndrome vs other functional gastrointestinal disorders).
Collapse
|
12
|
Bigler ED, Finuf C, Abildskov TJ, Goodrich-Hunsaker NJ, Petrie JA, Wood DM, Hesselink JR, Wilde EA, Max JE. Cortical thickness in pediatric mild traumatic brain injury including sports-related concussion. Int J Psychophysiol 2018; 132:99-104. [DOI: 10.1016/j.ijpsycho.2018.07.474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
|
13
|
Xie H, Wall J, Wang X. Relationships in Ongoing Structural Maintenances of the Two Cerebral Cortices of an Individual Brain. J Exp Neurosci 2018; 12:1179069518795875. [PMID: 30202210 PMCID: PMC6122241 DOI: 10.1177/1179069518795875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
A human brain has separate left and right cerebral cortices, each of which must
be continuously structurally maintained during adulthood. There is no
understanding of how ongoing structural maintenances of separate parts of a
mature individual brain, including the 2 cortices, are related. To explore this
issue, this study used an unconventional N-of-1 magnetic resonance imaging
time-series paradigm to identify relationships between maintenances of
structural thicknesses of the 2 cortices in an adult human brain over week
intervals for 6 months. The results suggest that maintenances of left and right
cortical thicknesses were symmetrically related in some, but asymmetrically
related in other, respects. For matched times, thickness magnitudes and
variations on the 2 sides were positively correlated and appeared to reflect
maintenance symmetry. Maintenance relationships also extended from earlier to
later times with temporal continuity and apparent “if-then” contingencies which
were reflected in symmetry and asymmetry dynamics spanning 1- to 2-week periods.
The findings suggest concepts of individual brain cortical maintenance symmetry,
asymmetry, and temporal continuity dynamics that have not been previously
recognized. They have implications for defining cortical maintenance traits or
states and for development of N-of-1 precision medicine paradigms that can
contribute to understanding individual brain health.
Collapse
Affiliation(s)
- Hong Xie
- William R. Bauer Human Brain MRI Laboratory and Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - John Wall
- William R. Bauer Human Brain MRI Laboratory and Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Xin Wang
- William R. Bauer Human Brain MRI Laboratory and Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.,William R. Bauer Human Brain MRI Laboratory and Departments of Psychiatry and Radiology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
14
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 413] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|