1
|
Venter L, Alfaro AC, Lindeque JZ, Jansen van Rensburg PJ, Delorme NJ, Ragg NLC, Zamora LN. Characterising Sex-Specific Metabolite Differences in New Zealand Geoduck ( Panopea zelandica) Using LC-MS/MS Metabolomics. Animals (Basel) 2025; 15:860. [PMID: 40150389 PMCID: PMC11939408 DOI: 10.3390/ani15060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Geoduck aquaculture is becoming a key component in meeting international market demand, given the natural and regulatory restrictions on wild geoduck supply. Geoduck clams are not sexually dimorphic, making it practically unfeasible to distinguish between males and females prior to a spawning event. To facilitate increased production of geoduck, a better understanding of reproductive biology and associated targeted bio-markers is required. In this study, metabolomics was utilised as a research tool to distinguish between metabolites related to male and female New Zealand geoduck (Panopea zelandica), gill and muscle samples collected from broodstock individuals housed in an experimental hatchery. A total of 17 metabolites were detected, showing significant differences between sexes. The findings indicate that metabolites associated with lipid biosynthesis were increased in female clams to support reproductive functions. An increase in carbohydrate-linked metabolic pathways was detected in male geoduck, arguably to sustain sperm production. Taurine has been reported as a biomarker to distinguish between male and female bivalves in other studies and is confirmed within this study, with significant elevation in male adductor muscle tissue. Moreover, male geoduck had increased purine and pyrimidine biosynthesis, supporting energy needs. This study provides useful sex biomarkers for future breeding strategies of P. zelandica.
Collapse
Affiliation(s)
- Leonie Venter
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Jeremie Zander Lindeque
- Biomedical and Molecular Metabolism Research, Faculty of Natural and Agricultural Science, North-West University, Private Bag 1290, Potchefstroom 2520, South Africa; (J.Z.L.); (P.J.J.v.R.)
| | - Peet J. Jansen van Rensburg
- Biomedical and Molecular Metabolism Research, Faculty of Natural and Agricultural Science, North-West University, Private Bag 1290, Potchefstroom 2520, South Africa; (J.Z.L.); (P.J.J.v.R.)
| | - Natalí J. Delorme
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (N.J.D.); (N.L.C.R.); (L.N.Z.)
| | - Norman L. C. Ragg
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (N.J.D.); (N.L.C.R.); (L.N.Z.)
| | - Leonardo N. Zamora
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (N.J.D.); (N.L.C.R.); (L.N.Z.)
| |
Collapse
|
2
|
Li F, Chen S, Zhang T, Pan L, Liu C, Bian L. Gonadal Transcriptome Sequencing Analysis Reveals the Candidate Sex-Related Genes and Signaling Pathways in the East Asian Common Octopus, Octopus sinensis. Genes (Basel) 2024; 15:682. [PMID: 38927618 PMCID: PMC11202624 DOI: 10.3390/genes15060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The East Asian common octopus (Octopus sinensis) is an economically important species among cephalopods. This species exhibits a strict dioecious and allogamous reproductive strategy, along with a phenotypic sexual dimorphism, where the third right arm differentiates into hectocotylus in males. However, our understanding of the molecular mechanisms that underlie sex determination and differentiation in this species remains limited. In the present study, we surveyed gene-expression profiles in the immature male and female gonads of O. sinensis based on the RNA-seq, and a total of 47.83 Gb of high-quality data were generated. Compared with the testis, we identified 8302 differentially expressed genes (DEGs) in the ovary, of which 4459 genes were up-regulated and 3843 genes were down-regulated. Based on the GO enrichment, many GO terms related to sex differentiation were identified, such as sex differentiation (GO: 0007548), sexual reproduction (GO: 0019953) and male sex differentiation (GO: 0046661). A KEGG classification analysis identified three conserved signaling pathways that related to sex differentiation, including the Wnt signaling pathway, TGF-β signaling pathway and Notch signaling pathway. Additionally, 21 sex-related DEGs were selected, of which 13 DEGs were male-biased, including Dmrt1, Foxn5, Foxj1, Sox30, etc., and 8 DEGs were female-biased, including Sox14, Nanos3, β-tubulin, Suh, etc. Ten DEGs were used to verify the expression patterns in the testis and ovary using the RT-qPCR method, and the results showed that the expression level shown by RT-qPCR was consistent with that from the RNA-seq, which confirmed the reliability of the transcriptome data. The results presented in this study will not only contribute to our understanding of sex-formation mechanisms in O. sinensis but also provide the foundational information for further investigating the molecular mechanisms that underline its gonadal development and facilitate the sustainable development of octopus artificial breeding.
Collapse
Affiliation(s)
- Fenghui Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Siqing Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China;
| | - Luying Pan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Changlin Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Li Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
3
|
Cai Z, Liu S, Wang W, Wang R, Miao X, Song P, Shan B, Wang L, Li Y, Lin L. Comparative transcriptome sequencing analysis of female and male Decapterus macrosoma. PeerJ 2022; 10:e14342. [PMID: 36389430 PMCID: PMC9651050 DOI: 10.7717/peerj.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Sexual growth dimorphism is a common phenomenon in teleost fish and has led to many reproductive strategies. Growth- and sex-related gene research in teleost fish would broaden our understanding of the process. In this study, transcriptome sequencing of shortfin scad Decapterus macrosoma was performed for the first time, and a high-quality reference transcriptome was constructed. After identification and assembly, a total of 58,475 nonredundant unigenes were obtained with an N50 length of 2,266 bp, and 28,174 unigenes were successfully annotated with multiple public databases. BUSCO analysis determined a level of 92.9% completeness for the assembled transcriptome. Gene expression analysis revealed 2,345 differentially expressed genes (DEGs) in the female and male D. macrosoma, 1,150 of which were female-biased DEGs, and 1,195 unigenes were male-biased DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were mainly involved in biological processes including protein synthesis, growth, rhythmic processes, immune defense, and vitellogenesis. Then, we identified many growth- and sex-related genes, including Igf, Fabps, EF-hand family genes, Zp3, Zp4 and Vg. In addition, a total of 19,573 simple sequence repeats (SSRs) were screened and identified from the transcriptome sequences. The results of this study can provide valuable information on growth- and sex-related genes and facilitate further exploration of the molecular mechanism of sexual growth dimorphism.
Collapse
Affiliation(s)
- Zizi Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shigang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rui Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xing Miao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Puqing Song
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Longshan Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
4
|
Zhou K, Chen Z, Du X, Huang Y, Qin J, Wen L, Pan X, Lin Y. SMRT Sequencing Reveals Candidate Genes and Pathways With Medicinal Value in Cipangopaludina chinensis. Front Genet 2022; 13:881952. [PMID: 35783279 PMCID: PMC9243326 DOI: 10.3389/fgene.2022.881952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cipangopaludina chinensis is an economically important aquatic snail with high medicinal value. However, molecular biology research on C. chinensis is limited by the lack of a reference genome, so the analysis of its transcripts is an important step to study the regulatory genes of various substances in C. chinensis. Herein, we conducted the first full-length transcriptome analysis of C. chinensis using PacBio single-molecule real-time (SMRT) sequencing technology. We identified a total of 26,312 unigenes with an average length of 2,572 bp, of which the largest number of zf-c2h2 transcription factor families (120,18.24%) were found, and also observed that the majority of the 8,058 SSRs contained 4-7 repeat units, which provided data for subsequent work on snail genetics Subsequently, 91.86% (24,169) of the genes were successfully annotated to the four major databases, while the highest homology was observed with Pomacea canaliculata. Functional annotation revealed that the majority of transcripts were enriched in metabolism, signal transduction and Immune-related pathways, and several candidate genes involved in drug metabolism and immune response were identified (e.g., CYP1A1, CYP2J, CYP2U1, GST, ,PIK3, PDE3A, PRKAG). This study lays a foundation for future molecular biology research and provides a reference for studying genes associated with the medicinal value of C. chinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Lin
- *Correspondence: Xianhui Pan, ; Yong Lin,
| |
Collapse
|
5
|
Zheng X, Yuan C, Zhang Y, Zha S, Mao F, Bao Y. Prediction and characterization of a novel hemoglobin-derived mutant peptide (mTgHbP7) from Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2022; 125:84-89. [PMID: 35537672 DOI: 10.1016/j.fsi.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
The hemoglobin (Hb) is identified in Tegillarca granosa and its derived peptides have been proved to possess antibacterial activity against gram-positive and gram-negative bacteria. In this study, we identified a series of novel antimicrobial peptides (AMPs) and artificially mutated AMPs derived from subunits of T. granosa Hbs, among which, a mutant T. granosa hemoglobin peptide (mTgHbP) mTgHbP7, was proved to possess predominant antibacterial activity against three bacteria strains (Vibrio alginolyticus, V. parahaemolyticus and Escherichia coli). Besides, mTgHbP7 was predicted to form α-helical structure, which was known to be an important feature of bactericidal AMPs. Furthermore, upon contact with HEK293 cell line, we confirmed that mTgHbP7 had no cytotoxicity to mammalian cell even at a high concentration of 160 μM. Therefore, the findings reported here provide a rationalization for antimicrobial peptide prediction and optimization from mollusk hemoglobin, which will be useful for future development of antimicrobial agents.
Collapse
Affiliation(s)
- Xiaoying Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shanjie Zha
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
| |
Collapse
|
6
|
Deng A, Li J, Yao Z, Afriyie G, Chen Z, Guo Y, Luo J, Wang Z. SMRT Sequencing of the Full-Length Transcriptome of the Coelomactra antiquata. Front Genet 2021; 12:741243. [PMID: 34721529 PMCID: PMC8552913 DOI: 10.3389/fgene.2021.741243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Coelomactra antiquata is an important aquatic economic shellfish with high medicinal value. However, because C. antiquata has no reference genome, a lot of molecular biology research cannot be carried out, so the analysis of its transcripts is an important step to study the regulatory genes of various substances in C. antiquata. In the present study, we conducted the first full-length transcriptome analysis of C. antiquata by using PacBio single-molecule real-time (SMRT) sequencing technology. The results identified a total of 39,209 unigenes with an average length of 2,732 bp, 23,338 CDSs, 251 AS events, 9,881 lncRNAs, 20,106 SSRs, and 2,316 TFs. Subsequently, 59.22% (23,220) of the unigenes were successfully annotated, of which 23,164, 18,711, 15,840, 13,534, and 13,474 unigenes could be annotated using NR, Swiss-prot, KOG, GO, and KEGG databases, respectively. This study lays the foundation for the follow-up research of molecular biology and provides a reference for studying the more medicinal value of C. antiquata.
Collapse
Affiliation(s)
- Aiping Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jinpeng Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zebin Yao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Gyamfua Afriyie
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ziyang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jie Luo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Broquard C, Saowaros SA, Lepoittevin M, Degremont L, Lamy JB, Morga B, Elizur A, Martinez AS. Gonadal transcriptomes associated with sex phenotypes provide potential male and female candidate genes of sex determination or early differentiation in Crassostrea gigas, a sequential hermaphrodite mollusc. BMC Genomics 2021; 22:609. [PMID: 34372770 PMCID: PMC8353863 DOI: 10.1186/s12864-021-07838-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background In the animal kingdom, mollusca is an important phylum of the Lophotrochozoa. However, few studies have investigated the molecular cascade of sex determination/early gonadal differentiation within this phylum. The oyster Crassostrea gigas is a sequential irregular hermaphrodite mollusc of economic, physiological and phylogenetic importance. Although some studies identified genes of its sex-determining/−differentiating pathway, this particular topic remains to be further deepened, in particular with regard to the expression patterns. Indeed, these patterns need to cover the entire period of sex lability and have to be associated to future sex phenotypes, usually impossible to establish in this sequential hermaphrodite. This is why we performed a gonadal RNA-Seq analysis of diploid male and female oysters that have not changed sex for 4 years, sampled during the entire time-window of sex determination/early sex differentiation (stages 0 and 3 of the gametogenetic cycle). This individual long-term monitoring gave us the opportunity to explain the molecular expression patterns in the light of the most statistically likely future sex of each oyster. Results The differential gene expression analysis of gonadal transcriptomes revealed that 9723 genes were differentially expressed between gametogenetic stages, and 141 between sexes (98 and 43 genes highly expressed in females and males, respectively). Eighty-four genes were both stage- and sex-specific, 57 of them being highly expressed at the time of sex determination/early sex differentiation. These 4 novel genes including Trophoblast glycoprotein-like, Protein PML-like, Protein singed-like and PREDICTED: paramyosin, while being supported by RT-qPCR, displayed sexually dimorphic gene expression patterns. Conclusions This gonadal transcriptome analysis, the first one associated with sex phenotypes in C. gigas, revealed 57 genes highly expressed in stage 0 or 3 of gametogenesis and which could be linked to the future sex of the individuals. While further study will be needed to suggest a role for these factors, some could certainly be original potential actors involved in sex determination/early sex differentiation, like paramyosin and could be used to predict the future sex of oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07838-1.
Collapse
Affiliation(s)
- Coralie Broquard
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France.,Ifremer, RBE-SG2M-LGPMM, La Tremblade, France
| | - Suwansa-Ard Saowaros
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mélanie Lepoittevin
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France
| | | | | | | | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Anne-Sophie Martinez
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France. .,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France.
| |
Collapse
|
8
|
Shan B, Liu Y, Yang C, Zhao Y, Sun D. Comparative transcriptomic analysis for identification of candidate sex-related genes and pathways in Crimson seabream (Parargyrops edita). Sci Rep 2021; 11:1077. [PMID: 33441831 PMCID: PMC7806868 DOI: 10.1038/s41598-020-80282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Teleost fishes display the largest array of sex-determining systems among animals, resulting in various reproductive strategies. Research on sex-related genes in teleosts will broaden our understanding of the process, and provide important insight into the plasticity of the sex determination process in vertebrates in general. Crimson seabream (Parargyrops edita Tanaka, 1916) is one of the most valuable and abundant fish resources throughout Asia. However, little genomic information on P. edita is available. In the present study, the transcriptomes of male and female P. edita were sequenced with RNA-seq technology. A total of 388,683,472 reads were generated from the libraries. After filtering and assembling, a total of 79,775 non redundant unigenes were obtained with an N50 of 2,921 bp. The unigenes were annotated with multiple public databases, including NT (53,556, 67.13%), NR (54,092, 67.81%), Swiss-Prot (45,265, 56.74%), KOG (41,274, 51.74%), KEGG (46,302, 58.04%), and GO (11,056, 13.86%) databases. Comparison of the unigenes of different sexes of P. edita revealed that 11,676 unigenes (9,335 in females, 2,341 in males) were differentially expressed between males and females. Of these, 5,463 were specifically expressed in females, and 1,134 were specifically expressed in males. In addition, the expression levels of ten unigenes were confirmed to validate the transcriptomic data by qRT-PCR. Moreover, 34,473 simple sequence repeats (SSRs) were identified in SSR-containing sequences, and 50 loci were randomly selected for primer development. Of these, 36 loci were successfully amplified, and 19 loci were polymorphic. Finally, our comparative analysis identified many sex-related genes (zps, amh, gsdf, sox4, cyp19a, etc.) and pathways (MAPK signaling pathway, p53 signaling pathway, etc.) of P. edita. This informative transcriptomic analysis provides valuable data to increase genomic resources of P. edita. The results will be useful for clarifying the molecular mechanism of sex determination and for future functional analyses of sex-associated genes.
Collapse
Affiliation(s)
- Binbin Shan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yan Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Changping Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yu Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Dianrong Sun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China.
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China.
| |
Collapse
|
9
|
Wang YY, Duan SH, Wang GL, Li JL. Integrated mRNA and miRNA expression profile analysis of female and male gonads in Hyriopsis cumingii. Sci Rep 2021; 11:665. [PMID: 33436779 PMCID: PMC7804246 DOI: 10.1038/s41598-020-80264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Hyriopsis cumingii is an important species for freshwater pearl cultivation in China. In terms of pearl production, males have larger pearls and better glossiness than females, but there are few reports focusing on the sex of H. cumingii. In this study, six mRNA and six microRNA (miRNA) libraries were prepared from ovaries and testes. Additionally, 28,502 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Compared with testis, 14,360 mRNAs and 20 miRNAs were up-regulated in ovary, 14,142 mRNAs and 12 miRNAs were down-regulated. In DEGs, the known genes related to sex determinism and/or differentiation were also identified, such as DMRT1, SOX9, SF1 for males, FOXL2 for females, and other potentially significant candidate genes. Three sex-related pathways have also been identified, which are Wnt, Notch, and TGF-beta. In 32 DEMs, the three miRNAs (miR-9-5p, miR-92, miR-184) were paid more attention, they predicted 28 target genes, which may also be candidates for sex-related miRNAs and genes. Differential miRNAs target genes analysis reveals the pathway associated with oocyte meiosis and spermatogenesis. Overall, the findings of the study provide significant insights to enhance our understanding of sex differentiation and/or sex determination mechanisms for H. cumingii.
Collapse
Affiliation(s)
- Ya-Yu Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Sheng-Hua Duan
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Gui-Ling Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Jia-Le Li
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| |
Collapse
|
10
|
Wu Y, Ma Y, Hu S, Zhao B, Yang W, Sun Z, Zhu B, Lu Y, Li P, Du S. Transcriptomic-proteomics-anticoagulant bioactivity integrated study of Pheretima guillemi. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112101. [PMID: 31344481 DOI: 10.1016/j.jep.2019.112101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Earthworms, a type of animal drugs from traditional Chinese medicine, have been used to treat coagulation for many years with less adverse effects and similar anticoagulant effects compared to the commonly used anticoagulants. There are four species of earthworms recorded in Chinese Pharmacopoeia, while few of them were studied and deficient information were involved in the NCBI and UniProt earthworm protein database. We have adopted a transcriptomic-proteomics-anticoagulant bioactivity integrated approach to investigate a seldom-studied Chinese Pharmacopoeia recorded species, Pheretima guillelmi. AIM OF THE STUDY In the present study, we aimed to reveal the anticoagulant bioactivity of Pheretima guillelmi, and identify its functional proteins via LC-MS/MS-transcriptome cross identification. METHODS AND RESULTS With the aid of fibrinogen-thrombin time assay, Pheretima guillelmi was found to possess strong anticoagulant activity, and the bioactivity was quite stable under 30-50 °C and near-neutral conditions. A comprehensive non-reference transcriptome assembly of P. guillelmi was first established to supplement the currently inadequate earthworm protein database and to illustrate the active proteins. Illumina RNA sequencing generated 25,931,175 of clean reads with over 97% high-quality clean reads (Q20) and assembled an average of 133,228 of transcript and 106,717 of unigenes. A total of 11,259 coding sequences were predicted via ESTScan (3.0.3). The P. guillelmi unigenes were searched and annotated against public database. The bioactive proteins in P. guillelmi were with broad distribution of molecular weight. With bottom-up proteomics analysis, ten proteins were identified against UniProt and NCBI earthworm database; and 31 proteins with high-confidence were matched against transcriptomic established P. guillelmi database. CONCLUSION This study illuminated the therapeutic potency of P. guillelmi for antithrombus and provide a new strategy to investigate animal drugs of Chinese materia medica.
Collapse
Affiliation(s)
- Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Bo Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Wanqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Zongxi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Baochen Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, NO. 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
11
|
Zhou L, Liu Z, Dong Y, Sun X, Wu B, Yu T, Zheng Y, Yang A, Zhao Q, Zhao D. Transcriptomics analysis revealing candidate genes and networks for sex differentiation of yesso scallop (Patinopecten yessoensis). BMC Genomics 2019; 20:671. [PMID: 31443640 PMCID: PMC6708199 DOI: 10.1186/s12864-019-6021-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background The Yesso scallop, Patinopecten (Mizuhopecten) yessoensis, is a commercially important bivalve in the coastal countries of Northeast Asia. It has complex modes of sex differentiation, but knowledge of the mechanisms underlying this sex determination and differentiation is limited. Results In this study, the gonad tissues from females and males at three developmental stages were used to investigate candidate genes and networks for sex differentiation via RNA-Req. A total of 901,980,606 high quality clean reads were obtained from 18 libraries, of which 417 expressed male-specific genes and 754 expressed female-specific genes. Totally, 10,074 genes differentially expressed in females and males were identified. Weighted gene co-expression network analysis (WGCNA) revealed that turquoise and green gene modules were significantly positively correlated with male gonads, while coral1 and black modules were significantly associated with female gonads. The most important gene for sex determination and differentiation was Pydmrt 1, which was the only gene discovered that determined the male sex phenotype during early gonadal differentiation. Enrichment analyses of GO terms and KEGG pathways revealed that genes involved in metabolism, genetic and environmental information processes or pathways are sex-biased. Forty-nine genes in the five modules involved in sex differentiation or determination were identified and selected to construct a gene co-expression network and a hypothesized sex differentiation pathway. Conclusions The current study focused on screening genes of sex differentiation in Yesso scallop, highlighting the potential regulatory mechanisms of gonadal development in P. yessoensis. Our data suggested that WCGNA can facilitate identification of key genes for sex differentiation and determination. Using this method, a hypothesized P. yessoensis sex determination and differentiation pathway was constructed. In this pathway, Pydmrt 1 may have a leading function. Electronic supplementary material The online version of this article (10.1186/s12864-019-6021-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liqing Zhou
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihong Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xiujun Sun
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Biao Wu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Science, Changdao, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Science, Changdao, China
| | - Aiguo Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China. .,Labortory for Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qing Zhao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Dan Zhao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Patnaik BB, Chung JM, Hwang HJ, Sang MK, Park JE, Min HR, Cho HC, Dewangan N, Baliarsingh S, Kang SW, Park SY, Jo YH, Park HS, Kim WJ, Han YS, Lee JS, Lee YS. Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction. BMC Genomics 2019; 20:154. [PMID: 30808280 PMCID: PMC6390351 DOI: 10.1186/s12864-019-5526-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/11/2019] [Indexed: 01/27/2023] Open
Abstract
Background Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. Results The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. Conclusions This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5526-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hee Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Min Kyu Sang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Jie Eun Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hye Rin Min
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hang Chul Cho
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Neha Dewangan
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Snigdha Baliarsingh
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Se Won Kang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jungeup-si, Jeollabuk-do, 56212, South Korea
| | - So Young Park
- Nakdonggang National Institute of Biological Resources, Biodiversity Conservation and Change Research Division, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do, 37242, South Korea
| | - Yong Hun Jo
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD, 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Republic of Korea
| | - Wan Jong Kim
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jun Sang Lee
- Institute of Basic Science, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea.
| |
Collapse
|
13
|
Lou F, Yang T, Han Z, Gao T. Transcriptome analysis for identification of candidate genes related to sex determination and growth in Charybdis japonica. Gene 2018; 677:10-16. [PMID: 30036655 DOI: 10.1016/j.gene.2018.07.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 11/27/2022]
Abstract
Charybdis japonica is an important cultured crab in China and it exhibits sex differences in their growth. Growth is an important economic trait that is controlled by many genes. In order to discover the growth-related regulatory mechanisms, whole-body transcriptomic sequencing and comparative analyses in different genders of C. japonica were conducted based on Illumina RNA-seq technology. In the present study, we obtained 62,879,204 and 60,226,334 clean reads in female and male libraries, respectively. 25,000,000 clean reads of every library were randomly selected and compared with Nt database to examine the possible contamination. Results showed that all clean reads were distributed among C. japonica or other species that were closely relative to this species, indicating no-pollution. De novo assembly was performed and a total of 32,543 and 44,174 unigenes were produced in female and male of C. japonica, respectively. Among all the unigenes, 12,591 and 14,455 unigenes of female and male crabs were annotated based on protein databases. Moreover, a total of 33,926 unigenes were found to contain ORFs and 52,839 SSRs were detected. The contrast between male and female C. japonica identifying 1939 unigenes were significantly differentially expressed. In addition, we specifically discussed some gene functions and pathways potentially associated with sex determination and growth. This is the first systematic report of whole transcriptome in C. japonica. The transcriptome information provides a basic resource for further studies on understanding the molecular basis of biological processes in C. japonica and other crustaceans.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Ocean University of China, Qingdao, China
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, China.
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|