1
|
Cobes N, Tran S, Mathon B, Nichelli L, Bielle F, Touat M, Kas A, Rozenblum L. Exploring the mechanism of 18F-fluorodopa uptake in recurrent high-grade gliomas: A comprehensive histomolecular-positron emission tomography analysis. Eur J Neurol 2024; 31:e16093. [PMID: 37823694 PMCID: PMC11236017 DOI: 10.1111/ene.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Dihydroxy-6-[18F]fluoro-L-phenylalanine (18F-FDOPA) positron emission tomography (PET) is a valuable tool for managing high-grade gliomas (HGGs), but there is a lack of literature on its relationship with glioma subtypes since the 2021 reclassification of brain tumors. There is also debate surrounding the mechanism of 18F-FDOPA uptake, particularly after chemoradiation therapy. This study aimed to investigate the correlation between 18F-FDOPA uptake and histomolecular characteristics, particularly L-amino acid transporter 1 (LAT1) expression, in recurrent gliomas, and examine their impact on survival in HGGs. METHODS Thirty-nine patients with recurrent HGGs (14 isocitrate dehydrogenase [IDH]-mutant, 25 IDH-wildtype) who underwent a brain 18F-FDOPA PET/computed tomography (CT) or PET/magnetic resonance imaging (MRI) followed by surgical resection of the 18F-FDOPA-avid lesion within 6 months, were retrospectively reviewed. PET results were compared with histological examination and for SCL7A5/LAT1 immunostaining. The study also examined the relationship between PET parameters, LAT1 expression, and survival outcomes. RESULTS Astrocytoma IDH-mutant G4 had higher 18F-FDOPA uptake than glioblastoma IDH-wildtype G4 (maximum tumor-to-normal brain ratio [TBRmax] 5 [3.4-9] vs. 3.8 [2.8-5.9], p = 0.02). IDH-mutant gliomas had higher LAT1 expression than IDH-wildtype gliomas (100 [14-273] vs. 15.5 [0-137], p < 0.05) as well as higher TBRmax (5 [2.4-9] vs. 3.8 [2.8-6], p < 0.05). In survival analysis, LAT1 score >100 was a predictor for longer progression-free survival in IDH-mutant HGGs. CONCLUSIONS To our knowledge, our study is the first to suggest a link between LAT1 expression and IDH mutation status. We showed that higher TBRmax was associated with higher LAT1 expression and IDH mutation status. Further studies are needed to better understand the mechanisms underlying amino acid PET tracers uptake, especially in the post-radiation and chemotherapy settings.
Collapse
Affiliation(s)
- Nina Cobes
- Department of Nuclear Medicine, Groupe Hospitalier Pitié‐Salpêtrière, APHPSorbonne UniversitéParisFrance
| | - Suzanne Tran
- Department of Neuropathology, Groupe Hospitalier Pitié‐Salpêtrière, APHPSorbonne UniversitéParisFrance
| | - Bertrand Mathon
- Department of Neurosurgery, Groupe Hospitalier Pitié‐Salpêtrière, APHPSorbonne UniversitéParisFrance
| | - Lucia Nichelli
- Department of Neuroradiology, Groupe Hospitalier Pitié‐Salpêtrière, APHPSorbonne UniversitéParisFrance
| | - Franck Bielle
- Department of Neuropathology, Groupe Hospitalier Pitié‐Salpêtrière, APHPSorbonne UniversitéParisFrance
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP‐HP, Hôpitaux Universitaires La Pitié Salpétrière ‐ Charles Foix, Service de Neurologie 2‐MazarinParisFrance
| | - Aurélie Kas
- Department of Nuclear Medicine, Groupe Hospitalier Pitié‐Salpêtrière, APHPSorbonne UniversitéParisFrance
- LIB, INSERM U1146Sorbonne UniversitéParisFrance
| | - Laura Rozenblum
- Department of Nuclear Medicine, Groupe Hospitalier Pitié‐Salpêtrière, APHPSorbonne UniversitéParisFrance
- LIB, INSERM U1146Sorbonne UniversitéParisFrance
| |
Collapse
|
2
|
Moreau A, Khayi F, Maureille A, Bonneville-Levard A, Larrouquere L, Ducray F, Kryza D. Discriminating Inflammatory Radiation-Related Changes From Early Recurrence in Patients With Glioblastomas: A Preliminary Analysis of 68Ga-PSMA-11 PET/CT Compared With 18F-FDOPA PET/CT. Clin Nucl Med 2023; Publish Ahead of Print:00003072-990000000-00584. [PMID: 37276534 DOI: 10.1097/rlu.0000000000004716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE OF THE REPORT Using morphological and functional imaging to discriminate recurrence from postradiation-related modifications in patients with glioblastomas remains challenging. This pilot study aimed to assess the feasibility of using 68Ga-prostate-specific membrane antigen (PSMA) 11 PET/CT compared with 18F-FDOPA PET/CT to detect early recurrence. METHODS Nine patients followed up for glioblastomas who received MRI during 12 months of follow-up were referred for both 68Ga-PSMA-11 and 18F-FDOPA PET/CT. The SUVmax, lesion-to-striatum ratio, lesion-to-normal parenchyma ratio, and lesion-to-salivary gland ratio were calculated. RESULTS Good correlation between 18F-FDOPA and 68Ga-PSMA PET/CT findings was seen in 5 patients. In 4 patients, the findings of both examinations were consistent with recurrence but were better visualized with the PSMA PET/CT. Examinations of the fifth patient were suggestive of postradiation-related changes and were better analyzed with the PSMA PET/CT, which displayed relatively low uptake compared with DOPA PET/CT. Conversely, 4 patients showed conflicting results: recurrence was not detected on the PSMA PET/CT because of previously introduced bevacizumab treatment; in another patient, both examinations were consistent with recurrence, but there was an uptake mismatch at the suspected lesion sites, and 2 patients presented with inconsistent findings. CONCLUSIONS Despite a few discrepancies, this study highlights the potential role of 68Ga-PSMA-11 PET/CT for discriminating postradiation inflammation from recurrence. 68Ga-PSMA-11 PET/CT has an excellent lesion-to-background ratio, and false-positive and false-negative results could be minimized through implementing certain protocols before performing the examination. More powerful prospective studies are required to validate our results.
Collapse
|
3
|
Cobes N, Tran S, Bielle F, Touat M, Kas A, Rozenblum L. Étude de l’expression de LAT-1 et de la fixation de la 18F-FDOPA dans les tumeurs cérébrales. Illustration par une série de cas. MÉDECINE NUCLÉAIRE 2023. [DOI: 10.1016/j.mednuc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Piccardo A, Albert NL, Borgwardt L, Fahey FH, Hargrave D, Galldiks N, Jehanno N, Kurch L, Law I, Lim R, Lopci E, Marner L, Morana G, Young Poussaint T, Seghers VJ, Shulkin BL, Warren KE, Traub-Weidinger T, Zucchetta P. Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:3852-3869. [PMID: 35536420 PMCID: PMC9399211 DOI: 10.1007/s00259-022-05817-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/23/2022] [Indexed: 01/18/2023]
Abstract
Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of LMU Munich, Munich, Germany
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frederic H Fahey
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie Paris, Paris, France
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany.
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor J Seghers
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Barry L Shulkin
- Nuclear Medicine Department of Diagnostic Imaging St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| |
Collapse
|
5
|
Lee D, Yun T, Kim S, Koo Y, Chae Y, Kim S, Chang D, Yang MP, Kim H, Kang BT. Case Report: 18F-Fluoro-L-Phenylalanine Positron Emission Tomography Findings and Immunoreactivity for L-Type Amino Acid Transporter 1 in a Dog With Meningioma. Front Vet Sci 2022; 9:899229. [PMID: 35909694 PMCID: PMC9334767 DOI: 10.3389/fvets.2022.899229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
A 12-year-old intact female Miniature Pinscher dog weighing 5.4 kg presented with a history of seizures. On neurological examination, postural reactions were decreased in the left-sided limbs, and menace responses were bilaterally absent. Magnetic resonance imaging (MRI) of the brain was performed, and a solitary amorphous mass (2.7 × 1.9 × 2.2 cm) was observed on the right side of the frontal lobe. Based on the signalment, clinical signs, and MRI findings, a brain tumor was tentatively diagnosed, and meningioma was suspected. The dog was treated with hydroxyurea, prednisolone, and other antiepileptic drugs. One week after the treatment began, postural reactions returned to normal, and the menace response improved. At 119 days after treatment, 18F-fluoro-L-phenylalanine (18F-FDOPA) positron emission tomography (PET) was performed. Marked 18F-FDOPA uptake was observed in the lesion. The mean and maximal standardized uptake values of the lesion were 2.61 and 3.72, respectively, and the tumor-to-normal tissue ratio was 1.95. At 355 days after the initial treatment, a second MRI scan was performed and the tumor size had increased to 3.5 × 2.8 × 2.9 cm. The dog died 443 days after the initial treatment and was definitively diagnosed with grade 1 meningioma by histopathological examination. Immunohistochemical staining for Ki67 and L-type amino acid transporter 1 was positive and negative for p53, respectively. The labeling index of Ki67 was 2.4%. This is the first case to demonstrate 18F-FDOPA PET findings in a clinical case of a dog histologically diagnosed with a meningioma.
Collapse
Affiliation(s)
- Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Dongwoo Chang
- Department of Veterinary Imaging, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Byeong-Teck Kang
| |
Collapse
|
6
|
Zaragori T, Doyen M, Rech F, Blonski M, Taillandier L, Imbert L, Verger A. Dynamic 18F-FDopa PET Imaging for Newly Diagnosed Gliomas: Is a Semiquantitative Model Sufficient? Front Oncol 2021; 11:735257. [PMID: 34676168 PMCID: PMC8523996 DOI: 10.3389/fonc.2021.735257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Dynamic amino acid positron emission tomography (PET) has become essential in neuro-oncology, most notably for its prognostic value in the noninvasive prediction of isocitrate dehydrogenase (IDH) mutations in newly diagnosed gliomas. The 6-[18F]fluoro-l-DOPA (18F-FDOPA) kinetic model has an underlying complexity, while previous studies have predominantly used a semiquantitative dynamic analysis. Our study addresses whether a semiquantitative analysis can capture all the relevant information contained in time–activity curves for predicting the presence of IDH mutations compared to the more sophisticated graphical and compartmental models. Methods Thirty-seven tumour time–activity curves from 18F-FDOPA PET dynamic acquisitions of newly diagnosed gliomas (median age = 58.3 years, range = 20.3–79.9 years, 16 women, 16 IDH-wild type) were analyzed with a semiquantitative model based on classical parameters, with (SQ) or without (Ref SQ) a reference region, or on parameters of a fit function (SQ Fit), a graphical Logan model with input function (Logan) or reference region (Ref Logan), and a two-tissue compartmental model previously reported for 18F-FDOPA PET imaging of gliomas (2TCM). The overall predictive performance of each model was assessed with an area under the curve (AUC) comparison using multivariate analysis of all the parameters included in the model. Moreover, each extracted parameter was assessed in a univariate analysis by a receiver operating characteristic curve analysis. Results The SQ model with an AUC of 0.733 for predicting IDH mutations showed comparable performance to the other models with AUCs of 0.752, 0.814, 0.693, 0.786, and 0.863, respectively corresponding to SQ Fit, Ref SQ, Logan, Ref Logan, and 2TCM (p ≥ 0.10 for the pairwise comparisons with other models). In the univariate analysis, the SQ time-to-peak parameter had the best diagnostic performance (75.7% accuracy) compared to all other individual parameters considered. Conclusions The SQ model circumvents the complexities of the 18F-FDOPA kinetic model and yields similar performance in predicting IDH mutations when compared to the other models, most notably the compartmental model. Our study provides supportive evidence for the routine clinical application of the SQ model for the dynamic analysis of 18F-FDOPA PET images in newly diagnosed gliomas.
Collapse
Affiliation(s)
- Timothée Zaragori
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, Nancy, France.,IADI UMR 1254, INSERM, Université de Lorraine, Nancy, France
| | - Matthieu Doyen
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, Nancy, France.,IADI UMR 1254, INSERM, Université de Lorraine, Nancy, France
| | - Fabien Rech
- Department of Neurosurgery, CHRU-Nancy, Université de Lorraine, Nancy, France.,Centre de Recherche en Automatique de Nancy CRAN UMR 7039, CNRS, Université de Lorraine, Nancy, France
| | - Marie Blonski
- Centre de Recherche en Automatique de Nancy CRAN UMR 7039, CNRS, Université de Lorraine, Nancy, France.,Department of Neuro-Oncology, CHRU-Nancy, Université de Lorraine, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique de Nancy CRAN UMR 7039, CNRS, Université de Lorraine, Nancy, France.,Department of Neuro-Oncology, CHRU-Nancy, Université de Lorraine, Nancy, France
| | - Laëtitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, Nancy, France.,IADI UMR 1254, INSERM, Université de Lorraine, Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, Nancy, France.,IADI UMR 1254, INSERM, Université de Lorraine, Nancy, France
| |
Collapse
|
7
|
Zheng X, Yang H, Qin L, Wang S, Xie L, Yang L, Kong W, Zhu L, Liu L, Liu X. Bile Duct Ligation Upregulates Expression and Function of L-Amino Acid Transporter 1 at Blood-Brain Barrier of Rats via Activation of Aryl Hydrocarbon Receptor by Bilirubin. Biomedicines 2021; 9:biomedicines9101320. [PMID: 34680437 PMCID: PMC8533316 DOI: 10.3390/biomedicines9101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Liver failure is associated with increased levels of brain aromatic amino acids (AAAs), whose transport across the blood–brain barrier (BBB) is mainly mediated by L-amino acid transporter 1 (LAT1). We aimed to investigate whether liver failure induced by bile duct ligation (BDL) increases levels of brain AAAs by affecting the expression and function of LAT1. The LAT1 function was assessed using the brain distribution of gabapentin. It was found that BDL significantly increased levels of gabapentin, phenylalanine, and tryptophan in the cortex, hippocampus, and striatum of rats, and upregulated the expression of total LAT1 protein in hippocampus and striatum as well as cortex membrane LAT1 protein. HCMEC/D3 served as in vitro BBB model, and the data showed that both the serum of BDL rats and bilirubin induced LAT1 expression and function, while bilirubin oxidase almost abolished the upregulation of LAT1 protein by bilirubin and the serum of BDL rats. The enhanced function and expression of LAT1 were also observed in the hippocampus and striatum of hyperbilirubinemia rats. Both aryl hydrocarbon receptor (AhR) antagonist α-naphthoflavone and AhR silencing obviously attenuated the upregulation of LAT1 protein by bilirubin or omeprazole. This study provides the first evidence that BDL upregulates LAT1 at the rat BBB, attributed to the activation of AhR by the increased plasma bilirubin. The results highlight the mechanisms causing BDL-increased levels of brain AAAs and their physiological significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Liu
- Correspondence: (L.L.); (X.L.); Tel.: +86-025-8327-1006 (X.L.)
| | - Xiaodong Liu
- Correspondence: (L.L.); (X.L.); Tel.: +86-025-8327-1006 (X.L.)
| |
Collapse
|
8
|
Girard A, Le Reste PJ, Metais A, Chaboub N, Devillers A, Saint-Jalmes H, Jeune FL, Palard-Novello X. Additive Value of Dynamic FDOPA PET/CT for Glioma Grading. Front Med (Lausanne) 2021; 8:705996. [PMID: 34307430 PMCID: PMC8299331 DOI: 10.3389/fmed.2021.705996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose: The aim of this study was to assess the value of the FDOPA PET kinetic parameters extracted using full kinetic analysis for tumor grading with neuronavigation-guided biopsies as reference in patients with newly-diagnosed gliomas. Methods: Fourteen patients with untreated gliomas were investigated. Twenty minutes of dynamic positron-emission tomography (PET) imaging and a 20-min static image 10 min after injection were reconstructed from a 40-min list-mode acquisition immediately after FDOPA injection. Tumors volume-of-interest (VOI) were generated based on the MRI-guided brain biopsies. Static parameters (TBRmax and TBRmean) and kinetic parameters [K1 and k2 using full kinetic analysis with the reversible single-tissue compartment model with blood volume parameter and the time-to-peak (TTP)] were extracted. Performances of each parameter for differentiating low-grade gliomas (LGG) from high-grade gliomas (HGG) were evaluated by receiver-operating characteristic analyses (area under the curve; AUC). Results: Thirty-two tumoral VOI were analyzed. K1, k2, and TTP were significantly higher for HGG than for LGG (median K1-value = 0.124 vs. 0.074 ml/ccm/min, p = 0.025, median k2-value = 0.093 vs. 0.063 min−1, p = 0.025, and median TTP-value = 10.0 vs. 15.0 min, p = 0.025). No significant difference was observed for the static parameters. The AUC for the kinetic parameters was higher than the AUC for the static parameters (respectively, AUCK1 = 0.787, AUCk2 = 0.785, AUCTTP = 0.775, AUCTBRmax = 0.551, AUCTBRmean = 0.575), significantly compared to TBRmax (respectively, p = 0.001 for K1, p = 0.031 for k2, and p = 0.029 for TTP). Conclusion: The present study suggests an additive value of FDOPA PET/CT kinetic parameters for newly-diagnosed gliomas grading.
Collapse
Affiliation(s)
- Antoine Girard
- Univ Rennes, CLCC Eugène Marquis, Noyau Gris Centraux EA 4712, Rennes, France
| | | | | | - Nibras Chaboub
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Anne Devillers
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Hervé Saint-Jalmes
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Florence Le Jeune
- Univ Rennes, CLCC Eugène Marquis, Noyau Gris Centraux EA 4712, Rennes, France
| | | |
Collapse
|
9
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Pasi F, Persico MG, Marenco M, Vigorito M, Facoetti A, Hodolic M, Nano R, Cavenaghi G, Lodola L, Aprile C. Effects of Photons Irradiation on 18F-FET and 18F-DOPA Uptake by T98G Glioblastoma Cells. Front Neurosci 2020; 14:589924. [PMID: 33281548 PMCID: PMC7691293 DOI: 10.3389/fnins.2020.589924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The differential diagnosis between brain tumors recurrence and early neuroinflammation or late radionecrosis is still an unsolved problem. The new emerging magnetic resonance imaging, computed tomography, and positron emission tomography diagnostic modalities still lack sufficient accuracy. In the last years, a great effort has been made to develop radiotracers able to detect specific altered metabolic pathways or tumor receptor markers. Our research project aims to evaluate irradiation effects on radiopharmaceutical uptake and compare the kinetic of the fluorinate tracers. T98G glioblastoma cells were irradiated at doses of 2, 10, and 20 Gy with photons, and 18F-DOPA and 18F-FET tracer uptake was evaluated. Activity and cell viability at different incubation times were measured. 18F-FET and 18F-DOPA are accumulated via the LAT-1 transporter, but 18F-DOPA is further incorporated, whereas 18F-FET is not metabolized. Therefore, time-activity curves (TACs) tend to plateau with 18F-DOPA and to a rapid washout with 18F-FET. After irradiation, 18F-DOPA TAC resembles the 18F-FET pattern. 18F-DOPA activity peak we observed at 20 min might be fictitious, because earlier time points have not been evaluated, and a higher activity peak before 20 min cannot be excluded. In addition, the activity retained in the irradiated cells remains higher in comparison to the sham ones at all time points investigated. This aspect is similar in the 18F-FET TAC but less evident. Therefore, we can hypothesize the presence of a second intracellular compartment in addition to the amino acidic pool one governed by LAT-1, which could explain the progressive accumulation of 18F-DOPA in unirradiated cells.
Collapse
Affiliation(s)
- Francesca Pasi
- Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marco G Persico
- University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Manuela Marenco
- Nuclear Medicine Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martina Vigorito
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | - Marina Hodolic
- Nuclear Medicine Research Department, IASON, Graz, Austria.,Nuclear Medicine Department, Faculty of Medicine and Dentistry, Palackı University Olomouc, Olomouc, Czechia
| | - Rosanna Nano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giorgio Cavenaghi
- Nuclear Medicine Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Lodola
- Nuclear Medicine Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Aprile
- CNAO National Centre for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
11
|
Morana G, Tortora D, Bottoni G, Puntoni M, Piatelli G, Garibotto F, Barra S, Giannelli F, Cistaro A, Severino M, Verrico A, Milanaccio C, Massimino M, Garrè ML, Rossi A, Piccardo A. Correlation of multimodal 18F-DOPA PET and conventional MRI with treatment response and survival in children with diffuse intrinsic pontine gliomas. Am J Cancer Res 2020; 10:11881-11891. [PMID: 33204317 PMCID: PMC7667677 DOI: 10.7150/thno.50598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/03/2020] [Indexed: 01/29/2023] Open
Abstract
To evaluate the contribution of 18F-dihydroxyphenylalanine (DOPA) PET in association with conventional MRI in predicting treatment response and survival outcome of pediatric patients with diffuse intrinsic pontine gliomas (DIPGs). Methods: We retrospectively analyzed 19 children with newly diagnosed DIPGs who underwent 18F-DOPA PET/CT and conventional MRI within one week of each other at admission and subsequent MRI follow-up. Following co-registration and fusion of PET and MRI, 18F-DOPA uptake avidity and extent (PET tumor volume and uniformity) at admission, along with MRI indices including presence of ring contrast-enhancement, tumor volume at admission and at maximum response following first-line treatment, were evaluated and correlated with overall survival (OS). The association between 18F-DOPA uptake tumor volume at admission and MRI tumor volume following treatment was evaluated. Statistics included Wilcoxon signed-rank and Mann-Whitney U tests, Kaplan-Meier OS curve and Cox analysis. Results: DIPGs with a 18F-DOPA uptake Tumor/Striatum (T/S) ratio >1 presented an OS ≤ 12 months and lower degree of tumor volume reduction following treatment (p = 0.001). On multivariate analysis, T/S (p = 0.001), ring enhancement (p = 0.01) and the degree of MRI tumor volume reduction (p = 0.01) independently correlated with OS. In all patients, areas of increased 18F-DOPA uptake overlapped with regions demonstrating more prominent residual components/lack of response following treatment. Conclusions:18F-DOPA PET provides useful information for evaluating the metabolism of DIPGs. T/S ratio is an independent predictor of outcome. 18F-DOPA uptake extent delineates tumoral regions with a more aggressive biological behaviour, less sensitive to first line treatment.
Collapse
|
12
|
John F, Robinette NL, Amit-Yousif AJ, Bosnyák E, Barger GR, Shah KD, Mittal S, Juhász C. Multimodal Imaging of Nonenhancing Glioblastoma Regions. Mol Imaging 2020; 18:1536012119885222. [PMID: 31736437 PMCID: PMC6862774 DOI: 10.1177/1536012119885222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Clinical glioblastoma treatment mostly focuses on the contrast-enhancing tumor mass. Amino acid positron emission tomography (PET) can detect additional, nonenhancing glioblastoma-infiltrated brain regions that are difficult to distinguish on conventional magnetic resonance imaging (MRI). We combined MRI with perfusion imaging and amino acid PET to evaluate such nonenhancing glioblastoma regions. METHODS Structural MRI, relative cerebral blood volume (rCBV) maps from perfusion MRI, and α-[11C]-methyl-l-tryptophan (AMT)-PET images were analyzed in 20 patients with glioblastoma. The AMT uptake and rCBV (expressed as tumor to normal [T/N] ratios) were compared in nonenhancing tumor portions showing increased signal on T2/fluid-attenuated inversion recovery (T2/FLAIR) images. RESULTS Thirteen (65%) tumors showed robust heterogeneity in nonenhancing T2/FLAIR hyperintense areas on AMT-PET, whereas the nonenhancing regions in the remaining 7 cases had homogeneous AMT uptake (low in 6, high in 1). AMT and rCBV T/N ratios showed only a moderate correlation in the nonenhancing regions (r = 0.41, P = .017), but regions with very low rCBV (<0.79 T/N ratio) had invariably low AMT uptake. CONCLUSIONS The findings demonstrate the metabolic and perfusion heterogeneity of nonenhancing T2/FLAIR hyperintense glioblastoma regions. Amino acid PET imaging of such regions can detect glioma-infiltrated brain for treatment targeting; however, very low rCBV values outside the contrast-enhancing tumor mass make increased AMT uptake in nonenhancing glioblastoma regions unlikely.
Collapse
Affiliation(s)
- Flóra John
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Natasha L Robinette
- Department of Radiology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Alit J Amit-Yousif
- Department of Radiology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Edit Bosnyák
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Geoffrey R Barger
- Department of Neurology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Keval D Shah
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Neurology, Wayne State University, Detroit, MI, USA.,Department of Neurosurgery, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
13
|
Moreau A, Febvey O, Mognetti T, Frappaz D, Kryza D. Contribution of Different Positron Emission Tomography Tracers in Glioma Management: Focus on Glioblastoma. Front Oncol 2019; 9:1134. [PMID: 31737567 PMCID: PMC6839136 DOI: 10.3389/fonc.2019.01134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Although rare, glioblastomas account for the majority of primary brain lesions, with a dreadful prognosis. Magnetic resonance imaging (MRI) is currently the imaging method providing the higher resolution. However, it does not always succeed in distinguishing recurrences from non-specific temozolomide, have been shown to improve -related changes caused by the combination of radiotherapy, chemotherapy, and targeted therapy, also called pseudoprogression. Strenuous attempts to overcome this issue is highly required for these patients with a short life expectancy for both ethical and economic reasons. Additional reliable information may be obtained from positron emission tomography (PET) imaging. The development of this technique, along with the emerging of new classes of tracers, can help in the diagnosis, prognosis, and assessment of therapies. We reviewed the current data about the commonly used tracers, such as 18F-fluorodeoxyglucose (18F-FDG) and radiolabeled amino acids, as well as different PET tracers recently investigated, to report their strengths, limitations, and relevance in glioblastoma management.
Collapse
Affiliation(s)
| | | | | | | | - David Kryza
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS Villeurbanne, Villeurbanne, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
14
|
Ginet M, Zaragori T, Marie PY, Roch V, Gauchotte G, Rech F, Blonski M, Lamiral Z, Taillandier L, Imbert L, Verger A. Integration of dynamic parameters in the analysis of 18F-FDopa PET imaging improves the prediction of molecular features of gliomas. Eur J Nucl Med Mol Imaging 2019; 47:1381-1390. [PMID: 31529264 DOI: 10.1007/s00259-019-04509-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE 18F-FDopa PET imaging of gliomas is routinely interpreted with standardized uptake value (SUV)-derived indices. This study aimed to determine the added value of dynamic 18F-FDopa PET parameters for predicting the molecular features of newly diagnosed gliomas. METHODS We retrospectively included 58 patients having undergone an 18F-FDopa PET for establishing the initial diagnosis of gliomas, whose molecular features were additionally characterized according to the WHO 2016 classification. Dynamic parameters, involving time-to-peak (TTP) values and curve slopes, were tested for the prediction of glioma types in addition to current static parameters, i.e., tumor-to-normal brain or tumor-to-striatum SUV ratios and metabolic tumor volume (MTV). RESULTS There were 21 IDH mutant without 1p/19q co-deletion (IDH+/1p19q-) gliomas, 16 IDH mutants with 1p/19q co-deletion (IDH+/1p19q+) gliomas, and 21 IDH wildtype (IDH-) gliomas. Dynamic parameters enabled differentiating the gliomas according to these molecular features, whereas static parameters did not. In particular, a longer TTP was the single best independent predictor for identifying (1) IDH mutation status (area under the curve (AUC) of 0.789, global accuracy of 74% for the criterion of a TTP ≥ 5.4 min) and (2) 1p/19q co-deletion status (AUC of 0.679, global accuracy of 69% for the criterion of a TTP ≥ 6.9 min). Moreover, the TTP from IDH- gliomas was significantly shorter than those from both IDH+/1p19q- and IDH+/1p19q+ (p ≤ 0.007). CONCLUSION Prediction of the molecular features of newly diagnosed gliomas with 18F-FDopa PET and especially of the presence or not of an IDH mutation, may be obtained with dynamic but not with current static uptake parameters.
Collapse
Affiliation(s)
- Merwan Ginet
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
| | - Timothée Zaragori
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
- IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Pierre-Yves Marie
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
- Université de Lorraine, INSERM U1116, F-54000, Nancy, France
| | - Véronique Roch
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
| | - Guillaume Gauchotte
- CHRU-Nancy, Department of Pathology, Université de Lorraine, F-54000, Nancy, France
- INSERM U1256, Université de Lorraine, F-54000, Nancy, France
| | - Fabien Rech
- Department of Neurosurgery, CHU-Nancy, F-54000, Nancy, France
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
| | - Marie Blonski
- Department of Neurosurgery, CHU-Nancy, F-54000, Nancy, France
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
| | - Zohra Lamiral
- Université de Lorraine, INSERM U1116, F-54000, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
- CHRU-Nancy, Department of Neuro-oncology, Université de Lorraine, F-54000, Nancy, France
| | - Laëtitia Imbert
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France
- IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Antoine Verger
- CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, F-54000, Nancy, France.
- IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France.
| |
Collapse
|
15
|
Giovannini E, Giovacchini G, Borsò E, Lazzeri P, Riondato M, Leoncini R, Duce V, Ciarmiello A. [68Ga]-Dota Peptide PET/CT in Neuroendocrine Tumors: Main Clinical Applications. Curr Radiopharm 2019; 12:11-22. [PMID: 30539709 DOI: 10.2174/1874471012666181212101244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Objective:
Neuroendocrine Neoplasms (NENs) are generally defined as rare and heterogeneous
tumors. The gastrointestinal system is the most frequent site of NENs localization, however they
can be found in other anatomical regions, such as pancreas, lungs, ovaries, thyroid, pituitary, and adrenal
glands. Neuroendocrine neoplasms have significant clinical manifestations depending on the
production of active peptide.
Methods:
Imaging modalities play a fundamental role in initial diagnosis as well as in staging and
treatment monitoring of NENs, in particular they vastly enhance the understanding of the physiopathology
and diagnosis of NENs through the use of somatostatin analogue tracers labeled with appropriate
radioisotopes. Additionally, the use of somatostatin analogues provides the ability to in-vivo measure
the expression of somatostatin receptors on NEN cells, a process that might have important therapeutic
implications.
Results:
A large body of evidences showed improved accuracy of molecular imaging based on PET/CT
radiotracer with SST analogues (e.g. [68Ga]-DOTA peptide) for the detection of NEN lesions in comparison
to morphological imaging modalities. So far, the role of imaging technologies in assessing
treatment response is still under debate.
Conclusion:
This review offers the systems of classification and grading of NENs and summarizes the
more useful recommendations based on data recently published for the management of patients with
NENs, with special focus on the role of imaging modalities based on SST targeting with PET / CT
radiotracers.
Collapse
Affiliation(s)
| | | | - Elisa Borsò
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Patrizia Lazzeri
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Mattia Riondato
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Rossella Leoncini
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Valerio Duce
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Andrea Ciarmiello
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The aim of this study was to give an update on the emerging role of PET using radiolabelled amino acids in the diagnostic workup and management of patients with cerebral gliomas and brain metastases. RECENT FINDINGS Numerous studies have demonstrated the potential of PET using radiolabelled amino acids for differential diagnosis of brain tumours, delineation of tumour extent for treatment planning and biopsy guidance, differentiation between tumour progression and recurrence versus treatment-related changes, and for monitoring of therapy. The Response Assessment in Neuro-Oncology (RANO) working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recently recommended the use of amino acid PET imaging for brain tumour management in addition to MRI at every stage of disease. With the introduction of F-18 labelled amino acids, a broader clinical application has become possible, but is still hampered by the lack of regulatory approval and of reimbursement in many countries. SUMMARY PET using radiolabelled amino acids is a rapidly evolving method that can significantly enhance the diagnostic value of MRI in brain tumours. Current developments suggest that this imaging technique will become an indispensable tool in neuro-oncological centres in the near future.
Collapse
|
17
|
Donner D, Rozzanigo U, Amelio D, Sarubbo S, Scartoni D, Picori L, Amichetti M, Chioffi F, Chierichetti F. PET in brain tumors. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0307-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
The Emerging Role of Amino Acid PET in Neuro-Oncology. Bioengineering (Basel) 2018; 5:bioengineering5040104. [PMID: 30487391 PMCID: PMC6315339 DOI: 10.3390/bioengineering5040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Imaging plays a critical role in the management of the highly complex and widely diverse central nervous system (CNS) malignancies in providing an accurate diagnosis, treatment planning, response assessment, prognosis, and surveillance. Contrast-enhanced magnetic resonance imaging (MRI) is the primary modality for CNS disease management due to its high contrast resolution, reasonable spatial resolution, and relatively low cost and risk. However, defining tumor response to radiation treatment and chemotherapy by contrast-enhanced MRI is often difficult due to various factors that can influence contrast agent distribution and perfusion, such as edema, necrosis, vascular alterations, and inflammation, leading to pseudoprogression and pseudoresponse assessments. Amino acid positron emission tomography (PET) is emerging as the method of resolving such equivocal lesion interpretations. Amino acid radiotracers can more specifically differentiate true tumor boundaries from equivocal lesions based on their specific and active uptake by the highly metabolic cellular component of CNS tumors. These therapy-induced metabolic changes detected by amino acid PET facilitate early treatment response assessments. Integrating amino acid PET in the management of CNS malignancies to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.
Collapse
|
19
|
Abstract
PET holds potential to provide additional information about tumour metabolic processes, which could aid brain tumour differential diagnosis, grading, molecular subtyping and/or the distinction of therapy effects from disease recurrence. This review discusses PET techniques currently in use for untreated and treated glioma characterization and aims to critically assess the evidence for different tracers ([F]Fluorodeoxyglucose, choline and amino acid tracers) in this context.
Collapse
|