1
|
Efraim Y, Chen FYT, Niknezhad SV, Pham D, Cheong KN, An L, Sinada H, McNamara NA, Knox SM. Rebuilding the autoimmune-damaged corneal stroma through topical lubrication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626078. [PMID: 39677756 PMCID: PMC11642755 DOI: 10.1101/2024.11.29.626078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Corneal lubrication is the most common treatment for relieving the signs and symptoms of dry eye and is considered to be largely palliative with no regenerative functions. Here we challenge this notion by demonstrating that wetting the desiccated cornea of an aqueous-deficient mouse model with the simplest form of lubrication, a saline-based solution, is sufficient to rescue the severely disrupted collagen-rich architecture of the stroma, the largest corneal compartment that is essential to transparency and vision. At the single cell level we show that stromal keratocytes responsible for maintaining stromal integrity are converted from an inflammatory state into unique reparative cell states by lubrication alone, thus revealing the extensive plasticity of these cells and the regenerative function of lubricating the surface. We further show that the generation of a reparative phenotype is due, in part, to disruption of an IL1β autocrine amplification loop promoting chronic inflammation. Thus, our study uncovers the regenerative potential of topical lubrication in dry eye and represents a paradigm shift in our understanding of its therapeutic impact.
Collapse
Affiliation(s)
- Yael Efraim
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Feeling Yu Ting Chen
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Seyyed Vahid Niknezhad
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Dylan Pham
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Ka Neng Cheong
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Luye An
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Hanan Sinada
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Nancy A. McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley; Oakland, CA 94720, USA
- Department of Anatomy, University of California, San Francisco; San Francisco, CA 94143, USA
| | - Sarah M. Knox
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Krawczyk A, Stadler SM, Strzalka-Mrozik B. Nanomedicines for Dry Eye Syndrome: Targeting Oxidative Stress with Modern Nanomaterial Strategies. Molecules 2024; 29:3732. [PMID: 39202812 PMCID: PMC11357096 DOI: 10.3390/molecules29163732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dry eye syndrome (DES) is a dynamic, chronic disease of the ocular surface and ocular appendages caused by inflammation. The most common symptoms include redness, itching, and blurred vision, resulting from dysfunction of the meibomian glands and impaired tear-film production. Factors contributing to the development of DES include environmental elements, such as UV radiation, and internal elements, such as hormonal imbalances. These factors increase oxidative stress, which exacerbates inflammation on the surface of the eye and accelerates the development of DES. In recent years, the incidence of DES has risen, leading to a greater need to develop effective treatments. Current treatments for dry eye are limited and primarily focus on alleviating individual symptoms, such as reducing inflammation of the ocular surface. However, it is crucial to understand the pathomechanism of the disease and tailor treatment to address the underlying causes to achieve the best possible therapeutic outcomes. Therefore, in this review, we analyzed the impact of oxidative stress on the development of DES to gain a better understanding of its pathomechanism and examined recently developed nanosystems that allow drugs to be delivered directly to the disease site.
Collapse
Affiliation(s)
| | | | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (A.K.); (S.M.S.)
| |
Collapse
|
3
|
Sanchez V, Dobzinski N, Fox R, Galor A. Rethinking Sjögren Beyond Inflammation: Considering the Role of Nerves in Driving Disease Manifestations. Eye Contact Lens 2024; 50:200-207. [PMID: 38350094 PMCID: PMC11045324 DOI: 10.1097/icl.0000000000001068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 02/15/2024]
Abstract
ABSTRACT Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease characterized by destruction of mucosal glands resulting in dry eye and dry mouth. Ocular presentations can be heterogenous in SS with corneal nerves abnormalities that are structural, functional, or both. Some individuals present with corneal hyposensitivity, with a phenotype of decreased tear production and epithelial disruption. Others present with corneal hypersensitivity, with a phenotype of neuropathic pain including light sensitivity and pain out of proportion to signs of tear dysfunction. A similar correlate can be found outside the eye, with dry mouth predominating in some individuals while pain conditions predominate in others. Understanding how nerve status affects SS phenotype is an important first step to improving disease management by targeting nerve abnormalities, as well as inflammation.
Collapse
Affiliation(s)
- Victor Sanchez
- New York University Grossman School of Medicine, New York, NY, 10016
| | - Noa Dobzinski
- Miami Veterans Administration Medical Center, Miami, FL, 33125
| | - Robert Fox
- Rheumatology, Scripps Memorial Hospital and Research Foundation, La Jolla, CA, 92037
| | - Anat Galor
- Miami Veterans Administration Medical Center, Miami, FL, 33125
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, 33163
| |
Collapse
|
4
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Bai Y, Di G, Ge H, Li B, Zhang K, Zhang D, Wang D, Chen P. Regulation of Axon Guidance by Slit2 and Netrin-1 Signaling in the Lacrimal Gland of Aqp5 Knockout Mice. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37707834 PMCID: PMC10506685 DOI: 10.1167/iovs.64.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose Dry eye disease (DED) is multifactorial and associated with nerve abnormalities. We explored an Aquaporin 5 (AQP5)-deficiency-induced JunB activation mechanism, which causes abnormal lacrimal gland (LG) nerve distribution through Slit2 upregulation and Netrin-1 repression. Methods Aqp5 knockout (Aqp5-/-) and wild-type (Aqp5+/+) mice were studied. LGs were permeabilized and stained with neuronal class III β-tubulin, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). Whole-mount images were acquired through tissue clearing and 3D fluorescence imaging. Mouse primary trigeminal ganglion (TG) neurons were treated with LG extracts and Netrin-1/Slit2 neutralizing antibody. Transcription factor (TF) prediction and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) experiments verified the JunB binding and regulatory effect on Netrin-1 and Slit2. Results Three-dimensional tissue and section immunofluorescence showed reduced LG nerves in Aqp5-/- mice, with sympathetic and sensory nerves significantly decreased. Netrin-1 was reduced and Slit2 increased in Aqp5-/- mice LGs. Aqp5+/+ mice LG tissue extracts (TEs) promoted Aqp5-/- TG neurons axon growth, but Netrin-1 neutralizing antibody (NAb) could inhibit that promotion. Aqp5-/- mice LG TEs inhibited Aqp5+/+ TG axon growth, but Slit2 NAb alleviated that inhibition. Furthermore, JunB, a Netrin-1 and Slit2 TF, could bind them and regulate their expression. SR11302, meanwhile, reversed the Netrin-1 and Slit2 shifts caused by AQP5 deficiency. Conclusions AQP5 deficiency causes LG nerve abnormalities. Persistent JunB activation, the common denominator for Netrin-1 suppression and Slit2 induction, was found in Aqp5-/- mice LG epithelial cells. This affected sensory and sympathetic nerve fibers' distribution in LGs. Our findings provide insights into preventing, reversing, and treating DED.
Collapse
Affiliation(s)
- Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huanhuan Ge
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dianqiang Wang
- Department of Ophthalmology, Qingdao Aier Eye Hospital, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Shanks RMQ, Romanowski EG, Romanowski JE, Davoli K, McNamara NA, Klarlund JK. Extending the use of biologics to mucous membranes by attachment of a binding domain. Commun Biol 2023; 6:477. [PMID: 37130912 PMCID: PMC10154311 DOI: 10.1038/s42003-023-04801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Biologics are almost exclusively administered systemically, but localized delivery is preferable as it minimizes off-target exposure and allows more aggressive treatments. Topical application of biologics to epithelia is generally ineffective because most are covered with fluids and biologics are washed out too quickly to have significant therapeutic effects. Here we explore the idea that attaching a binding domain can serve as an "anchor" to extend the residency time of biologics on wet epithelia, allowing their effective use even with infrequent applications. We use topical application to the ocular surface as a challenging test since foreign substances are washed out especially efficiently by tear flow and blinking. Our results demonstrate that conjugation of antibodies to wheat germ agglutinin, which binds GlcNAc and sialic acid that are ubiquitously present in tissues, increases their half-life 350-fold upon application to the ocular surface in a mouse model of dry eye, a common and onerous disease in humans. Importantly, antibodies to IL-17A, IL-23, and IL-1β conjugated to the agglutinin reduces manifestations of dry eye, even when applied just once daily. In contrast, unconjugated antibodies are ineffective. Attaching an anchor to biologics is a simple means to overcome washout and to extend their therapeutic use.
Collapse
Affiliation(s)
- Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric G Romanowski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E Romanowski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine Davoli
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nancy A McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, CA, USA
| | - Jes K Klarlund
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Yu Y, Dou S, Peng P, Ma L, Qi X, Liu T, Yu Y, Wei C, Shi W. Targeting Type I IFN/STAT1 signaling inhibited and reversed corneal squamous metaplasia in Aire-deficient mouse. Pharmacol Res 2023; 187:106615. [PMID: 36535573 DOI: 10.1016/j.phrs.2022.106615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Corneal transparency and integrity are essential for obtaining good vision; nevertheless, squamous metaplasia (SQM) of ocular epithelium is a kind of serious blinding corneal diseases, without therapeutic medication in clinic. Here, we found that deficiency of the autoimmune regulator (AIRE) in corneas spontaneously developed corneal plaques. Using corneal abrasion model, we revealed that deletion of Aire not only resulted in delayed corneal re-epithelialization, but also promoted a cell-fate transition from transparent corneal epithelium to keratinized epithelium, histopathologically characterized with SQM based on the transcriptomic analysis. Mechanistically, Aire-deficient corneas led to the heightened Type I interferon (IFN-I)/STAT1 signaling after abrasion. Pharmacological blockade of IFN-I/JAK/STAT1 signaling in Aire-knockout (KO) corneas not only accelerated epithelial wound healing, but also alleviated corneal plaques and SQM. Collectively, our findings revealed critical roles of AIRE in governing corneal epithelial homeostasis and pathologic keratinization, and further identified IFN-I/STAT1 signaling as a potential target for treating ocular surface diseases with SQM, and even for treating pathological scenarios related to SQM in other tissues.
Collapse
Affiliation(s)
- Yaoyao Yu
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Peng Peng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yang Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China; School of Ophthalmology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
8
|
Corneal subbasal nerve analysis in patients with primary Sjogren's syndrome: a novel objective grading method and clinical correlations. Int Ophthalmol 2022; 43:779-793. [PMID: 36056289 DOI: 10.1007/s10792-022-02478-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE To investigate corneal sub-basal nerve morphology changes in primary Sjogren's syndrome (SS) dry eye (SSDE) patients and determine the association with disease severity at microstructural level. METHODS Twenty-eight eyes of 17 SSDE and 82 eyes of 47 age- and sex-matched non-SS dry eye (NSSDE) patients were included. The Ocular Surface Disease Index questionnaire (OSDI), Schirmer's test (ST), tear meniscus height (TMH), non-invasive breakup time (NIBUT), meibomian gland (MG) morphology, and ocular staining score (OSS) were assessed. In vivo confocal microscopy was performed to observe corneal sub-basal nerve morphology (length, reflectivity, width, and tortuosity). Associations between clinical features and nerve parameters were analysed. RESULTS SSDE patients more frequently had increased nerve reflectivity (151.12 ± 17.07 vs. 139.37 ± 14.31 grey value), width (4.45 ± 0.87 vs. 3.92 ± 0.81 μm), tortuosity (132.90 ± 8.04 vs. 129.50 ± 7.33 degree), and higher reflectivity, width, and total nerve grades than NSSDE individuals (all P < 0.05). Significant associations were found between nerve reflectivity/width and anti-SSA [OR = 1.139 (1.013-1.281)/1.802 (1.013-4.465)]/labial gland biopsy [OR = 1.046 (1.002-1.161)/1.616 (1.020-3.243)]. Higher nerve width was associated with increased OSDI [β = 0.284 (0.187-0.455)], MG score [β = 0.185 (0.109-0.300)] and OSS [β = 0.163 (0.020-0.345)], but decreased NIBUT [β = - 0.247 (- 0.548 ~ - 0.154)]. Higher nerve total grade was associated with increased OSDI [β = 0.418 (0.157-0.793)] and OSS [β = 0.287 (0.027-0.547)], but decreased ST [β = - 0.410 (-0.857 ~ - 0.138)]. CONCLUSIONS Corneal nerve morphology changes associated with clinical features in SS patients. These changes may facilitate severity evaluation and management of the disease.
Collapse
|
9
|
Efraim Y, Chen FYT, Cheong KN, Gaylord EA, McNamara NA, Knox SM. A synthetic tear protein resolves dry eye through promoting corneal nerve regeneration. Cell Rep 2022; 40:111307. [PMID: 36044852 PMCID: PMC9549932 DOI: 10.1016/j.celrep.2022.111307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Corneal architecture is essential for vision and is greatly perturbed by the absence of tears due to the highly prevalent disorder dry eye. With no regenerative therapies available, pathological alterations of the ocular surface in response to dryness, including persistent epithelial defects and poor wound healing, result in life-long morbidity. Here, using a mouse model of aqueous-deficient dry eye, we reveal that topical application of the synthetic tear protein Lacripep reverses the pathological outcomes of dry eye through restoring the extensive network of corneal nerves that are essential for tear secretion, barrier function, epithelial homeostasis, and wound healing. Intriguingly, the restorative effects of Lacripep occur despite extensive immune cell infiltration, suggesting tissue reinnervation and regeneration can be achieved under chronic inflammatory conditions. In summary, our data highlight Lacripep as a first-in-class regenerative therapy for returning the cornea to a near homeostatic state in individuals who suffer from dry eye. Currently, there are no regenerative treatments for ocular pathologies due to dry eye. Efraim et al. demonstrate the synthetic tear peptide Lacripep as a regenerative therapy capable of restoring the damaged, dysfunctional ocular surface to a near homeostatic state through promoting nerve regeneration in the presence of chronic inflammation.
Collapse
Affiliation(s)
- Yael Efraim
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Feeling Yu Ting Chen
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ka Neng Cheong
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eliza A Gaylord
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nancy A McNamara
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Oakland, CA 94720, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Willems M, Wells CF, Coubes C, Pequignot M, Kuony A, Michon F. Hypolacrimia and Alacrimia as Diagnostic Features for Genetic or Congenital Conditions. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35925585 PMCID: PMC9363675 DOI: 10.1167/iovs.63.9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As part of the lacrimal apparatus, the lacrimal gland participates in the maintenance of a healthy eye surface by producing the aqueous part of the tear film. Alacrimia and hypolacrimia, which are relatively rare during childhood or young adulthood, have their origin in a number of mechanisms which include agenesia, aplasia, hypoplasia, or incorrect maturation of the gland. Moreover, impaired innervation of the gland and/or the cornea and alterations of protein secretion pathways can lead to a defective tear film. In most conditions leading to alacrimia or hypolacrimia, however, the altered tear film is only one of numerous defects that arise and therefore is commonly disregarded. Here, we have systematically reviewed all of those genetic conditions or congenital disorders that have alacrimia or hypolacrimia as a feature. Where it is known, we describe the mechanism of the defect in question. It has been possible to clearly establish the physiopathology of only a minority of these conditions. As hypolacrimia and alacrimia are rare features, this review could be used as a tool in clinical genetics to perform a quick diagnosis, necessary for appropriate care and counseling.
Collapse
Affiliation(s)
- Marjolaine Willems
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Constance F Wells
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Christine Coubes
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Marie Pequignot
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
11
|
Huang R, Su C, Fang L, Lu J, Chen J, Ding Y. Dry eye syndrome: comprehensive etiologies and recent clinical trials. Int Ophthalmol 2022; 42:3253-3272. [PMID: 35678897 PMCID: PMC9178318 DOI: 10.1007/s10792-022-02320-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/18/2022] [Indexed: 12/07/2023]
Abstract
Dry eye syndrome (DES) is multifactorial and likely to be a cause of concern more so than ever given the rapid pace of modernization, which is directly associated with many of the extrinsic causative factors. Additionally, recent studies have also postulated novel etiologies that may provide the basis for alternative treatment methods clinically. Such insights are especially important given that current approaches to tackle DES remains suboptimal. This review will primarily cover a comprehensive list of causes that lead to DES, summarize all the upcoming and ongoing clinical trials that focuses on treating this disease as well as discuss future potential treatments that can improve inclusivity.
Collapse
Affiliation(s)
- Ruojing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Caiying Su
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Lvjie Fang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiaqi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Huangpu Avenue West 601, Tianhe District, Guangzhou, 510632, China.
| | - Yong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Autoimmune polyglandular syndrome type 1 and eye damage. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS type 1) is a disease characterized by a variety of clinical manifestations resulting from the involvement of multiple endocrine and non-endocrine organs in the pathological process. APS type 1 is a rare genetically determined disease with autosomal recessive inheritance. Mutations in the autoimmune regulator gene (AIRE) lead to a disruption of the mechanism of normal antigen expression and the formation of abnormal clones of immune cells, and can cause autoimmune damage to organs. Within APS type 1, the most common disorders are primary adrenal insufficiency, hypoparathyroidism, and chronic candidiasis. Some understudied clinical manifestations of APS type 1 are autoimmune pathological processes in the eye: keratoconjunctivitis, dry eye syndrome, iridocyclitis, retinopathy, retinal detachment, and optic atrophy. This review presents the accumulated experimental and clinical data on the development of eye damage of autoimmune nature in APS type 1, as well as the laboratory and instrumental methods used for diagnosing the disease. Changes in the visual organs in combination with clinical manifestations of hypoparathyroidism, adrenal insufficiency and candidiasis should lead the clinical doctor to suspect the presence of APS type 1 and to examine the patient comprehensively. Timely genetic counselling will allow early identifi cation of the disease, timely prescription of appropriate treatment and prevention of severe complications.
Collapse
|
14
|
Rahman MM, Kim DH, Park CK, Kim YH. Experimental Models, Induction Protocols, and Measured Parameters in Dry Eye Disease: Focusing on Practical Implications for Experimental Research. Int J Mol Sci 2021; 22:12102. [PMID: 34830010 PMCID: PMC8622350 DOI: 10.3390/ijms222212102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Dry eye disease (DED) is one of the major ophthalmological healthcare challenges worldwide. DED is a multifactorial disease characterized by a loss of homeostasis of the tear film, and its main pathogenesis is chronic ocular surface inflammation related with various cellular and molecular signaling cascades. The animal model is a reliable and effective tool for understanding the various pathological mechanisms and molecular cascades in DED. Considerable experimental research has focused on developing new strategies for the prevention and treatment of DED. Several experimental models of DED have been developed, and different animal species such as rats, mice, rabbits, dogs, and primates have been used for these models. Although the basic mechanisms of DED in animals are nearly identical to those in humans, proper knowledge about the induction of animal models is necessary to obtain better and more reliable results. Various experimental models (in vitro and in vivo DED models) were briefly discussed in this review, along with pathologic features, analytical approaches, and common measurements, which will help investigators to use the appropriate cell lines, animal, methods, and evaluation parameters depending on their study design.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Dong Hyun Kim
- Gil Medical Center, Department of Ophthalmology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea
| |
Collapse
|
15
|
Grasseau A, Boudigou M, Michée-Cospolite M, Delaloy C, Mignen O, Jamin C, Cornec D, Pers JO, Le Pottier L, Hillion S. The diversity of the plasmablast signature across species and experimental conditions: A meta-analysis. Immunology 2021; 164:120-134. [PMID: 34041745 DOI: 10.1111/imm.13344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Antibody-secreting cells (ASC) are divided into two principal subsets, including the long-lived plasma cell (PC) subset residing in the bone marrow and the short-lived subset, also called plasmablast (PB). PB are described as a proliferating subset circulating through the blood and ending its differentiation in tissues. Due to their inherent heterogeneity, the molecular signature of PB is not fully established. The purpose of this study was to decipher a specific PB signature in humans and mice through a comprehensive meta-analysis of different data sets exploring the PB differentiation in both species and across different experimental conditions. The present study used recent analyses using whole RNA sequencing in prdm1-GFP transgenic mice to define a reliable and accurate PB signature. Next, we performed similar analysis using current data sets obtained from human PB and PC. The PB-specific signature is composed of 155 and 113 genes in mouse and human being, respectively. Although only nine genes are shared between the human and mice PB signature, the loss of B-cell identity such as the down-regulation of PAX5, MS4A1, (CD20) CD22 and IL-4R is a conserved feature across species and across the different experimental conditions. Additionally, we observed that the IRF8 and IRF4 transcription factors have a specific dynamic range of expression in human PB. We thus demonstrated that IRF4/IRF8 intranuclear staining was useful to define PB in vivo and in vitro and able to discriminate between atypical PB populations and transient states.
Collapse
Affiliation(s)
| | | | | | - Céline Delaloy
- UMR U1236, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Université de Rennes 1, Rennes, France
| | | | - Christophe Jamin
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | - Divi Cornec
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | | | - Sophie Hillion
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| |
Collapse
|
16
|
Galletti JG, de Paiva CS. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunology 2021; 164:43-56. [PMID: 33837534 DOI: 10.1111/imm.13338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The ocular surface is the part of the visual system directly exposed to the environment, and it comprises the cornea, the first refractive tissue layer and its surrounding structures. The ocular surface has evolved to keep the cornea smooth and wet, a prerequisite for proper sight, and also protected. To this aim, the ocular surface is a bona fide mucosal niche with an immune system capable of fighting against dangerous pathogens. However, due to the potential harmful effects of uncontrolled inflammation, the ocular surface has several mechanisms to keep the immune response in check. Specifically, the ocular surface is maintained inflammation-free and functional by a particular form of peripheral tolerance known as mucosal tolerance, markedly different from the immune privilege of intraocular structures. Remarkably, conjunctival tolerance is akin to the oral and respiratory tolerance mechanisms found in the gut and airways, respectively. And also similarly, this form of immunoregulation in the eye is affected by ageing just as it is in the digestive and respiratory tracts. With ageing comes an increased prevalence of immune-based ocular surface disorders, which could be related to an age-related impairment of conjunctival tolerance. The purpose of this review was to summarize the present knowledge of ocular mucosal tolerance and how it is affected by the ageing process in the light of the current literature on mucosal immunoregulation of the gut and airways.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Neurotrophic keratitis in autoimmune polyglandular syndrome type 1: a case report. BMC Ophthalmol 2021; 21:17. [PMID: 33413189 PMCID: PMC7792334 DOI: 10.1186/s12886-020-01770-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/15/2020] [Indexed: 12/05/2022] Open
Abstract
Background Autoimmune polyglandular syndrome type 1 (APS-1) is a rare autosomal recessive disease. In patients with APS-1, the most frequently reported ocular manifestations are keratoconjunctivitis with dry eye and retinal degeneration. However, to our knowledge, no research studies have reported the relationship between APS-1 and neurotrophic keratitis (NK). Possible explanations such as limbus cell deficiency being the primary cause of APS-1 keratopathy are not applicable to our unusual case of the patient with APS-1 presenting as ocular surface disease with NK. Our case findings suggest a new explanation for the observed corneal pathology and a potential treatment for these patients. Case presentation A 27-year-old woman was referred to our hospital because of intermittent blurred vision and recalcitrant ocular surface problems in both eyes for many years. She has a history of autoimmune polyglandular syndrome type 1 (APS-1), which includes hypothyroidism, hypoparathyroidism, hypoadrenalism, and hypogonadotropic hypogonadism. In vivo confocal microscopy clearly demonstrated significant degeneration of the sub-basal nerve plexus and stromal nerve bundles in her corneas bilaterally. She was diagnosed with severe NK and ocular surface disease caused by dry eye. Treatment included the application of therapeutic soft contact lenses and punctual occlusion; however, both treatments had a limited effect. Conclusion Patients with APS-1 may have ocular surface disease and severe damage to corneal nerves. Regular follow-up and treatment focusing on the regeneration of corneal nerves is particularly important in these patients.
Collapse
|
18
|
Lin X, Wu Y, Tang L, Ouyang W, Yang Y, Liu Z, Wu J, Zheng X, Huang C, Zhou Y, Zhang X, Chen Y, Li W, Hu J, Liu Z. Comparison of Treatment Effect and Tolerance of the Topical Application of Mizoribine and Cyclosporine A in a Mouse Dry Eye Model. Transl Vis Sci Technol 2020; 9:22. [PMID: 33364077 PMCID: PMC7745621 DOI: 10.1167/tvst.9.13.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To compare the treatment effects and tolerability of a topical application of mizoribine (MZR) and cyclosporine A (CsA) eye drops (Restasis; Allergan, Inc., Irvine, CA, USA) in a mouse dry eye model. Methods C57BL/6 mice subjected to desiccating stress (DS) were treated with 0.05% MZR in phosphate-buffered saline (PBS) or Restasis eye drops four times a day for 5 days. Untreated mice served as control. Tear secretion, Oregon green dextran staining, and the conjunctival goblet cell quantity were evaluated. The apoptosis and matrix metalloproteinase 9 (MMP-9) in the ocular surface, conjunctival CD4, and T helper–related cytokines were verified. The ocular tolerance of these two drugs was evaluated by observing the mice's behavioral changes. Results Topical administrations of MZR or Restasis both increased tear production, maintained goblet cell density, and improved corneal barrier function. Both MZR and Restasis suppressed the expression of MMP-9 and apoptosis in the ocular surface. Meanwhile, both MZR and Restasis decreased the infiltration of CD4+ T cells, reversed the production of interferon-γ, interleukin (IL)–17A, and IL-13 in conjunctiva under DS. The abovementioned efficacies between these two eye drops were not statistically significant. However, the number of scratching and wiping behaviors in the MZR-treated group was significantly less than in the Restasis-treated group. Conclusions MZR (0.05% in PBS) could be a good competitive product for Restasis because of the comparable treatment effect in dry eye diseases and better ocular tolerability in ocular itch and pain. Translational Relevance This study provided an immunosuppressive agent comparable to Restasis for the treatment of dry eye disease.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liying Tang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Weijie Ouyang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yiran Yang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhaolin Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jieli Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoxiang Zheng
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Caihong Huang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yueping Zhou
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaobo Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yongxiong Chen
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| |
Collapse
|
19
|
Bencsik P, Gömöri K, Szabados T, Sántha P, Helyes Z, Jancsó G, Ferdinandy P, Görbe A. Myocardial ischaemia reperfusion injury and cardioprotection in the presence of sensory neuropathy: Therapeutic options. Br J Pharmacol 2020; 177:5336-5356. [PMID: 32059259 PMCID: PMC7680004 DOI: 10.1111/bph.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decades, mortality from acute myocardial infarction has been dramatically reduced. However, the incidence of post-infarction heart failure is still increasing. Cardioprotection by ischaemic conditioning had been discovered more than three decades ago. Its clinical translation, however, is still an unmet need. This is mainly due to the disrupted cardioprotective signalling pathways in the presence of different cardiovascular risk factors, co-morbidities and the medication being taken. Sensory neuropathy is one of the co-morbidities that has been shown to interfere with cardioprotection. In the present review, we summarize the diverse aetiology of sensory neuropathies and the mechanisms by which these neuropathies may interfere with ischaemic heart disease and cardioprotective signalling. Finally, we suggest future therapeutic options targeting both ischaemic heart and sensory neuropathy simultaneously. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Péter Sántha
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Gábor Jancsó
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Péter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| |
Collapse
|
20
|
Masli S, Dartt DA. Mouse Models of Sjögren's Syndrome with Ocular Surface Disease. Int J Mol Sci 2020; 21:ijms21239112. [PMID: 33266081 PMCID: PMC7730359 DOI: 10.3390/ijms21239112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic rheumatic disease that predominantly affects salivary and lacrimal glands resulting in oral and ocular dryness, respectively, referred to as sicca symptoms. The clinical presentation of ocular dryness includes keratoconjunctivitis sicca (KCS), resulting from the inflammatory damage to the ocular surface tissues of cornea and conjunctiva. The diagnostic evaluation of KCS is a critical component of the classification criteria used by clinicians worldwide to confirm SS diagnosis. Therapeutic management of SS requires both topical and systemic treatments. Several mouse models of SS have contributed to our current understanding of immunopathologic mechanisms underlying the disease. This information also helps develop novel therapeutic interventions. Although these models address glandular aspects of SS pathology, their impact on ocular surface tissues is addressed only in a few models such as thrombospondin (TSP)-1 deficient, C57BL/6.NOD.Aec1Aec2, NOD.H2b, NOD.Aire KO, and IL-2Rα (CD25) KO mice. While corneal and/or conjunctival damage is reported in most of these models, the characteristic SS specific autoantibodies are only reported in the TSP-1 deficient mouse model, which is also validated as a preclinical model. This review summarizes valuable insights provided by investigations on the ocular spectrum of the SS pathology in these models.
Collapse
Affiliation(s)
- Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (S.M.); (D.A.D.); Tel.: +1-617-358-2195 (S.M.); +1-617-912-0272 (D.A.D.)
| |
Collapse
|
21
|
Efraim Y, Chen FYT, Stashko C, Cheong KN, Gaylord E, McNamara N, Knox SM. Alterations in corneal biomechanics underlie early stages of autoimmune-mediated dry eye disease. J Autoimmun 2020; 114:102500. [PMID: 32565048 PMCID: PMC8269964 DOI: 10.1016/j.jaut.2020.102500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Autoimmune-mediated dry eye disease is a pathological feature of multiple disorders including Sjögren's syndrome, lupus and rheumatoid arthritis that has a life-long, detrimental impact on vision and overall quality of life. Although late stage disease outcomes such as epithelial barrier dysfunction, reduced corneal innervation and chronic inflammation have been well characterized in both human patients and mouse models, there is little to no understanding of early pathological processes. Moreover, the mechanisms underlying the loss of cornea homeostasis and disease progression are unknown. Here, we utilize the autoimmune regulatory (Aire)-deficient mouse model of autoimmune-mediated dry eye disease in combination with genome wide transcriptomics, high-resolution imaging and atomic force microscopy to reveal a potential extracellular matrix (ECM)-biomechanical-based mechanism driving cellular and morphological changes at early disease onset. Early disease in the Aire-deficient mouse model is associated with a mild reduction in tear production and moderate immune cell infiltration, allowing for interrogation of cellular, molecular and biomechanical changes largely independent of chronic inflammation. Using these tools, we demonstrate for the first time that the emergence of autoimmune-mediated dry eye disease is associated with an alteration in the biomechanical properties of the cornea. We reveal a dramatic disruption of the synthesis and organization of the extracellular matrix as well as degradation of the epithelial basement membrane during early disease. Notably, we provide evidence that the nerve supply to the cornea is severely reduced at early disease stages and that this is independent of basement membrane destruction or significant immune cell infiltration. Furthermore, diseased corneas display spatial heterogeneity in mechanical, structural and compositional changes, with the limbal compartment often exhibiting the opposite response compared to the central cornea. Despite these differences, however, epithelial hyperplasia is apparent in both compartments, possibly driven by increased activation of IL-1R1 and YAP signaling pathways. Thus, we reveal novel perturbations in corneal biomechanics, matrix organization and cell behavior during the early phase of dry eye that may underlie disease development and progression, presenting new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yael Efraim
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Feeling Yu Ting Chen
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ka Neng Cheong
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eliza Gaylord
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nancy McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, CA, 94720, USA; Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
22
|
Investigation of light-induced lacrimation and pupillary responses in episodic migraine. PLoS One 2020; 15:e0241490. [PMID: 33125423 PMCID: PMC7598498 DOI: 10.1371/journal.pone.0241490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this pilot study was to investigate the light-induced pupillary and lacrimation responses mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) in migraine. Ten participants with episodic migraine and normal tear production, as well as eleven visually normal controls participated in this study. Following an initial baseline trial (no light flash), participants received seven incremental and alternating red and blue light flashes. Pupillometry recording of the left eye and a 1-min anesthetized Schirmer’s test of the right eye (using 0.5% proparacaine) were performed simultaneously. Intrinsic and extrinsic ipRGC photoactivities did not differ between migraine participants and controls across all intensities and wavelengths. Migraine participants, however, had significantly lower lacrimation than controls following the highest blue intensity. A positive correlation was found between melanopsin-driven post-illumination pupillary responses and lacrimation following blue stimulation in both groups. Our results show that participants with self-reported photophobia have normal ipRGC-driven responses, suggesting that photophobia and pupillary function may be mediated by distinct ipRGC circuits. The positive correlation between melanopsin-driven pupillary responses and light-induced lacrimation suggests the afferent arm of the light-induced lacrimation reflex is melanopsin-mediated and functions normally in migraine. Lastly, the reduced melanopsin-mediated lacrimation at the highest stimulus suggests the efferent arm of the lacrimation reflex is attenuated under certain conditions, which may be a harbinger of dry eye in migraine.
Collapse
|
23
|
Lio CT, Dhanda SK, Bose T. Cluster Analysis of Dry Eye Disease Models Based on Immune Cell Parameters - New Insight Into Therapeutic Perspective. Front Immunol 2020; 11:1930. [PMID: 33133058 PMCID: PMC7550429 DOI: 10.3389/fimmu.2020.01930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Dry eye disease (DED) can be represented as a display of disease in the mucosal part of the eye. It is quite distinct from the retinal side of the eye which connects with the neurons and thus represents the neuroimmunological disease. DED can occur either by the internal damage of the T cells inside the body or by microbial infections. Here we summarize the most common animal model systems used for DED relating to immune factors. We aimed to identify the most important immune cell/cytokine among the animal models of the disease. We also show the essential immune factors which are being tested for DED treatment. In our results, both the mechanism and the treatment of its animal models indicate the involvement of Th1 cells and the pro-inflammatory cytokine (IL-1β and TNF-α) related to the Th1-cells. The study is intended to increase the knowledge of the animal models in the field of the ocular surface along with the opening of a dimension of thoughts while designing a new animal model or treatment paradigm for ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Chit Tong Lio
- Chair of Experimental Bioinformatics, Technical University of Munich, Munich, Germany
| | | | - Tanima Bose
- Institute for Clinical Neuroimmunology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
24
|
Ortiz G, Chao C, Jamali A, Seyed-Razavi Y, Kenyon B, Harris DL, Zoukhri D, Hamrah P. Effect of Dry Eye Disease on the Kinetics of Lacrimal Gland Dendritic Cells as Visualized by Intravital Multi-Photon Microscopy. Front Immunol 2020; 11:1713. [PMID: 32903439 PMCID: PMC7434984 DOI: 10.3389/fimmu.2020.01713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The lacrimal gland (LG) is the main source of the tear film aqueous layer and its dysfunction results in dry eye disease (DED), a chronic immune-mediated disorder of the ocular surface. The desiccating stress (DS) murine model that mimics human DED, results in LG dysfunction, immune cell infiltration, and consequently insufficient tear production. To date, the immune cell kinetics in DED are poorly understood. The purpose of this study was to develop a murine model of intravital multi-photon microscopy (IV-MPM) for the LG, and to investigate the migratory kinetics and 3D morphological properties of conventional dendritic cells (cDCs), the professional antigen presenting cells of the ocular surface, in DED. Mice were placed in a controlled environmental chamber with low humidity and increased airflow rate for 2 and 4 weeks to induce DED, while control naïve transgenic mice were housed under standard conditions. DED mice had significantly decreased tear secretion and increased fluorescein staining (p < 0.01) compared to naïve controls. Histological analysis of the LG exhibited infiltrating mononuclear and polymorphonuclear cells (p < 0.05), as well as increased LG swelling (p < 0.001) in DED mice compared to controls. Immunofluorescence staining revealed increased density of cDCs in DED mice (p < 0.001). IV-MPM of the LG demonstrated increased density of cDCs in the LGs of DED mice, compared with controls (p < 0.001). cDCs were more spherical in DED at both time points compared to controls (p < 0.001); however, differences in surface area were found at 2 weeks in DED compared with naïve controls (p < 0.001). Similarly, 3D cell volume was significantly lower at 2 weeks in DED vs. the naïve controls (p < 0.001). 3D instantaneous velocity and mean track speed were significantly higher in DED compared to naïve mice (p < 0.001). Finally, the meandering index, an index for directionality, was significant increased at 4 weeks after DED compared with controls and 2 weeks of DED (p < 0.001). Our IV-MPM study sheds light into the 3D morphological alterations and cDC kinetics in the LG during DED. While in naïve LGs, cDCs exhibit a more dendritic morphology and are less motile, they became more spherical with enhanced motility during DED. This study shows that IV-MPM represents a robust tool to study immune cell trafficking and kinetics in the LG, which might elucidate cellular alterations in immunological diseases, such as DED.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Cecilia Chao
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States.,Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| |
Collapse
|
25
|
Kelley MA, Oaklander AL. Association of small-fiber polyneuropathy with three previously unassociated rare missense SCN9A variants. Can J Pain 2020; 4:19-29. [PMID: 32719824 PMCID: PMC7384751 DOI: 10.1080/24740527.2020.1712652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Small fiber polyneuropathy (SFN) involves ectopic firing and degeneration of small-diameter, somatic/autonomic peripheral axons. Causes include diabetes, inflammation and rare pathogenic mutations, including in SCN9-11 genes that encode small fiber sodium channels. AIMS The aim of this study is to associate a new phenotype-immunotherapy-responsive SFN-with rare amino acid-substituting SCN9A variants and present potential explanations. METHODS A retrospective chart review of two Caucasians with skin biopsy confirmed SFN and rare SCN9A single nucleotide polymorphisms not previously reported in neuropathy. RESULTS A 47-year-old with 4 years of disabling widespread neuropathic pain and exertional intolerance had nerve- and skin biopsy-confirmed SFN, with blood tests revealing only high-titer antinuclear antibodies and low complement C4 consistent with B cell dysimmunity. Six years of intravenous immunoglobulin (IVIg) therapy markedly improved sensory and autonomic symptoms and normalized his neurite density. After whole exome sequencing revealed a potentially pathogenic SCN9A-A3734G variant, sodium channel blockers were tried. Herpes zoster left a 32-year-old with disabling exertional intolerance ("chronic fatigue syndrome"), postural syncope and tachycardia, arm and leg paresthesias, reduced sweating, and distal hairloss. Screening revealed antinuclear and potassium channel autoantibodies, so prednisone and then IVIg were prescribed with great benefit. During 4 years of immunotherapy, his symptoms and function improved, and all abnormal biomarkers (autonomic testing and skin biopsies) normalized. Whole exome sequencing then revealed two nearby compound heterozygous SCN9A variants that were computer-predicted to be deleterious. CONCLUSIONS These cases newly associate three novel amino acid-substituting SCN9A variants with immunotherapy-responsive neuropathy. Only larger studies can determine whether these are contributory or coincidental, but they associate new variants with moderate or high likelihood of pathogenicity with a new highly related phenotype.
Collapse
Affiliation(s)
- Mary A. Kelley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Dell Medical School at the University of Texas, Austin, Texas, USA
| | - Anne Louise Oaklander
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology (Neuropathology), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Marek V, Reboussin E, Dégardin-Chicaud J, Charbonnier A, Domínguez-López A, Villette T, Denoyer A, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. Implication of Melanopsin and Trigeminal Neural Pathways in Blue Light Photosensitivity in vivo. Front Neurosci 2019; 13:497. [PMID: 31178682 PMCID: PMC6543920 DOI: 10.3389/fnins.2019.00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/30/2019] [Indexed: 01/30/2023] Open
Abstract
Photophobia may arise from various causes and frequently accompanies numerous ocular diseases. In modern highly illuminated world, complaints about greater photosensitivity to blue light increasingly appear. However, the pathophysiology of photophobia is still debated. In the present work, we investigated in vivo the role of various neural pathways potentially implicated in blue-light aversion. Moreover, we studied the light-induced neuroinflammatory processes on the ocular surface and in the trigeminal pathways. Adult male C57BL/6J mice were exposed either to blue (400-500 nm) or to yellow (530-710 nm) LED light (3 h, 6 mW/cm2). Photosensitivity was measured as the time spent in dark or illuminated parts of the cage. Pharmacological treatments were applied: topical instillation of atropine, pilocarpine or oxybuprocaine, intravitreal injection of lidocaine, norepinephrine or "blocker" of the visual photoreceptor transmission, and intraperitoneal injection of a melanopsin antagonist. Clinical evaluations (ocular surface state, corneal mechanical sensitivity and tear quantity) were performed directly after exposure to light and after 3 days of recovery in standard light conditions. Trigeminal ganglia (TGs), brainstems and retinas were dissected out and conditioned for analyses. Mice demonstrated strong aversion to blue but not to yellow light. The only drug that significantly decreased the blue-light aversion was the intraperitoneally injected melanopsin antagonist. After blue-light exposure, dry-eye-related inflammatory signs were observed, notably after 3 days of recovery. In the retina, we observed the increased immunoreactivity for GFAP, ATF3, and Iba1; these data were corroborated by RT-qPCR. Moreover, retinal visual and non-visual photopigments distribution was altered. In the trigeminal pathway, we detected the increased mRNA expression of cFOS and ATF3 as well as alterations in cytokines' levels. Thus, the wavelength-dependent light aversion was mainly mediated by melanopsin-containing cells, most likely in the retina. Other potential pathways of light reception were also discussed. The phototoxic message was transmitted to the trigeminal system, inducing both inflammation at the ocular surface and stress in the retina. Further investigations of retina-TG connections are needed.
Collapse
Affiliation(s)
- Veronika Marek
- R&D, Essilor International, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Elodie Reboussin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Julie Dégardin-Chicaud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Angéline Charbonnier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Alfredo Domínguez-López
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | | | - Alexandre Denoyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- CHU Robert Debré, Université Reims Champagne-Ardenne, Reims, France
| | - Christophe Baudouin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- Versailles Saint-Quentin-en-Yvelines Université, Versailles, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
27
|
Hindman HB, DeMagistris M, Callan C, McDaniel T, Bubel T, Huxlin KR. Impact of topical anti-fibrotics on corneal nerve regeneration in vivo. Exp Eye Res 2019; 181:49-60. [PMID: 30660507 PMCID: PMC6443430 DOI: 10.1016/j.exer.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Recent work in vitro has shown that fibroblasts and myofibroblasts have opposing effects on neurite outgrowth by peripheral sensory neurons. Here, we tested a prediction from this work that dampening the fibrotic response in the early phases of corneal wound healing in vivo could enhance reinnervation after a large, deep corneal injury such as that induced by photorefractive keratectomy (PRK). Since topical steroids and Mitomycin C (MMC) are often used clinically for mitigating corneal inflammation and scarring after PRK, they were ideal to test this prediction. Twenty adult cats underwent bilateral, myopic PRK over a 6 mm optical zone followed by either: (1) intraoperative MMC (n = 12 eyes), (2) intraoperative prednisolone acetate (PA) followed by twice daily topical application for 14 days (n = 12 eyes), or (3) no post-operative treatment (n = 16 eyes). Anti-fibrotic effects of MMC and PA were verified optically and histologically. First, optical coherence tomography (OCT) performed pre-operatively and 2, 4 and 12 weeks post-PRK was used to assess changes in corneal backscatter reflectivity. Post-mortem immunohistochemistry was then performed at 2, 4 and 12 weeks post-PRK, using antibodies against α-smooth muscle actin (α-SMA). Finally, immunohistochemistry with antibodies against βIII-tubulin (Tuj-1) was performed in the same corneas to quantify changes in nerve distribution relative to unoperated, control cat corneas. Two weeks after PRK, untreated corneas exhibited the greatest amount of staining for α-SMA, followed by PA-treated and MMC-treated eyes. This was matched by higher OCT-based stromal reflectivity values in untreated, than PA- and MMC-treated eyes. PA treatment appeared to slow epithelial healing and although normal epithelial thickness was restored by 12 weeks-post-PRK, intra-epithelial nerve length only reached ∼1/6 normal values in PA-treated eyes. Even peripheral cornea (outside the ablation zone) exhibited depressed intra-epithelial nerve densities after PA treatment. Stromal nerves were abundant under the α-SMA zone, but appeared to largely avoid it, creating an area of sub-epithelial stroma devoid of nerve trunks. In turn, this may have led to the lack of sub-basal and intra-epithelial nerves in the ablation zone of PA-treated eyes 4 weeks after PRK, and their continuing paucity 12 weeks after PRK. Intra-operative MMC, which sharply decreased α-SMA staining, was followed by rapid restoration of nerve densities in all corneal layers post-PRK compared to untreated corneas. Curiously, stromal nerves appeared unaffected by the development of large, stromal, acellular zones in MMC-treated corneas. Overall, it appears that post-PRK treatments that were most effective at reducing α-SMA-positive cells in the early post-operative period benefited nerve regeneration the most, resulting in more rapid restoration of nerve densities in all corneal layers of the ablation zone and of the corneal periphery.
Collapse
Affiliation(s)
- Holly B Hindman
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | | | - Christine Callan
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Thurma McDaniel
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Tracy Bubel
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Krystel R Huxlin
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
28
|
Chen FY, Gaylord E, McNamara N, Knox S. Deciphering Molecular and Phenotypic Changes Associated with Early Autoimmune Disease in the Aire-Deficient Mouse Model of Sjögren's Syndrome. Int J Mol Sci 2018; 19:E3628. [PMID: 30453645 PMCID: PMC6274681 DOI: 10.3390/ijms19113628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Sjögren's syndrome (SS) is characterized by extensive lymphocytic infiltration of the salivary and lacrimal gland (LG), resulting in acinar cell destruction and organ dysfunction. The underlying pathogenesis of SS remains largely unknown, and studies historically focus on defining late-stage disease. Here, we identify tissue programs associated with disease onset using transcriptomic and immunohistological analysis of LGs from 5- and 7-week-old mice deficient in autoimmune response element (Aire). At 5 weeks of age (wk), Aire-/- mice show minimal tissue dysfunction and destruction compared to 7 wk Aire-/-, which exhibit severe dry eye, poor tear secretion, extensive lymphocytic infiltration, reduced functional innervation, and increased vascularization. Despite this mild phenotype, 5 wk Aire-/- LGs were highly enriched for signaling pathways previously associated with SS, including interferon gamma (IFNγ), interleukin 1 beta (IL1β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), toll-like receptor (TLR) signaling, and interleukin-6/signal transducer and activator of transcription 3 (IL6/STAT3) signaling. Novel signaling pathways such as the semaphorin⁻plexin pathway were also noted. Intriguingly, we found an expansion of the ductal network with increasing disease. Activated STAT3, a blocker of apoptosis, was restricted to the ductal system and also increased with damage, highlighting its potential as a promoter of ductal cell survival. These data demonstrate the early activation of signaling pathways regulating inflammation, innervation, and cell survival before the onset of clinical disease indicators, suggesting their potential value as diagnostic biomarkers.
Collapse
Affiliation(s)
- Feeling YuTing Chen
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Eliza Gaylord
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Nancy McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, CA 94720, USA.
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Sarah Knox
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Mittal SK, Mashaghi A, Amouzegar A, Li M, Foulsham W, Sahu SK, Chauhan SK. Mesenchymal Stromal Cells Inhibit Neutrophil Effector Functions in a Murine Model of Ocular Inflammation. Invest Ophthalmol Vis Sci 2018; 59:1191-1198. [PMID: 29625439 PMCID: PMC5837663 DOI: 10.1167/iovs.17-23067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Neutrophil-secreted effector molecules are one of the primary causes of tissue damage during corneal inflammation. In the present study, we have investigated the effect of stromal cells in regulating neutrophil expression of tissue-damaging enzymes, myeloperoxidase (MPO), and N-elastase (ELANE). Methods Bone marrow–purified nonhematopoietic mesenchymal stromal cells and formyl-methionyl-leucyl-phenylalanine–activated neutrophils were cocultured in the presence or absence of Transwell inserts for 1 hour. Neutrophil effector molecules, MPO and ELANE, were quantified using ELISA. In mice, corneal injury was created by mechanical removal of the corneal epithelium and anterior stroma approximating one third of total corneal thickness, and mesenchymal stromal cells were then intravenously injected 1 hour post injury. Corneas were harvested to evaluate MPO expression and infiltration of CD11b+Ly6G+ neutrophils. Results Activated neutrophils cocultured with mesenchymal stromal cells showed a significant 2-fold decrease in secretion of MPO and ELANE compared to neutrophils activated alone (P < 0.05). This suppressive effect was cell–cell contact dependent, as stromal cells cocultured with neutrophils in the presence of Transwell failed to suppress the secretion of neutrophil effector molecules. Following corneal injury, stromal cell–treated mice showed a significant 40% decrease in MPO expression by neutrophils and lower neutrophil frequencies compared to untreated injured controls (P < 0.05). Reduced MPO expression by neutrophils was also accompanied by normalization of corneal tissue structure following stromal cell treatment. Conclusions Mesenchymal stromal cells inhibit neutrophil effector functions via direct cell–cell contact interaction during inflammation. The current findings could have implications for the treatment of inflammatory ocular disorders caused by excessive neutrophil activation.
Collapse
Affiliation(s)
- Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Mingshun Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States.,Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, People's Republic of China
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Srikant K Sahu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States.,L.V. Prasad Eye Institute, Bhubaneswar, Odisha, India
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
30
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams A, Pflugfelder SC, de Paiva CS. Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice. Exp Eye Res 2018; 169:91-98. [PMID: 29407221 PMCID: PMC5949876 DOI: 10.1016/j.exer.2018.01.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
Dry Eye disease causes discomfort and pain in millions of patients. Using a mouse acute desiccating stress (DS) model we show that DS induces a reduction in intraepithelial corneal nerve (ICN) density, corneal sensitivity, and apical extension of the intraepithelial nerve terminals (INTs) that branch from the subbasal nerves (SBNs). Topical application of 0.02% Mitomycin C (MMC) or vehicle alone has no impact on the overall loss of axon density due to acute DS. Chronic dry eye, which develops progressively as C57BL/6 mice age, is accompanied by significant loss of the ICNs and corneal sensitivity between 2 and 24 months of age. QPCR studies show that mRNAs for several proteins that regulate axon growth and extension are reduced in corneal epithelial cells by 24 months of age but those that regulate phagocytosis and autophagy are not altered. Taken together, these data demonstrate that dry eye disease is accompanied by alterations in intraepithelial sensory nerve morphology and function and by reduced expression in corneal epithelial cells of mRNAs encoding genes mediating axon extension. Précis: Acute and chronic mouse models of dry eye disease are used to evaluate the pathologic effects of dry eye on the intraepithelial corneal nerves (ICNs) and corneal epithelial cells. Data show reduced numbers of sensory nerves and alterations in nerve morphology, sensitivity, corneal epithelial cell proliferation, and expression of mRNAs for proteins mediating axon extension accompany the pathology induced by dry eye.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Alexa Williams
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|