1
|
Cai L, Abbey L, MacDonald M. Changes in Endogenous Carotenoids, Flavonoids, and Phenolics of Drought-Stressed Broccoli Seedlings After Ascorbic Acid Preconditioning. PLANTS (BASEL, SWITZERLAND) 2024; 13:3513. [PMID: 39771211 PMCID: PMC11678398 DOI: 10.3390/plants13243513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Drought is an abiotic disturbance that reduces photosynthesis, plant growth, and crop yield. Ascorbic acid (AsA) was utilized as a seed preconditioning agent to assist broccoli (Brassica oleracea var. italica) in resisting drought. However, the precise mechanism by which AsA improves seedlings' development remains unknown. One hypothesis is that AsA works via antioxidant mechanisms and reduces oxidative stress. This study aims to confirm the effect of varied concentrations of AsA (control, 0 ppm, 1 ppm, or 10 ppm) on seedling growth and changes in the antioxidant status of broccoli seedlings under regular watering or drought stress. AsA increased shoot dry mass, leaf area, net photosynthesis, and water use efficiency in watered and drought-stressed seedlings. AsA significantly (p < 0.001) increased carotenoid content in watered and drought-stressed seedlings by approximately 27% and 111%, respectively. Drought increased chlorophyll b, flavonoids, phenolics, ascorbate, and hydrogen peroxide production in control seedlings, but either had no effect or less effect on plants preconditioned with 10 ppm AsA. There was no improvement in reactive oxygen species scavenging in AsA-preconditioned seedlings compared to the control. The absence or reduction in biochemical indicators of stress suggests that preconditioned broccoli seedlings do not perceive stress the same as control seedlings. In conclusion, the consistent increase in carotenoid concentration suggests that carotenoids play some role in the preconditioning response, though the exact mechanism remains unknown.
Collapse
Affiliation(s)
| | | | - Mason MacDonald
- Faculty of Agriculture, Dalhousie University, Bible Hill, NS B2N 5E3, Canada; (L.C.); (L.A.)
| |
Collapse
|
2
|
Román J, Lagos A, Mahn A, Quintero J. The Effect of Broccoli Glucosinolates Hydrolysis Products on Botrytis cinerea: A Potential New Antifungal Agent. Int J Mol Sci 2024; 25:7945. [PMID: 39063186 PMCID: PMC11277183 DOI: 10.3390/ijms25147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigates the interactions between eight glucosinolate hydrolysis products (GHPs) sourced from broccoli by-products and the detoxifying enzymes of Botrytis cinerea, namely eburicol 14-alpha-demethylase (CYP51) and glutathione-S-transferase (GST), through in silico analysis. Additionally, in vitro assays were conducted to explore the impact of these compounds on fungal growth. Our findings reveal that GHPs exhibit greater efficacy in inhibiting conidia germination compared to mycelium growth. Furthermore, the results demonstrate the antifungal activity of glucosinolate hydrolysis products derived from various parts of the broccoli plant, including inflorescences, leaves, and stems, against B. cinerea. Importantly, the results suggest that these hydrolysis products interact with the detoxifying enzymes of the fungus, potentially contributing to their antifungal properties. Extracts rich in GHPs, particularly iberin and indole-GHPs, derived from broccoli by-products emerge as promising candidates for biofungicidal applications, offering a sustainable and novel approach to plant protection by harnessing bioactive compounds from agricultural residues.
Collapse
Affiliation(s)
- Juan Román
- Correspondence: (J.R.); (J.Q.); Tel.: +56-412203822 (J.R.); +56-227181859 (J.Q.)
| | | | | | - Julián Quintero
- Department of Chemical Engineering, University of Santiago, Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170019, Chile; (A.L.); (A.M.)
| |
Collapse
|
3
|
Kim JS, Han S, Kim H, Won SY, Park HW, Choi H, Choi M, Lee MY, Ha IJ, Lee SG. Anticancer Effects of High Glucosinolate Synthesis Lines of Brassica rapa on Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11122463. [PMID: 36552671 PMCID: PMC9774263 DOI: 10.3390/antiox11122463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Chemoprevention is a method of health control in modern industrialized societies. Traditional breeding (hybridization) has been widely used to produce new (sub)species with beneficial phenotypes. Previously, we produced a number of doubled haploid (DH) lines of Brassica rapa with a high glucosinolate (GSL) content. In this study, we evaluated the anticancer activities of extracts from three selected high-GSL (HGSL)-containing DH lines (DHLs) of Brassica rapa in human colorectal cancer (CRC) cells. The three HGSL DHL extracts showed anti-proliferative activities in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay and pro-apoptotic activities in the cell cycle or annexin V analysis with the induction of pro-apoptotic protein expression in CRC cells. Mechanistically, HGSL DHL extracts inhibited the NF-κB and ERK pathways, leading to a reduction in the nuclear localization of NF-κB p65. In addition, reactive oxygen species were induced by HGSL DHL extract treatment in CRC cells. In conclusion, our data suggest that the newly developed HGSL DHLs possess enhanced anticancer activities and are potentially helpful as a daily vegetable supplement with chemopreventive activities.
Collapse
Affiliation(s)
- Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
- Correspondence: (J.S.K.); (S.-G.L.); Tel.: +82-63-238-4559 (J.S.K.); +82-2-961-2355 (S.-G.L.)
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So Youn Won
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyun Woo Park
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyunjin Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Young Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (J.S.K.); (S.-G.L.); Tel.: +82-63-238-4559 (J.S.K.); +82-2-961-2355 (S.-G.L.)
| |
Collapse
|
4
|
Yang D, Zhao Y, Liu Y, Han F, Li Z. A high-efficiency PEG-Ca 2+-mediated transient transformation system for broccoli protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1081321. [PMID: 36578340 PMCID: PMC9790990 DOI: 10.3389/fpls.2022.1081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Transient transformation of plant protoplasts is an important method for studying gene function, subcellular localization and plant morphological development. In this study, an efficient transient transformation system was established by optimizing the plasmid concentration, PEG4000 mass concentration and genotype selection, key factors that affect transformation efficiency. Meanwhile, an efficient and universal broccoli protoplast isolation system was established. Using 0.5% (w/v) cellulase R-10 and 0.1% (w/v) pectolyase Y-23 to hydrolyze broccoli cotyledons of three different genotypes for 3 h, the yield was more than 5×106/mL/g, and the viability was more than 95%, sufficient to meet the high standards for protoplasts to be used in various experiments. The average transformation efficiency of the two plasmid vectors PHG-eGFP and CP507-YFP in broccoli B1 protoplasts were 61.4% and 41.7%, respectively. Using this system, we successfully performed subcellular localization of the products of three target genes (the clubroot resistance gene CRa and two key genes regulated by glucosinolates, Bol029100 and Bol031350).The results showed that the products of all three genes were localized in the nucleus. The high-efficiency transient transformation system for broccoli protoplasts constructed in this study makes it possible to reliably acquire high-viability protoplasts in high yield. This research provides important technical support for international frontier research fields such as single-cell sequencing, spatial transcriptomics, plant somatic hybridization, gene function analysis and subcellular localization.
Collapse
|
5
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
6
|
Abstract
Broccoli (Brassica oleracea L. var. italica) is one of the most important vegetable crops cultivated worldwide. The market demand for broccoli is still increasing due to its richness in vitamins, anthocyanins, mineral substances, fiber, secondary metabolites and other nutrients. The famous secondary metabolites, glucosinolates, sulforaphane and selenium have protective effects against cancer. Significant progress has been made in fine-mapping and cloning genes that are responsible for important traits; this progress provides a foundation for marker-assisted selection (MAS) in broccoli breeding. Genetic engineering by the well-developed Agrobacterium tumefaciens-mediated transformation in broccoli has contributed to the improvement of quality; postharvest life; glucosinolate and sulforaphane content; and resistance to insects, pathogens and abiotic stresses. Here, we review recent progress in the genetics and molecular breeding of broccoli. Future perspectives for improving broccoli are also briefly discussed.
Collapse
|
7
|
Zhao Y, Chen Z, Chen J, Chen B, Tang W, Chen X, Lai Z, Guo R. Comparative transcriptomic analyses of glucosinolate metabolic genes during the formation of Chinese kale seeds. BMC PLANT BIOLOGY 2021; 21:394. [PMID: 34418959 PMCID: PMC8380351 DOI: 10.1186/s12870-021-03168-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/10/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese kale as material, seeds and silique walls were divided into different stages based on the development of the embryo in seeds and then subjected to GS analysis and transcriptome sequencing. RESULTS The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls. The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification, was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed. Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo stage indicating its potential role in balancing seed GS content. CONCLUSIONS Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.
Collapse
Affiliation(s)
- Yijiao Zhao
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zeyuan Chen
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jiaxuan Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Bingxing Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weiling Tang
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaodong Chen
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Rongfang Guo
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
8
|
Soundararajan P, Park SG, Won SY, Moon MS, Park HW, Ku KM, Kim JS. Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa. Int J Mol Sci 2021; 22:ijms22147301. [PMID: 34298919 PMCID: PMC8305852 DOI: 10.3390/ijms22147301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to investigate doubled haploid (DH) lines produced between high GSL (HGSL) Brassica rapa ssp. trilocularis (yellow sarson) and low GSL (LGSL) B. rapa ssp. chinensis (pak choi) parents. In total, 161 DH lines were generated. GSL content of HGSL DH lines ranged from 44.12 to 57.04 μmol·g−1·dry weight (dw), which is within the level of high GSL B. rapa ssp. trilocularis (47.46 to 59.56 μmol g−1 dw). We resequenced five of the HGSL DH lines and three of the LGSL DH lines. Recombination blocks were formed between the parental and DH lines with 108,328 single-nucleotide polymorphisms in all chromosomes. In the measured GSL, gluconapin occurred as the major substrate in HGSL DH lines. Among the HGSL DH lines, BrYSP_DH005 had glucoraphanin levels approximately 12-fold higher than those of the HGSL mother plant. The hydrolysis capacity of GSL was analyzed in HGSL DH lines with a Korean pak choi cultivar as a control. Bioactive compounds, such as 3-butenyl isothiocyanate, 4-pentenyl isothiocyanate, 2-phenethyl isothiocyanate, and sulforaphane, were present in the HGSL DH lines at 3-fold to 6.3-fold higher levels compared to the commercial cultivar. The selected HGSL DH lines, resequencing data, and SNP identification were utilized for genome-assisted selection to develop elite GSL-enriched cultivars and the industrial production of potential anti-cancerous metabolites such as gluconapin and glucoraphanin.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Sin-Gi Park
- Bioinformatics Team of Theragen Etex Institute, Suwon 16229, Korea;
| | - So Youn Won
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Mi-Sun Moon
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Hyun Woo Park
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Kang-Mo Ku
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea;
- Department of Horticulture, Chonnam National University, Gwangju 61186, Korea
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
- Correspondence:
| |
Collapse
|
9
|
Shakour ZT, Shehab NG, Gomaa AS, Wessjohann LA, Farag MA. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol Adv 2021; 54:107784. [PMID: 34102260 DOI: 10.1016/j.biotechadv.2021.107784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Glucosinolate-producing plants have long been recognized for both their distinctive benefits to human nutrition and their resistance traits against pathogens and herbivores. Despite the accumulation of glucosinolates (GLS) in plants is associated with their resistance to various biotic and abiotic stresses, the defensive and biological activities of GLS are commonly conveyed by their metabolic products. In view of this, metabolism is considered the driving factor upon the interactions of GLS-producing plants with other organisms, also influenced by plant and plant attacking or digesting organism characteristics. Several microbial pathogens and insects have evolved the capacity to detoxify GLS-hydrolysis products or inhibit their formation via different means, highlighting the relevance of their metabolic abilities for the plants' defense system activation and target organism detoxification. Strikingly, some bacteria, fungi and insects can likewise produce their own myrosinase (MYR)-like enzymes in one of the most important adaptation strategies against the GLS-MYR plant defense system. Knowledge of GLS metabolic pathways in herbivores and pathogens can impact plant protection efforts and may be harnessed upon for genetically modified plants that are more resistant to predators. In humans, the interest in the implementation of GLS in diets for the prevention of chronic diseases has grown substantially. However, the efficiency of such approaches is dependent on GLS bioavailability and metabolism, which largely involves the human gut microbiome. Among GLS-hydrolytic products, isothiocyanates (ITC) have shown exceptional properties as chemical plant defense agents against herbivores and pathogens, along with their health-promoting benefits in humans, at least if consumed in reasonable amounts. Deciphering GLS metabolic pathways provides critical information for catalyzing all types of GLS towards the generation of ITCs as the biologically most active metabolites. This review provides an overview on contrasting metabolic pathways in plants, bacteria, fungi, insects and humans towards GLS activation or detoxification. Further, suggestions for the preparation of GLS containing plants with improved health benefits are presented.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Naglaa G Shehab
- Department of Pharmaceutical Chemistry and Natural Products, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Ahmed S Gomaa
- Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
10
|
Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Raphanus sativus L.) Roots. Int J Mol Sci 2020; 21:ijms21165721. [PMID: 32785002 PMCID: PMC7461053 DOI: 10.3390/ijms21165721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Glucoraphasatin (GRH) is a specific aliphatic glucosinolate (GSL) that is only abundant in radish (Raphanus sativus L.). The gene expression regulating GRH biosynthesis in radish is still poorly understood. We employed a total of 59 radish accessions to analyze GSL profiles and showed that GRH was specific and predominant among the aliphatic GSLs in radish roots. We selected five accessions roots with high, moderate and low GSL biosynthesis, respectively, to conduct a comparative transcriptome analysis and the qRT-PCR of the biosynthesis genes for aliphatic GSLs. In this study, among all the accessions tested, roots with the accession RA157-74 had a high GRH content and showed a significant expression of the aliphatic GSL biosynthesis genes. We defined the genes involved in the GRH biosynthesis process and found that they were regulated by a transcription factor (RSG00789) at the MYB29 locus in radish roots. We found 13 aliphatic GSL biosynthesis genes regulated by the RSG00789 gene in the GRH biosynthesis pathway.
Collapse
|
11
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
Le TN, Sakulsataporn N, Chiu CH, Hsieh PC. Polyphenolic Profile and Varied Bioactivities of Processed Taiwanese Grown Broccoli: A Comparative Study of Edible and Non-Edible Parts. Pharmaceuticals (Basel) 2020; 13:ph13050082. [PMID: 32354112 PMCID: PMC7280965 DOI: 10.3390/ph13050082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Broccoli contains a substantial amount of bioactive compounds such as glucosinolates, phenolics, and essential nutrients, which are positively linked to health-promoting effects. This work aimed to evaluate whether both edible and non-edible parts of broccoli could be effective by examining in vitro antioxidant, cytotoxic, apoptotic, and antibacterial properties of its floret, leaf, and seed extracts (FE, LE, and SE, correspondingly). High-performance liquid chromatography (HPLC) and various assays exhibited strong antioxidant activities of all samples. LE obtained the highest capacity, correlated to its polyphenolic contents. SE exerted significant cytotoxicity against A549, Caco-2, and HepG2 cancer cell lines at low inhibitory concentration (IC)50 values (0.134, 0.209, and 0.238 mg/mL, respectively), as tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry confirmed apoptosis induction of extracts in Caco-2 cells by revealing an increased subG1 population and a decreased mitochondrial membrane potential. The considerable antibacterial efficacy was observed in either LE and SE against Bacillus subtilis and Salmonella typhimurium (0.39-0.78 mg/mL) using well-agar diffusion and minimum inhibitory concentration (MIC) techniques, along with the weak activity against Staphylococcus aureus and Escherichia coli (1.56-3.13 mg/mL). The findings suggest that broccoli and its byproducts might serve as a promising source for further development of food or pharmaceutical products.
Collapse
|
13
|
Small-Scale Bioreactor for Sterile Hydroponics and Hairy Roots: Metabolic Diversity and Salicylic Acid Exudation by Hairy Roots of Hyoscyamus niger. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The volume and complexity of commercial bioreactors for sterile hydroponics and hairy roots are too large for comparative analysis of many cultures. Here a small-scale bioreactor fabricated from standard glass materials and suitable for both airlift and bubble aeration mode is described. The performance of the bioreactor was tested by growing oilseed rape (Brassica napus L.) and rose plants (Rosa canina L.) in sterile hydroponics and by cultivating hairy roots of henbane (Hyoscyamus niger L.) and sesame (Hyoscyamus niger L.). Plants grown in hydroponics for up to six weeks did not show chloroses or necroses. Hairy roots grew faster or comparably fast in bioreactors as compared to shaking flasks. Root exudates of roses and exudates of hairy roots of henbane were subjected to targeted and nontargeted analysis by HPLC coupled with optical and mass spectrometric detectors. The diversity and concentration of hairy root exudates were higher in bioreactors than in shaking flasks. The composition of hairy root exudates of three accessions of H. niger did not match the genetic relatedness among the accessions. Hairy roots of Hyoscyamus niger exuded salicylic acid in amounts varying among plant accessions and between bioreactors and shaking flask cultures.
Collapse
|
14
|
Ouassou M, Mukhaimar M, El Amrani A, Kroymann J, Chauveau O. [Biosynthesis of indole glucosinolates and ecological role of secondary modification pathways]. C R Biol 2019; 342:58-80. [PMID: 31088733 DOI: 10.1016/j.crvi.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/26/2022]
Abstract
Indole glucosinolates are plant secondary metabolites derived from the amino acid tryptophan. They are part of a large group of sulfur-containing molecules almost exclusively found among Brassicales, which include the mustard family (Brassicaceae) with many edible plant species of major nutritional importance. These compounds mediate numerous interactions between these plants and their natural enemies and are therefore of major biological and economical interest. This literature review aims at taking stock of recent advances of our knowledge about the biosynthetic pathways of indole glucosinolates, but also about the defense strategies and ecological processes involving these metabolites.
Collapse
Affiliation(s)
- Malika Ouassou
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France; Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Maisara Mukhaimar
- National Agricultural Research Center (NARC)-Jenin/Gaza, Ministry of Agriculture, Jenin, Palestine
| | - Amal El Amrani
- Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Juergen Kroymann
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France
| | - Olivier Chauveau
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
15
|
Liu M, Zhang L, Ser SL, Cumming JR, Ku KM. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018; 23:E900. [PMID: 29652847 PMCID: PMC6017511 DOI: 10.3390/molecules23040900] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
The phytonutrient concentrations of broccoli (Brassica oleracea var. italica) florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.
Collapse
Affiliation(s)
- Mengpei Liu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Lihua Zhang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Suk Lan Ser
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| | - Jonathan R Cumming
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|