1
|
Nakagame S, Minagawa H, Motegi N. Purification and Characterization of Class III Lipase from a White-Rot Fungus Pleurotus ostreatus. Appl Biochem Biotechnol 2023; 195:1085-1095. [PMID: 36322285 DOI: 10.1007/s12010-022-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 01/20/2023]
Abstract
Pleurotus ostreatus is an edible white-rot fungus with lignocellulosic biomass degrading enzymes that have been studied extensively. However, until now, lipolytic enzymes from P. ostreatus, which degrade extractives in lignocellulosic biomass, have not been purified and characterized. In this study, P. ostreatus was inoculated into the rapeseed oil containing culture to induce lipase. The lipase in the culture broth was successfully purified to homogeneity by chromatographic methods. The molecular weight of the purified lipase was 27 kDa, and its optimal pH and temperature were 5.0 and 30 °C, respectively. The purified lipase showed high activity with the substrates 4-methylumbelliferyl (4-MU) decanoate (C10:0) and 4-MU oleate (C18:1), and no activity with 4-MU acetate (C2:0) and 4-MU butyrate (C4:0). The amino acid sequences and substrate specificities of the purified lipase suggested that it belonged to class III. Kinetic parameters measurements (Km and Vmax) showed that 4-MU palmitate had a high affinity for the purified lipase, and it was the substrate most efficiently hydrolyzed by the purified lipase.
Collapse
Affiliation(s)
- Seiji Nakagame
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan.
| | - Hu Minagawa
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
| | - Nagi Motegi
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
| |
Collapse
|
2
|
Dab A, Hasnaoui I, Mechri S, Allala F, Bouacem K, Noiriel A, Bouanane-Darenfed A, Saalaoui E, Asehraou A, Wang F, Abousalham A, Jaouadi B. Biochemical characterization of an alkaline and detergent-stable Lipase from Fusarium annulatum Bugnicourt strain CBS associated with olive tree dieback. PLoS One 2023; 18:e0286091. [PMID: 37205651 DOI: 10.1371/journal.pone.0286091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023] Open
Abstract
This work describes a novel extracellular lipolytic carboxylester hydrolase named FAL, with lipase and phospholipase A1 (PLA1) activity, from a newly isolated filamentous fungus Ascomycota CBS strain, identified as Fusarium annulatum Bunigcourt. FAL was purified to about 62-fold using ammonium sulphate precipitation, Superdex® 200 Increase gel filtration and Q-Sepharose Fast Flow columns, with a total yield of 21%. The specific activity of FAL was found to be 3500 U/mg at pH 9 and 40°C and 5000 U/mg at pH 11 and 45°C, on emulsions of triocanoin and egg yolk phosphatidylcholine, respectively. SDS-PAGE and zymography analysis estimated the molecular weight of FAL to be 33 kDa. FAL was shown to be a PLA1 with a regioselectivity to the sn-1 position of surface-coated phospholipids esterified with α-eleostearic acid. FAL is a serine enzyme since its activity on triglycerides and phospholipids was completely inhibited by the lipase inhibitor Orlistat (40 μM). Interestingly, compared to Fusarium graminearum lipase (GZEL) and the Thermomyces lanuginosus lipase (Lipolase®), this novel fungal (phospho)lipase showed extreme tolerance to the presence of non-polar organic solvents, non-ionic and anionic surfactants, and oxidants, in addition to significant compatibility and stability with some available laundry detergents. The analysis of washing performance showed that it has the capability to efficiently eliminate oil-stains. Overall, FAL could be an ideal choice for application in detergents.
Collapse
Affiliation(s)
- Ahlem Dab
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| | - Ismail Hasnaoui
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
- Faculté des Sciences d'Oujda (FSO), Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Université Mohammed Premier (UMP), Oujda, Morocco
| | - Sondes Mechri
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| | - Fawzi Allala
- Faculté des Sciences Biologiques (FSB), Laboratoire de Biologie Cellulaire et Moléculaire (LCMB), Equipe de Microbiologie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Bab Ezzouar, Alger, Algeria
| | - Khelifa Bouacem
- Faculté des Sciences Biologiques (FSB), Laboratoire de Biologie Cellulaire et Moléculaire (LCMB), Equipe de Microbiologie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Bab Ezzouar, Alger, Algeria
| | - Alexandre Noiriel
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
| | - Amel Bouanane-Darenfed
- Faculté des Sciences Biologiques (FSB), Laboratoire de Biologie Cellulaire et Moléculaire (LCMB), Equipe de Microbiologie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Bab Ezzouar, Alger, Algeria
| | - Ennouamane Saalaoui
- Faculté des Sciences d'Oujda (FSO), Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Université Mohammed Premier (UMP), Oujda, Morocco
| | - Abdeslam Asehraou
- Faculté des Sciences d'Oujda (FSO), Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Université Mohammed Premier (UMP), Oujda, Morocco
| | - Fanghua Wang
- School of Food Science and Engineering (SFSE), South China University of Technology (SCUT), Guangzhou, China
| | - Abdelkarim Abousalham
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Lyon, Université Lyon 1, UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
| | - Bassem Jaouadi
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Sowa MA, Kreuter N, Sella N, Albuquerque W, Manhard J, Siegl A, Ghezellou P, Li B, Spengler B, Weichhard E, Rühl M, Zorn H, Gand M. Replacement of Pregastric Lipases in Cheese Production: Identification and Heterologous Expression of a Lipase from Pleurotus citrinopileatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2998-3008. [PMID: 35213163 DOI: 10.1021/acs.jafc.1c07160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditionally produced piquant cheeses such as Feta or Provolone rely on pregastric lipolytic enzymes of animal origin to intensify flavor formation during ripening. Herein, we report a novel fungal lipase, derived from the phylum Basidiomycota to replace animal-derived products. A screening of 31 strains for the desired hydrolytic activities was performed, which revealed a promising fungal species. The secretome of an edible golden oyster mushroom, Pleurotus citrinopileatus, provided suitable enzymatic activity, and the coding sequence of the corresponding enzyme was identified by combining transcriptome and liquid chromatography high-resolution electrospray tandem mass spectroscopy (LC-HR-ESI-MS/MS) data. Recombinant expression in Escherichia coli BL21 (DE3) using chaperones GroES-GroEL and DnaK-DnaJ-GrpE was established. The recombinant lipolytic enzyme was purified and biochemically characterized in terms of thermal and pH stability, optimal reaction conditions, and kinetic data toward p-nitrophenyl esters. An application in the microscale production of Feta-type brine cheese revealed promising sensory properties, which were confirmed by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analyses in comparison with the reference enzyme opti-zym z10uc from goat origin. Supplementation with 2.3 U of the heterologously expressed fungal lipase produced the most comparable free fatty acid profile after 30 days of ripening. The flavor and texture formed during the application of the new lipase from P. citrinopileatus proved to be competitive to the use of pregastric lipases and could therefore replace the products of animal origin.
Collapse
Affiliation(s)
- Miriam A Sowa
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Nadja Kreuter
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Nadine Sella
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Julia Manhard
- optiferm GmbH, Oberzollhauser Steige 4, Oy-Mittelberg 87466, Germany
| | - Alexander Siegl
- optiferm GmbH, Oberzollhauser Steige 4, Oy-Mittelberg 87466, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Binglin Li
- College of Food Science and Engineering, Northwest University, Tai Bai Bei Lu 229, Xi'an, Shaanxi 710000, China
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Edgar Weichhard
- optiferm GmbH, Oberzollhauser Steige 4, Oy-Mittelberg 87466, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Giessen 35392, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Giessen 35392, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| |
Collapse
|
4
|
Calvo-Lerma J, Asensio-Grau A, García-Hernández J, Heredia A, Andrés A. Exploring the Impact of Solid-State Fermentation on Macronutrient Profile and Digestibility in Chia ( Salvia hispanica) and Sesame ( Sesamum Indicum) Seeds. Foods 2022; 11:410. [PMID: 35159560 PMCID: PMC8834584 DOI: 10.3390/foods11030410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Fermentation of plant-based substrates with edible fungi enhances the nutrient profile and digestibility, but it has been scarcely applied to edible seeds, which are rich in healthy lipids. In this study, chia and sesame seeds were solid-state fermented with Pleurotus ostreatus, followed by drying and milling. Fermentation led to increased content of lipid and protein in both seeds' products, and a change in fatty acid profile in favor of increased polyunsaturated fatty acids. Then, the samples were subjected to in vitro digestion. Lipolysis, determined by nuclear magnetic resonance, was higher in sesame than in chia products, and the fermented counterparts had increased values compared to the controls. In terms of physical properties, fermentation showed reduced particle size and increased matrix degradation and decreased viscosity of the digestion medium, which were related to increased lipolysis. In conclusion, applying solid-state fermentation on chia and sesame seeds could be a recommendable approach.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish Scientific Research Council, 28006 Madrid, Spain
| | - Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 València, Spain;
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| |
Collapse
|
5
|
Production of the Antihypertensive Peptide Tyr-Pro from Milk Using the White-Rot Fungus Peniophora sp. in Submerged Fermentation and a Jar Fermentor. DAIRY 2021. [DOI: 10.3390/dairy2030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In order to evaluate the blood pressure-lowering peptide Tyr-Pro (YP) derived from casein, we wanted to develop an efficient fermentation method. Therefore, we chose to use a jar fermentor for this purpose. Strains with an excellent antihypertensive peptide-releasing ability from casein were selected from basidiomycete fungi that grow well in milk under shaking conditions accompanied by physical stimulation. Among them, the white-rot fungus Peniophora sp., which is suited for growth only in cow’s milk or low-fat milk under vigorous shaking conditions, was found to release peptides and amino acids from milk. When comparing the growth in cow’s milk and low-fat milk, there was no particular difference in the growth of mycelia between the two, but this fungus tended to preferentially consume lactose under low-fat conditions. The fermented milk exhibited good production of the target peptide YP. The expression of many genes encoding proteolytic enzymes, such as aminopeptidases and carboxypeptidases, was observed during the milk fermentation. Furthermore, this fungus showed good growth in a jar fermentor culture using only cow’s milk or low-fat milk, which enabled the efficient production of YP and ACE-inhibitory activity. At this time, it was more effective to use cow’s milk than low-fat milk. These results suggest that Peniophora sp. could be potentially useful in the production of the functional YP peptide from milk.
Collapse
|
6
|
Optimization of Spectrophotometric and Fluorometric Assays Using Alternative Substrates for the High-Throughput Screening of Lipase Activity. J CHEM-NY 2021. [DOI: 10.1155/2021/3688124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The effects of reaction conditions on the spectrophotometric and fluorometric assays using alternative substrates (p-nitrophenyl palmitate and 4-methylumbelliferyl oleate) were investigated to optimize them for the high-throughput screening of lipase activity from agricultural products. Four model lipases from Chromobacterium viscosum, Pseudomonas fluorescens, Sus scrofa pancreas, and wheat germ (Triticum aestivum) were allowed to hydrolyze the alternative substrates at different substrate concentrations (1–5 mM), operating pH (5.0–8.0), and operating temperatures (25–55°C). The results show that both the spectrophotometric and fluorometric assays worked well at the standard reaction conditions (pH 7.0 and 30°C) for finding a typical lipase, although pH conditions should be considered to detect the catalytic activity of lipases, which are applicable to more acidic or alkaline pH circumstances. To validate the optimized conditions, the high-throughput screening of lipase activity was conducted using 17 domestic agricultural products. A pileus of Pleurotus eryngii showed the highest activity in both the spectrophotometric (633.42 μU/mg) and fluorometric (101.77 μU/mg) assays. The results of this research provide practical information for the high-throughput screening of lipases using alternative substrates on microplates.
Collapse
|
7
|
Iwata M, Gutiérrez A, Marques G, Sabat G, Kersten PJ, Cullen D, Bhatnagar JM, Yadav J, Lipzen A, Yoshinaga Y, Sharma A, Adam C, Daum C, Ng V, Grigoriev IV, Hori C. Omics analyses and biochemical study of Phlebiopsis gigantea elucidate its degradation strategy of wood extractives. Sci Rep 2021; 11:12528. [PMID: 34131180 PMCID: PMC8206109 DOI: 10.1038/s41598-021-91756-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wood extractives, solvent-soluble fractions of woody biomass, are considered to be a factor impeding or excluding fungal colonization on the freshly harvested conifers. Among wood decay fungi, the basidiomycete Phlebiopsis gigantea has evolved a unique enzyme system to efficiently transform or degrade conifer extractives but little is known about the mechanism(s). In this study, to clarify the mechanism(s) of softwood degradation, we examined the transcriptome, proteome, and metabolome of P. gigantea when grown on defined media containing microcrystalline cellulose and pine sapwood extractives. Beyond the conventional enzymes often associated with cellulose, hemicellulose and lignin degradation, an array of enzymes implicated in the metabolism of softwood lipophilic extractives such as fatty and resin acids, steroids and glycerides was significantly up-regulated. Among these, a highly expressed and inducible lipase is likely responsible for lipophilic extractive degradation, based on its extracellular location and our characterization of the recombinant enzyme. Our results provide insight into physiological roles of extractives in the interaction between wood and fungi.
Collapse
Affiliation(s)
- Mana Iwata
- grid.39158.360000 0001 2173 7691Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 080-682 Japan
| | - Ana Gutiérrez
- grid.466818.50000 0001 2158 9975CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Reina Mercedes 10, 41012 Seville, Spain
| | - Gisela Marques
- grid.466818.50000 0001 2158 9975CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Reina Mercedes 10, 41012 Seville, Spain
| | - Grzegorz Sabat
- grid.28803.310000 0001 0701 8607University of Wisconsin Genetics Biotechnology Center, Madison, WI 53706 USA
| | - Philip J. Kersten
- grid.417548.b0000 0004 0478 6311Forest Products Laboratory, USDA, Madison, WI 53726 USA
| | - Daniel Cullen
- grid.417548.b0000 0004 0478 6311Forest Products Laboratory, USDA, Madison, WI 53726 USA
| | - Jennifer M. Bhatnagar
- grid.189504.10000 0004 1936 7558Department of Biology, Boston University, Boston, MA 02215 USA
| | - Jagjit Yadav
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH 45267 USA
| | - Anna Lipzen
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Yuko Yoshinaga
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Aditi Sharma
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Catherine Adam
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Christopher Daum
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Vivian Ng
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Igor V. Grigoriev
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Chiaki Hori
- grid.39158.360000 0001 2173 7691Division of Applied Chemistry, Department of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 Japan
| |
Collapse
|
8
|
Abu ML, Mohammad R, Oslan SN, Salleh AB. The use of response surface methodology for enhanced production of a thermostable bacterial lipase in a novel yeast system. Prep Biochem Biotechnol 2020; 51:350-360. [PMID: 32940138 DOI: 10.1080/10826068.2020.1818256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A thermostable bacterial lipase from Geobacillus zalihae was expressed in a novel yeast Pichia sp. strain SO. The preliminary expression was too low and discourages industrial production. This study sought to investigate the optimum conditions for T1 lipase production in Pichia sp. strain SO. Seven medium conditions were investigated and optimized using Response Surface Methodology (RSM). Five responding conditions namely; temperature, inoculum size, incubation time, culture volume and agitation speed observed through Plackett-Burman Design (PBD) method had a significant effect on T1 lipase production. The medium conditions were optimized using Box-Behnken Design (BBD). Investigations reveal that the optimum conditions for T1 lipase production and Biomass concentration (OD600) were; Temperature 31.76 °C, incubation time 39.33 h, culture volume 132.19 mL, inoculum size 3.64%, and agitation speed of 288.2 rpm with a 95% PI low as; 12.41 U/mL and 95% PI high of 13.65 U/mL with an OD600 of; 95% PI low as; 19.62 and 95% PI high as; 22.62 as generated by the software was also validated. These predicted parameters were investigated experimentally and the experimental result for lipase activity observed was 13.72 U/mL with an OD600 of 24.5. At these optimum conditions, there was a 3-fold increase on T1 lipase activity. This study is the first to develop a statistical model for T1 lipase production and biomass concentration in Pichia sp. Strain SO. The optimized production of T1 lipase presents a choice for its industrial application.
Collapse
Affiliation(s)
- Mary Ladidi Abu
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Natural Sciences, Ibrahim Badamasi Babangida University Lapai, Niger State, Nigeria
| | - Rosfarizan Mohammad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Selangor, Malaysia.,Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
9
|
Abd Ellatif S, El-Sheekh MM, Senousy HH. Role of microalgal ligninolytic enzymes in industrial dye decolorization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:41-52. [PMID: 32649225 DOI: 10.1080/15226514.2020.1789842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the decolorization efficiency of seven microalgae isolates; Nostoc muscorum, Nostoc humifusum, Spirulina platensis, Anabaena oryzae, Wollea saccata, Oscillatoria sp. and Chlorella vulgaris was investigated for dye decolorization. The highest decolorization percentages of Brazilwood, Orange G, and Naphthol Green B dyes (99.5%, 99.5%, and 98.5%, respectively) were achieved by Chlorella vulgaris. However, the maximum efficiency for dye decolorization percentages of CV and malachite green dyes were exhibited by A. oryzae (97.4%) and W. saccata (93.3%). Ligninolytic enzymes activity assay was carried out for laccase and lignin peroxidase enzymes, which revealed a high efficiency of the C. vulgaris, A. oryzae and W. saccata to lignin containing compound degradation. The highest laccase production recorded by C. vulgaris with Brazilwood, Orange G, and Naphthol Green B dyes (665.0, 678.6, and 659.5 U/ml, respectively). Similarly, C. vulgaris gave a high lignin peroxidase enzyme production with the above three dyes respectively (306.00, 298.34, and 311.45 U/ml). In addition, A. oryzae and W. saccata showed the highest production of the laccase enzyme (634.6 and 577.45 U/ml, respectively) with CV and malachite green dyes. The degradation products have been characterized after decolorization and verified using FTIR analysis. The high decolorization percentages achieved by C. vulgaris, A. oryzae and W. saccata make them potential candidates for bioremediation and pre-processing to remove dyes from textile effluents.
Collapse
Affiliation(s)
- Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hoda H Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Changes in biochemical composition of cassava and beet residues during solid state bioprocess with Pleurotus ostreatus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Production of fungal enzymes in Macaúba coconut and enzymatic degradation of textile dye. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Zhu W, Hu J, Li Y, Yang B, Guan Y, Xu C, Chen F, Chi J, Bao Y. Comparative Proteomic Analysis of Pleurotus ostreatus Reveals Great Metabolic Differences in the Cap and Stipe Development and the Potential Role of Ca 2+ in the Primordium Differentiation. Int J Mol Sci 2019; 20:ijms20246317. [PMID: 31847351 PMCID: PMC6940972 DOI: 10.3390/ijms20246317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus around the world. At present, studies on the developmental process of the fruiting body are limited. In our study, we compared the differentially expressed proteins (DEPs) in the stipe and cap of the fruiting body by high-throughput proteomics. GO and pathway analysis revealed the great differences in the metabolic levels, including sucrose and starch metabolism, and sphingolipid signaling and metabolism, and the differences of 16 important DEPs were validated further by qPCR analysis in expression level. In order to control the cap and stipe development, several chemical inducers were applied to the primordium of the fruiting body according to the pathway enrichment results. We found that CaCl2 can affect the primordium differentiation through inhibiting the stipe development. EGTA (ethyleneglycol bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid) treatment confirmed the inhibitory role of Ca2+ in the stipe development. Our study not only shows great metabolic differences during the cap and stipe development but also reveals the underlying mechanism directing the primordium differentiation in the early development of the fruiting body for the first time. Most importantly, we provide a reliable application strategy for the cultivation and improvement of the Pleurotus ostreatus, which can be an example and reference for a more edible fungus.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yang Li
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Bing Yang
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yanli Guan
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Chong Xu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Fei Chen
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jingliang Chi
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- School of Food and Environmental Science and Technology, Dalian University of Technology, Panjin 12421, China
- Correspondence: ; Tel.: +86-411-8470-6344; Fax: +86-411-8470-6365
| |
Collapse
|