1
|
Değirmençay Ş, Özdemir S, Küçükler S, Bayat R, Kadak M. Integrative Analysis of Dog Serum-Derived CircRNA Expression and Disease Severity, Inflammatory and Cardiac Damage Biomarkers Related to Canine Parvoviral Enteritis. Vet Med Sci 2025; 11:e70344. [PMID: 40285567 PMCID: PMC12032553 DOI: 10.1002/vms3.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The tissue- and developmental stage-specific expression of circular RNAs (circRNAs) makes them promising disease biomarkers. CircRNAs play a crucial role in regulating inflammatory responses; however, their function in canine parvovirus (CPV) infection remains largely unexplored. HYPOTHESIS We hypothesized that circRNAs serve as biomarkers for disease severity, inflammation and organ damage in dogs with CPV. MATERIALS AND METHODS The study included six dogs with mild CPV, six with severe CPV and six healthy controls. Haematological and biochemical parameters were analysed from blood samples. CircRNA profiling in serum samples was conducted through high-throughput sequencing, followed by bioinformatic analysis to identify potential circRNA biomarkers. Associations between circRNAs and haematological/biochemical markers were examined. RESULTS The severe group exhibited significantly reduced leukocyte counts and elevated C-reactive protein (CRP) levels (p < 0.05). The mild group demonstrated higher levels of tumour necrosis factor-alpha (TNF-α), cardiac troponin I (cTnI) and creatine kinase myocardial band (CK-MB) (p < 0.05). Thus, the severe group experienced heightened inflammation, whereas the mild group demonstrated increased cardiac damage. Dogs with CPV expressed certain circRNAs differently (upregulated and downregulated), as revealed by gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Eighteen cicRNAs were identified as potential biomarkers. Bioinformatic and correlation analysis revealed that cfa_circ_6789, cfa_circ_6793, cfa_circ_6785, cfa_circ_6798, cfa_circ_6791, cfa_circ_6794 and cfa_circ_3119 could serve as biomarkers of inflammation and disease severity. Conversely, cfa_circ_3114, cfa_circ_3118, cfa_circ_3117, cfa_circ_3113, cfa_circ_3119, cfa_circ_1571, cfa_circ_6786 and cfa_circ_6794 were linked to cardiac damage. CONCLUSIONS AND CLINICAL RELEVANCE The identified circRNAs were actively involved in different stages of CPV infection and exhibited strong associations with disease onset and progression. They may play a key role in modulating infection pathogenesis while serving as potential biomarkers for inflammation and cardiac damage. This study is the first to investigate the role of circRNAs in CPV infection, providing novel insights into their diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary MedicineAtatürk UniversityErzurumTurkey
| | - Selçuk Özdemir
- Department of Genetic, Faculty of Veterinary MedicineAtatürk UniversityErzurumTurkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary MedicineAtatürk UniversityErzurumTurkey
| | - Reyhane Bayat
- Department of Internal Medicine, Faculty of Veterinary MedicineAtatürk UniversityErzurumTurkey
| | - Muhammed Kadak
- Department of Internal Medicine, Faculty of Veterinary MedicineAtatürk UniversityErzurumTurkey
| |
Collapse
|
2
|
Ma Y, Guo X, He Q, Liu L, Li Z, Zhao X, Gu W, Zhong Q, Li N, Yao G, Ma X. Integrated analysis of microRNA and messenger RNA expression profiles reveals functional microRNA in infectious bovine rhinotracheitis virus-induced mitochondrial damage in Madin-Darby bovine kidney cells. BMC Genomics 2024; 25:158. [PMID: 38331736 PMCID: PMC10851472 DOI: 10.1186/s12864-024-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.
Collapse
Affiliation(s)
- Yingcai Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xueping Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qin He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zelong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, China
| | - Wenxi Gu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Zhong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Na Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
3
|
Shahbazi Asil M, Zarifian N, Valafar A, Shirani D, Mehrzad J. Noticeable immune dysregulation-and-suppression in parvovirus affected dogs. Vet Immunol Immunopathol 2023; 265:110663. [PMID: 37939594 DOI: 10.1016/j.vetimm.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Canine parvovirus type 2 (CPV-2) is one of the most common causes of infectious diarrhea in small animals, with high mortality and morbidity. Information on the specific treatment option(s) for CPV diseases (CPVD) is unachievably little. So, the treatment is mainly supportive one. Disruption of dog's innate immune system in viral diseases simply occurs; presumably, the CPV-2 may change the level of some TLRs, interleukins, CD4 and CD8 in the leukocytes of CPVD dogs, and disruptive activities of these immune molecules might be attributable to severe CPVD in dogs. Study on the role of the key immune molecules in CPVD is rare. Herein, by conducting and relating the clinical, para-clinical, immunological and molecular diagnostic tests, we tried to establish how some key immune molecules behave in blood of parvovirus affected dogs. As such, in the 1st study, the mRNA levels of TLR2, TLR4, TLR9, IL-1β, IL-6, CD4 and CD8 genes in the leukocytes of CPVD were assessed with quantitative (q)RT-PCR along with CPV-2 detection by rapid immunochromatography and PCR tests. In a 2nd study, the same measurements as in the 1st study were evaluated in two groups of mild versus severe clinical signs of CPVD. Both in the 1st and the 2nd studies leukopenia, much more pronounced in the severe CPVD, and immune dysregulation were observed. In the 1st study, a noticeable increase in the mRNA levels of TLR2 and TLR4 was detected with a slight decrease in TLR9 and a significant decrease in the expression of IL-1β, IL-6, CD4 and CD8 in leukocytes of CPV-infected dogs. Compared to the mild CPVD, the intense of downregulating effects on those immune molecules in the 2nd study was remarkably much more pronounced in the severe CPVD. Overall, it proves strong immune dysregulation and suppression/incompetence and potential T-cells exhaustion in severely CPV-2-affected dogs. Technically and clinically, this would be substantially applicable in canine medicine. By targeting those key immune molecules and their signaling pathways, new clinicodiagnostic approaches for CPVD can be evolved, and biotechnicoclinically this would be substantially applicable in all physiopathological conditions of dogs.
Collapse
Affiliation(s)
- Milad Shahbazi Asil
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Niloofar Zarifian
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Valafar
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Darioush Shirani
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Hao X, Chen H, Li Y, Chen B, Liang W, Xiao X, Zhou P, Li S. Molecular characterization and antiviral effects of canine interferon regulatory factor 1 (CaIRF1). BMC Vet Res 2022; 18:440. [PMID: 36522721 PMCID: PMC9756622 DOI: 10.1186/s12917-022-03539-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Interferon regulatory factor 1 (IRF1) is an important transcription factor that activates the type I interferon (IFN-I) response and plays a vital role in the antiviral immune response. Although IRF1 has been identified in several mammals, little information related to its function in canines has been described. RESULTS In this study, canine IRF1 (CaIRF1) was cloned. After a series of bioinformatics analyses, we found that the CaIRF1 protein structure was similar to that of other animal IRF1 proteins, including a conserved DNA-binding domain (DBD), an IRF-association domain 2 (IAD2) domain and two nuclear localization signals (NLSs). An indirect immunofluorescence assay (IFA) revealed that CaIRF1 was mainly distributed in the nucleus. Overexpression of CaIRF1 in Madin-Darby canine kidney cells (MDCK) induced high levels of interferon β (IFNβ) and IFN-stimulated response element (ISRE) promoter activation and induced interferon-stimulated gene (ISG) expression. Subsequently, we assayed the antiviral activity of CaIRF1 against vesicular stomatitis virus (VSV) and canine parvovirus type-2 (CPV-2) in MDCK cells. Overexpression of CaIRF1 effectively inhibited the viral yields of VSV and CPV-2, while knocking down of CaIRF1 expression mildly increased viral gene copies. CONCLUSIONS CaIRF1 is involved in the cellular IFN-I signaling pathway and plays an important role in the antiviral response.
Collapse
Affiliation(s)
- Xiangqi Hao
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Hui Chen
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Yanchao Li
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Bo Chen
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Weifeng Liang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Xiangyu Xiao
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Pei Zhou
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| | - Shoujun Li
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, 510642 People’s Republic of China ,Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, 510642 People’s Republic of China
| |
Collapse
|
5
|
SP1/miR-92a-1-5p/SOCS5: A novel regulatory axis in feline panleukopenia virus replication. Vet Microbiol 2022; 273:109549. [PMID: 36037621 DOI: 10.1016/j.vetmic.2022.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are vital post-transcriptional regulators that participate in host-pathogen interactions by modulating the expression of cellular factors. Previous studies have demonstrated that feline panleukopenia virus (FPV) alters miRNA expression levels within host cells. However, the relationship between FPV replication and host miRNAs remains unclear. Here, we demonstrated that FPV infection significantly altered cellular miR-92a-1-5p expression in F81 cells by upregulating the expression of specificity protein 1 (SP1). Furthermore, we observed that miR-92a-1-5p enhanced interferon (IFN-α/β) expression by targeting the suppressors of cytokine signaling 5 (SOCS5) that negatively regulates NF-κB signaling and inhibits FPV replication in host cells. These findings revealed that miR-92a-1-5p plays a crucial role in host defense against FPV infection.
Collapse
|
6
|
Vannamahaxay S, Sornpet B, Pringproa K, Patchanee P, Chuammitri P. Transcriptome analysis of infected Crandell Rees Feline Kidney (CRFK) cells by canine parvovirus type 2c Laotian isolates. Gene X 2022; 822:146324. [PMID: 35182681 DOI: 10.1016/j.gene.2022.146324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The advent of RNA sequencing technology provides insight into the dynamic nature of tremendous transcripts within Crandell-Reese feline kidney (CRFK) cells in response to canine parvovirus (CPV-2c) infection. A total of 1,603 genes displayed differentially expressed genes (DEGs), including 789 up-regulated genes and 814 downregulated genes in the infected cells. Gene expression profiles have shown a subtle pattern of defense mechanism and immune response to CPV through significant DEGs when extensively examined via Gene Ontology (GO) and pathway analysis. Prospective GO analysis was performed and identified several enriched GO biological process terms with significant participating roles in the immune system process and defense response to virus pathway. A Gene network was constructed using the 22 most significantly enriched genes of particular interests in defense response to virus pathways to illustrate the key pathways. Eleven genes (C1QBP, CD40, HYAL2, IFNB1, IFNG, IL12B, IL6, IRF3, LSM14A, MAVS, NLRC5) were identified, which are directly related to the defense response to the virus. Results of transcriptome profiling permit us to understand the heterogeneity of DEGs during in vitro experimental study of CPV infection, reflecting a unique transcriptome signature for the CPV virus. Our findings also demonstrate a distinct scenario of enhanced CPV responses in CRFK cells for viral clearance that involved multistep and perplexity of biological processes. Collectively, our data have given a fundamental role in anti-viral immunity as our highlights of this study, thus providing outlooks on future research priorities to be important in studying CPV.
Collapse
Affiliation(s)
- Soulasack Vannamahaxay
- Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos, Vientiane, Lao Democratic People's Republic
| | - Benjaporn Sornpet
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Integrative Research Center for Veterinary Preventive Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
7
|
Winter E, Cisilotto J, Silva AH, Rosolen D, Fabichak AP, Rode MP, Creczynski-Pasa TB. MicroRNAs: Potential biomarkers for reproduction, diagnosis, prognosis, and therapeutic in domestic animals. Res Vet Sci 2021; 142:117-132. [PMID: 34942556 DOI: 10.1016/j.rvsc.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates. This review provides an overview of the current knowledge regarding miRNAs' role in reproduction and animal diseases, diagnostic and therapy.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil.
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Ana Paula Fabichak
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil
| | - Michele Patricia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| |
Collapse
|
8
|
Chuammitri P, Vannamahaxay S, Sornpet B, Pringproa K, Patchanee P. Detection and characterization of microRNA expression profiling and its target genes in response to canine parvovirus in Crandell Reese Feline Kidney cells. PeerJ 2020; 8:e8522. [PMID: 32095352 PMCID: PMC7023829 DOI: 10.7717/peerj.8522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) play an essential role in gene regulators in many biological and molecular phenomena. Unraveling the involvement of miRNA as a key cellular factor during in vitro canine parvovirus (CPV) infection may facilitate the discovery of potential intervention candidates. However, the examination of miRNA expression profiles in CPV in tissue culture systems has not been fully elucidated. Method In the present study, we utilized high-throughput small RNA-seq (sRNA-seq) technology to investigate the altered miRNA profiling in miRNA libraries from uninfected (Control) and CPV-2c infected Crandell Reese Feline Kidney cells. Results We identified five of known miRNAs (miR-222-5p, miR-365-2-5p, miR-1247-3p, miR-322-5p and miR-361-3p) and three novel miRNAs (Novel 137, Novel 141 and Novel 102) by sRNA-seq with differentially expressed genes in the miRNA repertoire of CPV-infected cells over control. We further predicted the potential target genes of the aforementioned miRNAs using sequence homology algorithms. Notably, the targets of miR-1247-3p exhibited a potential function associated with cellular defense and humoral response to CPV. To extend the probing scheme for gene targets of miR-1247-3p, we explored and performed Gene Ontology (GO) enrichment analysis of its target genes. We discovered 229 putative targets from a total of 38 enriched GO terms. The top over-represented GO enrichment in biological process were lymphocyte activation and differentiation, marginal zone B cell differentiation, negative regulation of cytokine production, negative regulation of programed cell death, and negative regulation of signaling. We next constructed a GO biological process network composed of 28 target genes of miR-1247-3p, of which, some genes, namely BCL6, DLL1, GATA3, IL6, LEF1, LFNG and WNT1 were among the genes with obviously intersected in multiple GO terms. Conclusion The miRNA-1247-3p and its cognate target genes suggested their great potential as novel therapeutic targets or diagnostic biomarkers of CPV or other related viruses.
Collapse
Affiliation(s)
- Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Veterinary Biosciences (CEVB), Chiang Mai University, Chiang Mai, Thailand
| | - Soulasack Vannamahaxay
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Benjaporn Sornpet
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Veterinary Biosciences (CEVB), Chiang Mai University, Chiang Mai, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Integrative Research Center for Veterinary Preventive Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|