1
|
Sun B, Meng XH, Li YM, Lin H, Xiao ZD. MicroRNA-18a prevents senescence of mesenchymal stem cells by targeting CTDSPL. Aging (Albany NY) 2024; 16:4904-4919. [PMID: 38460957 PMCID: PMC10968691 DOI: 10.18632/aging.205642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 03/11/2024]
Abstract
Stem cell therapy requires massive-scale homogeneous stem cells under strict qualification control. However, Prolonged ex vivo expansion impairs the biological functions and results in senescence of mesenchymal stem cells (MSCs). We investigated the function of CTDSPL in the premature senescence process of MSCs and clarified that miR-18a-5p played a prominent role in preventing senescence of long-term cultured MSCs and promoting the self-renewal ability of MSCs. Over-expression of CTDSPL resulted in an enlarged morphology, up-regulation of p16 and accumulation of SA-β-gal of MSCs. The reduced phosphorylated RB suggested cell cycle arrest of MSCs. All these results implied that CTDSPL induced premature senescence of MSCs. We further demonstrated that miR-18a-5p was a putative regulator of CTDSPL by luciferase reporter assay. Inhibition of miR-18a-5p promoted the expression of CTDSPL and induced premature senescence of MSCs. Continuous overexpression of miR-18a-5p improved self-renewal of MSCs by reducing ROS level, increased expression of Oct4 and Nanog, and promoted growth rate and differentiation capability. We reported for the first time that the dynamic interaction of miR-18a-5p and CTDSPL is crucial for stem cell senescence.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xian-Hui Meng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Min Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhong-Dang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Zanjirband M, Rahgozar S, Aberuyi N. miR-16-5p enhances sensitivity to RG7388 through targeting PPM1D expression (WIP1) in Childhood Acute Lymphoblastic Leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:242-256. [PMID: 37457129 PMCID: PMC10344722 DOI: 10.20517/cdr.2022.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023]
Abstract
Aim: Given the encouraging results of the p53-Mdm2 inhibitor RG7388 in clinical trials and the vital function of miR-16-5p in suppressing cell proliferation, the aim of the present study was to investigate the combined impact of RG7388 and miR-16-5p overexpression on the childhood acute lymphoblastic leukemia (chALL). Methods: miRTarBase and miRDB, along with KEGG and STRING databases, were used to predict miR-16-5p target genes and explore protein-protein interaction networks, respectively. B- and T-lymphoblastic cell lines, in addition to patient primary cells, were treated with RG7388. Ectopic overexpression of miR-16-5p in Nalm6 cell line was induced through cell electroporation and transfection of microRNA mimics was confirmed by qRT-PCR. Cell viability was evaluated using the MTT assay. Western blot analyses were performed to evaluate the effects of RG7388 and miR-16-5p upregulation on the protein levels of p53 and its downstream target genes in chALL cells. Paired sample t-test was employed for statistical analyses. Results: MTT assay showed RG7388-induced cytotoxicity in wild-type p53 Nalm6 cell line and p53 functional patient primary cells. However, CCRF-CEM and p53 non-functional leukemic cells indicated drug resistance. Western blot analyses validated the bioinformatics results, confirming the downregulation of WIP1, p53 stabilization, as well as overexpression of p21WAF1 and Mdm2 proteins in Nalm6 cells transfected with miR-16-5p. Moreover, enhanced sensitivity to RG7388 was observed in the transfected cells. Conclusion: This is the first study indicating the mechanistic importance of miR-16-5p overexpression in chALL and its inhibitory role in leukemia treatment when combined with the p53-Mdm2 antagonist, RG7388. These findings might be useful for researchers and clinicians to pave the way for better management of chALL.
Collapse
Affiliation(s)
- Maryam Zanjirband
- Correspondence to: Dr. Soheila Rahgozar, Dr. Maryam Zanjirband, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Isfahan 15100, Iran. E-mail: ;
| | - Soheila Rahgozar
- Correspondence to: Dr. Soheila Rahgozar, Dr. Maryam Zanjirband, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Isfahan 15100, Iran. E-mail: ;
| | | |
Collapse
|
3
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
4
|
Silveira DA, Gupta S, Sinigaglia M, Mombach JCM. The Wnt pathway can stabilize hybrid phenotypes in the epithelial-mesenchymal transition: A logical modeling approach. Comput Biol Chem 2022; 99:107714. [PMID: 35763962 DOI: 10.1016/j.compbiolchem.2022.107714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
The Wnt pathway is important to regulate a variety of biochemical functions and can contribute to cancer development through its influence on the epithelial-mesenchymal transition (EMT). Multiple circuits have been reported to participate in the regulation of the Wnt signaling, however, the way these circuits coordinately regulate this signaling is still unclear. Moreover, the mechanisms responsible for the appearance of hybrid phenotypes (cells presenting both E and M features) are not well determined. The hybrid phenotype can present much higher metastatic potential than the mesenchymal phenotype. In this study, we propose a Boolean model of the Wnt pathway signaling contemplating recent published biochemical information on hepatocarcinoma. The model presents good coherence with experimental data for perturbed and wild-type cases. With the model, we propose two new molecular circuits involving several molecules that can stabilize hybrid states during the EMT. Moreover, we found that the two well studied circuits, AKT1/β-catenin and SNAIL1/miR-34, can cooperate with the predicted ones to favor the stabilization of the hybrid states. These findings highlight some possible unrecognized mechanisms during Wnt signaling and may provide alternative therapeutic strategies to control cancer metastatization.
Collapse
Affiliation(s)
- Daner Acunha Silveira
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Shantanu Gupta
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
5
|
microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022; 12:biom12020213. [PMID: 35204714 PMCID: PMC8961662 DOI: 10.3390/biom12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs, pivotal post-transcriptional regulators of gene expression, in the past decades have caught the attention of researchers for their involvement in different biological processes, ranging from cell development to cancer. Although lots of effort has been devoted to elucidate the topological features and the equilibrium properties of microRNA-mediated motifs, little is known about how the information encoded in frequency, amplitude, duration, and other features of their regulatory signals can affect the resulting gene expression patterns. Here, we review the current knowledge about microRNA-mediated gene regulatory networks characterized by time-dependent input signals, such as pulses, transient inputs, and oscillations. First, we identify the general characteristic of the main motifs underlying temporal patterns. Then, we analyze their impact on two commonly studied oncogenic networks, showing how their dysfunction can lead to tumorigenesis.
Collapse
|
6
|
UV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines. J Cancer Res Clin Oncol 2020; 146:3215-3231. [PMID: 32865618 DOI: 10.1007/s00432-020-03358-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE UV exposure is the main risk factor for development of cutaneous squamous cell carcinoma (cSCC). While early detection greatly improves cSCC prognosis, locally advanced or metastatic cSCC has a severely impaired prognosis. Notably, the mechanisms of progression to metastatic cSCC are not well understood. We hypothesized that UV exposure of already transformed epithelial cSCC cells further induces changes which might be involved in the progression to metastatic cSCCs and that UV-inducible microRNAs (miRNAs) might play an important role. METHODS Thus, we analyzed the impact of UV radiation of different quality (UVA, UVB, UVA + UVB) on the miRNA expression pattern in established cell lines generated from primary and metastatic cSCCs (Met-1, Met-4) using the NanoString nCounter platform. RESULTS This analysis revealed that the expression pattern of miRNAs depends on both the cell line used per se and on the quality of UV radiation. Comparison of UV-induced miRNAs in cSCC cell lines established from a primary tumor (Met-1) and the respective (un-irradiated) metastasis (Met-4) suggest that miR-7-5p, miR-29a-3p and miR-183-5p are involved in a UV-driven pathway of progression to metastasis. This notion is supported by the fact that these three miRNAs build up a network of 81 potential target genes involved e.g. in UVA/UVB-induced MAPK signaling and regulation of the epithelial-mesenchymal transition. As an example, PTEN, a target of UV-upregulated miRNAs (miR-29a-3p, miR-183-5p), could be shown to be down-regulated in response to UV radiation. We further identified CNOT8, the transcription complex subunit 8 of the CCR4-NOT complex, a deadenylase removing the poly(A) tail from miRNA-destabilized mRNAs, in the center of this network, targeted by all three miRNAs. CONCLUSION In summary, our results demonstrate that UV radiation induces an miRNA expression pattern in primary SCC cell line partly resembling those of metastatic cell line, thus suggesting that UV radiation impacts SCC progression beyond initiation.
Collapse
|
7
|
Zanjirband M, Rahgozar S. Targeting p53-MDM2 Interaction Using Small Molecule Inhibitors and the Challenges Needed to be Addressed. Curr Drug Targets 2020; 20:1091-1111. [PMID: 30947669 DOI: 10.2174/1389450120666190402120701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
MDM2 protein is the core negative regulator of p53 that maintains the cellular levels of p53 at a low level in normal cells. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies with wild-type TP53, p53 function is inhibited through other mechanisms. Recently, synthetic small molecule inhibitors have been developed which target a small hydrophobic pocket on MDM2 to which p53 normally binds. Given that MDM2-p53 antagonists have been undergoing clinical trials for different types of cancer, this review illustrates different aspects of these new cancer targeted therapeutic agents with the focus on the major advances in the field. It emphasizes on the p53 function, regulation of p53, targeting of the p53-MDM2 interaction for cancer therapy, and p53-dependent and -independent effects of inhibition of p53-MDM2 interaction. Then, representatives of small molecule MDM2-p53 binding antagonists are introduced with a focus on those entered into clinical trials. Furthermore, the review discusses the gene signatures in order to predict sensitivity to MDM2 antagonists, potential side effects and the reasons for the observed hematotoxicity, mechanisms of resistance to these drugs, their evaluation as monotherapy or in combination with conventional chemotherapy or with other targeted therapeutic agents. Finally, it highlights the certainly intriguing questions and challenges which would be addressed in future studies.
Collapse
Affiliation(s)
- Maryam Zanjirband
- Department of Cellular and Molecular Biology, Faculty of Science, University of Isfahan, Azadi Square, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cellular and Molecular Biology, Faculty of Science, University of Isfahan, Azadi Square, Isfahan, Iran
| |
Collapse
|
8
|
Minchington TG, Griffiths-Jones S, Papalopulu N. Dynamical gene regulatory networks are tuned by transcriptional autoregulation with microRNA feedback. Sci Rep 2020; 10:12960. [PMID: 32737375 PMCID: PMC7395740 DOI: 10.1038/s41598-020-69791-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Concepts from dynamical systems theory, including multi-stability, oscillations, robustness and stochasticity, are critical for understanding gene regulation during cell fate decisions, inflammation and stem cell heterogeneity. However, the prevalence of the structures within gene networks that drive these dynamical behaviours, such as autoregulation or feedback by microRNAs, is unknown. We integrate transcription factor binding site (TFBS) and microRNA target data to generate a gene interaction network across 28 human tissues. This network was analysed for motifs capable of driving dynamical gene expression, including oscillations. Identified autoregulatory motifs involve 56% of transcription factors (TFs) studied. TFs that autoregulate have more interactions with microRNAs than non-autoregulatory genes and 89% of autoregulatory TFs were found in dual feedback motifs with a microRNA. Both autoregulatory and dual feedback motifs were enriched in the network. TFs that autoregulate were highly conserved between tissues. Dual feedback motifs with microRNAs were also conserved between tissues, but less so, and TFs regulate different combinations of microRNAs in a tissue-dependent manner. The study of these motifs highlights ever more genes that have complex regulatory dynamics. These data provide a resource for the identification of TFs which regulate the dynamical properties of human gene expression.
Collapse
Affiliation(s)
- Thomas G Minchington
- School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Nancy Papalopulu
- School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
9
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Paluschinski M, Castoldi M, Schöler D, Bardeck N, Oenarto J, Görg B, Häussinger D. Tauroursodeoxycholate protects from glycochenodeoxycholate-induced gene expression changes in perfused rat liver. Biol Chem 2020; 400:1551-1565. [PMID: 31152635 DOI: 10.1515/hsz-2019-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Tauroursodeoxycholate (TUDC) is well known to protect against glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes. In the present study, we analyzed whether TUDC also exerts protective effects by modulating GCDC-induced gene expression changes. For this, gene array-based transcriptome analysis and quantitative polymerase chain reaction (qPCR) were performed on RNA isolated from rat livers perfused with GCDC, TUDC or a combination of both (each 20 μm for 2 h). GCDC led to a significant increase of lactate dehydrogenase (LDH) into the effluent perfusate, which was prevented by TUDC. GCDC, TUDC and co-perfusion induced distinct gene expression changes. While GCDC upregulated the expression of several pro-inflammatory genes, co-perfusion with TUDC increased the expression of pro-proliferative and anti-apoptotic p53 target genes. In line with this, levels of serine20-phosphorylated p53 and of its target gene p21 were elevated by GCDC in a TUDC-sensitive way. GCDC upregulated the oxidative stress surrogate marker 8OH(d)G and the pro-apoptotic microRNAs miR-15b/16 and these effects were prevented by TUDC. The upregulation of miR-15b and miR-16 in GCDC-perfused livers was accompanied by a downregulation of several potential miR-15b and miR-16 target genes. The present study identified changes in the transcriptome of the rat liver which suggest, that TUDC is hepatoprotective by counteracting GCDC-induced gene expression changes.
Collapse
Affiliation(s)
- Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Mirco Castoldi
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - David Schöler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Nils Bardeck
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jessica Oenarto
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
TP53/miR-34a-associated signaling targets SERPINE1 expression in human pancreatic cancer. Aging (Albany NY) 2020; 12:2777-2797. [PMID: 31986125 PMCID: PMC7041729 DOI: 10.18632/aging.102776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease of aging. The TP53 gene product regulates cell growth, aging, and cancer. To determine the important targets of TP53 in PDAC, we examined the expression of 440 proteins on a reverse phase protein array (RPPA) in PDAC-derived MIA-PaCa-2 cells which either had WT-TP53 or lacked WT-TP53. MIA-PaCa-2 cells have a TP53 mutation as well as mutant KRAS and represent a good in vitro model to study PDAC. RPPA analysis demonstrated expression of tumor promoting proteins in cells that lacked WT-TP53; and this feature could be reversed significantly when the cells were transfected with vector encoding WT-TP53 or treated with berberine or a modified berberine (BBR). Expression of miR-34a-associated signaling was elevated in cells expressing WT-TP53 compared to cells expressing mTP53. Results from in vivo studies using human PDAC specimens confirmed the in vitro results as the expression of miR-34a and associated signaling was significantly decreased in PDAC specimens compared to non-cancerous tissues. This study determined SERPINE1 as a miR-34a target with relevance to the biology of PDAC. Thus, we have identified a key target (SERPINE1) of the TP53/miR-34a axis that may serve as a potential biomarker for early detection of pancreatic cancer.
Collapse
|
12
|
Silveira DA, Mombach JCM. Dynamics of the feedback loops required for the phenotypic stabilization in the epithelial-mesenchymal transition. FEBS J 2019; 287:578-588. [PMID: 31529614 DOI: 10.1111/febs.15062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/19/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a complex mechanism in which cells undergo a transition from epithelial to mesenchymal phenotypes (there is also an intermediary hybrid state) in response to microenvironmental alterations and aberrant stimuli triggered by molecules such as TGF-β. Recent studies in breast cancer progression reported new feedback loops and new participant molecules such as microRNAs 340 and 1199. In this work, we propose a logical model of EMT contemplating the influence of these new published molecules on the regulatory core of EMT. The model results were compared with theoretical and experimental data for the human breast epithelial cell line MCF10A presenting excellent agreement. We propose that the miRNAs 340 and 1199 should be considered phenotypic stability factors of the hybrid state based on the positive feedback loops they form with ZEB1. In addition, the model allows the prediction of phenotype probabilities at the coexistence region. For the tristable dynamics when epithelial, hybrid, and mesenchymal phenotypes coexist, we found that the hybrid state is the most probable, agreeing with experiments. Our results highlight new mechanisms related to the EMT dynamics in response to TGF-β stimulus in epithelial breast cells and might help the design of therapeutic strategies for breast cancer.
Collapse
|
13
|
Sun CY, Zhang XP, Wang W. Coordination of miR-192 and miR-22 in p53-Mediated Cell Fate Decision. Int J Mol Sci 2019; 20:ijms20194768. [PMID: 31561425 PMCID: PMC6801623 DOI: 10.3390/ijms20194768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
p53-targeted microRNAs (miRNAs) markedly affect cellular response to DNA damage. These miRNAs may contribute to either cell cycle arrest or apoptosis induction. However, how these miRNAs coordinate to modulate the decision between cell survival and death remains less understood. Here, we developed an integrated model of p53 signaling network to investigate how p53-targeted miR-192 and miR-22 modulate cellular outcome in response to DNA damage. By numerical simulations, we found that p53 is activated progressively depending on the extent of DNA damage. Upon moderate damage, p53 rises to medium levels and induces miR-192 to promote its own activation, facilitating p21 induction and cell cycle arrest. Upon severe damage, p53 reaches high levels and is fully activated due to phosphatase and tensin homolog (PTEN) induction. As a result, it transactivates miR-22 to repress p21 expression and activate E2F1, resulting in apoptosis. Therefore, miR-192 promotes primary activation of p53, while miR-22 promotes apoptosis by downregulating p21. This work may advance the understanding of the mechanism for cell fate decision between life and death by p53-inducible miRNAs.
Collapse
Affiliation(s)
- Cheng-Yuan Sun
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Lai WF, Lin M, Wong WT. Tackling Aging by Using miRNA as a Target and a Tool. Trends Mol Med 2019; 25:673-684. [PMID: 31126873 DOI: 10.1016/j.molmed.2019.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
miRNA is a class of short noncoding RNA that regulates gene expression at the post-transcriptional level. Evidence of age-associated changes in miRNA expression has been collected in models ranging from nematodes to humans; however, there has been little discussion of how to turn our knowledge of miRNA biology into antiaging therapy. This opinion article provides a snapshot of our current understanding of the roles of miRNA in modulating the aging process. We discuss major chemical techniques for modifying the miRNA structure as well as developing delivery systems for intervention. Finally, technical needs to be met for bench-to-clinic translation of miRNA-based interventions are highlighted for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Health Science Centre, Shenzhen University, Shenzhen, China.
| | - Marie Lin
- Health Science Centre, Shenzhen University, Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
15
|
Youness RA, Hafez HM, Khallaf E, Assal RA, Abdel Motaal A, Gad MZ. The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J Cell Physiol 2019; 234:20286-20297. [PMID: 30968427 DOI: 10.1002/jcp.28629] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive breast cancer subtype. Among young females, TNBC is the leading cause of cancer-related mortalities. Recently, long noncoding RNAs (lncRNAs) are representing a promising pool of regulators for tuning the aggressiveness of several solid malignancies. However, this still needs further investigations in TNBC. The main aim of this study is to unravel the expression pattern of sONE lncRNA and its mechanistic role in TNBC. Results showed that sONE is restrictedly expressed in TNBC patients; its expression level is inversely correlated with the aggressiveness of the disease. sONE acts as a posttranscriptional regulator to endothelial nitric oxide synthase (eNOS) and thus affecting eNOS-induced nitric oxide (NO) production from TNBC cells measured by Greiss reagent. Mechanistically, sONE is a potential tumor suppressor lncRNA in TNBC cells; repressing cellular viability, proliferation, colony-forming ability, migration, and invasion capacities of MDA-MB-231. Furthermore, sONE effects were found to be extended to affect the maestro tumor suppressor TP53 and the oncogenic transcription factor c-Myc. Knocking down of sONE resulted in a marked decrease in TP53 and increase in c-Myc and consequently altering the expression status of their downstream tumor suppressor microRNAs (miRNAs) such as miR-34a, miR-15, miR-16, and let-7a. In conclusion, this study highlights sONE as a downregulated tumor suppressor lncRNA in TNBC cells acting through repressing eNOS-induced NO production, affecting TP53 and c-Myc proteins levels and finally altering the levels of a panel of tumor suppressor miRNAs downstream TP53/c-Myc proteins.
Collapse
Affiliation(s)
- Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Hafez M Hafez
- Department of General Surgery, Faculty of Medicine, Cairo University, Kasr Al-Ainy, Cairo, Egypt
| | - Emad Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Kasr Al-Ainy, Cairo, Egypt
| | - Reem A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
16
|
Wang F, Mao A, Tang J, Zhang Q, Yan J, Wang Y, Di C, Gan L, Sun C, Zhang H. microRNA‐16‐5p enhances radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway in prostate cancer cells. J Cell Physiol 2018; 234:13182-13190. [DOI: 10.1002/jcp.27989] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Aihong Mao
- Institute of Gansu Medical Science Research Lanzhou People's Republic of China
| | - Jinzhou Tang
- School of Life Science, Lanzhou University Lanzhou People's Republic of China
| | - Qianjing Zhang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Junfang Yan
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- Gansu Wuwei Tumor Hospital Wuwei People's Republic of China
| |
Collapse
|
17
|
Rossato VV, Silveira DA, Gupta S, Mombach JCM. Towards the contribution of the p38MAPK pathway to the dual role of TGFβ in cancer: A boolean model approach. Comput Biol Med 2018; 104:235-240. [PMID: 30530226 DOI: 10.1016/j.compbiomed.2018.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
The transforming growth factor-beta (TGF-β) pathway is involved in the regulation of cell growth and differentiation. In normal cells or in the early stages of cancer, this pathway can control proliferation stimuli by inducing cell cycle arrest or apoptosis (through the MAP-kinase protein p38MAPK), while in late stages it seems to act as a tumor promoter. This feature is known as the TGF-β dual role in cancer and it is not completely explained. This seems to arise through the accumulation of mutations in cancer development that affect the normal function of these pathways. In this work we propose a Boolean model of the crosstalk between the TGF-β, p38 MAPK and cell cycle checkpoint pathways which qualitatively describes this dual behavior. The model shows that for the wild type case, TGF-β acts as tumor supressor by inducing cell cycle arrest or apoptosis, as expected. However, the loss of function (LoF) of its two signaling proteins: SMAD2 and SMAD3 has immortalization effects due to the activation of the PI3K/AKT pathway that contributes to inhibit apoptosis. In silico mutations of the model elements were compared with cell phenotypes in experiments presenting agreement. In addition, we performed a series of double gene perturbations (that simulate random deleterious mutations) to determine the main regulators of the network. The results suggest that SMAD2/3 and p38MAPK are key players in processing the network input. In addition, when the LoF of SMAD2/3 is combined with the LoF of p38MAPK and p53, cell cycle arrest is completely abrogated. In conclusion, the model allows to visualize, through in silico mutations, the dual role of TGF-β: for the wild-type case TGF-β is able to block proliferation, however deleterious mutations can impair cell cycle arrest promoting cellular proliferation.
Collapse
Affiliation(s)
| | - Daner A Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Brazil
| | - Shantanu Gupta
- Departamento de Física, Universidade Federal de Santa Maria, Brazil
| | | |
Collapse
|
18
|
Hu S, Wang H, Yan D, Lu W, Gao P, Lou W, Kong X. Loss of miR-16 contributes to tumor progression by activation of tousled-like kinase 1 in oral squamous cell carcinoma. Cell Cycle 2018; 17:2284-2295. [PMID: 30252587 DOI: 10.1080/15384101.2018.1526601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A different expression signature of miRNA in oral squamous cell carcinoma (OSCC) has been validated. MicroRNA-16 (miR-16) as one of the distinctly dysregulated miRNAs in OSCC, its functional role in progression of OSCC remains not fully clear. Herein, miR-16 expression was significantly lower in OSCC tissues compared to that in adjacent normal tissues (n = 131). A lower level of miR-16 was found to be associated with poor prognosis on a cohort of 131 patients with OSCC, and on an extensive public data (457) from TCGA database. Additionally, expression of TLK1 was significantly higher in OSCC tissues compared to that in adjacent normal tissues, which is negatively correlated with miR-16 expression in OSCC. Bioinformatics analyses exhibited that TLK1 is a potential downstream effector of miR-16 by directly targeting the 3'-untranslated regions (3'-UTR) of mRNA. Forced expression of miR-16 in OSCC cell lines inhibits cell proliferation in vitro, and tumor growth in vivo by inhibition of TLK1. Mechanistically, downregulation of TLK1 by miR-16 enhances higher level of DNA damage leading to a significant increase of G2/M arrest in SCC9 cells. And, overexpression of TLK1 substantially reduces DNA damage and G2/M arrest by activation of TLK1-dependent cell cycle checkpoint response. To conclude, miR-16 is downregulated in OSCC and serves as tumor suppressor in OSCC progression by targeting TLK1, which has potential to be the novel therapeutic targets and diagnostic biomarkers for OSCC.
Collapse
Affiliation(s)
- Shousen Hu
- a Department of Otolaryngology Head and Neck Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Honghan Wang
- b Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Dan Yan
- c Department of Pharmacy , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,d Henan Key Laboratory of Precision Clinical Pharmacy , Zhengzhou University , Zhengzhou , China
| | - Wuhao Lu
- a Department of Otolaryngology Head and Neck Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Pei Gao
- a Department of Otolaryngology Head and Neck Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Weihua Lou
- a Department of Otolaryngology Head and Neck Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xiangzhen Kong
- c Department of Pharmacy , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,d Henan Key Laboratory of Precision Clinical Pharmacy , Zhengzhou University , Zhengzhou , China
| |
Collapse
|
19
|
DNA Damage-Response Pathway Heterogeneity of Human Lung Cancer A549 and H1299 Cells Determines Sensitivity to 8-Chloro-Adenosine. Int J Mol Sci 2018; 19:ijms19061587. [PMID: 29843366 PMCID: PMC6032248 DOI: 10.3390/ijms19061587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 01/29/2023] Open
Abstract
Human lung cancer H1299 (p53-null) cells often display enhanced susceptibility to chemotherapeutics comparing to A549 (p53-wt) cells. However, little is known regarding to the association of DNA damage-response (DDR) pathway heterogeneity with drug sensitivity in these two cells. We investigated the DDR pathway differences between A549 and H1299 cells exposed to 8-chloro-adenosine (8-Cl-Ado), a potential anticancer drug that can induce DNA double-strand breaks (DSBs), and found that the hypersensitivity of H1299 cells to 8-Cl-Ado is associated with its DSB overaccumulation. The major causes of excessive DSBs in H1299 cells are as follows: First, defect of p53-p21 signal and phosphorylation of SMC1 increase S phase cells, where replication of DNA containing single-strand DNA break (SSB) produces more DSBs in H1299 cells. Second, p53 defect and no available induction of DNA repair protein p53R2 impair DNA repair activity in H1299 cells more severely than A549 cells. Third, cleavage of PARP-1 inhibits topoisomerase I and/or topoisomerase I-like activity of PARP-1, aggravates DNA DSBs and DNA repair mechanism impairment in H1299 cells. Together, DDR pathway heterogeneity of cancer cells is linked to cancer susceptibility to DNA damage-based chemotherapeutics, which may provide aid in design of chemotherapy strategy to improve treatment outcomes.
Collapse
|