1
|
Mohammadparast B, Shirazi Z. Enhancement of the production of terpenoid and flavonoid secondary metabolites in the ground and aerial parts of licorice composite plant in a hydroponic system. J Biotechnol 2025; 399:164-171. [PMID: 39848498 DOI: 10.1016/j.jbiotec.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Hairy roots mediated by Agrobacterium rhizogenes can be obtained from the composite plants (plants with hairy roots and untransformed aerial parts) by ex vitro method. Composite plants can produce higher amounts of secondary metabolites by merging hydroponic systems. This provides a stable condition for composite plants, in which various metabolites are produced in different parts. In the present study, composite plants of Glycyrrhiza glabra were produced under ex vitro conditions and transferred into a hydroponic culture medium to produce and extract secondary metabolites. The results showed a 4.8- and 1.8-fold enhancement in the expressions of SQS1 and bAS genes in the roots of the composite plants compared to the control group, respectively. The levels of glycyrrhizin (1.7) and glabridin (3.5) were higher in the leaves of the composite plants compared to the controls. Moreover, higher amounts of glabridin (1.7) were observed in the roots of the composite plants compared to the control group. Investigation of the oxidative enzymes in the composite plants and control group revealed that the plants used more secondary metabolites through Agrobacterium inoculation. The plants needed more antioxidant enzymes to counter the release of oxygen-free radicals in control conditions, but composite plants used secondary metabolites as scavengers. Data revealed that composite plants managed to produce high amounts of various secondary metabolites in a hydroponic system.
Collapse
Affiliation(s)
- Behrooz Mohammadparast
- Department of Biology, Faculty of Science, Malayer University, Malayer, Hamedan 65719-95863, Iran.
| | - Zahra Shirazi
- Biotechnology Research Department, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran
| |
Collapse
|
2
|
Lao X, Jin P, Yang R, Liang Y, Zhang D, Zeng Y, Li X. Establishment of Agrobacterium-Mediated Transient Transformation System in Desert Legume Eremosparton songoricum (Litv.) Vass. Int J Mol Sci 2024; 25:11934. [PMID: 39596004 PMCID: PMC11593363 DOI: 10.3390/ijms252211934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Eremosparton songoricum (Litv.) Vass. is a desert legume exhibiting extreme drought tolerance and the ability to withstand various harsh environments, making it a good candidate for investigating stress tolerance mechanisms and exploring valuable stress-resistant genes. However, the absence of a genetic transformation system for E. songoricum poses significant limitations for functionally validating these stress-resistant genes in situ. In this study, we developed an Agrobacterium-mediated transient transformation system for E. songoricum utilizing the β-glucuronidase (GUS) gene as a reporter. We investigated three types of explants (seedlings, assimilated branches and callus) and the effects of different Agrobacterium strains, seedling ages, OD600 values, acetosyringone (AS) concentrations, sucrose concentrations and infection times on the transformation efficiency. The results reveal that the optimal transformation system was infecting one-month-old regenerating assimilated branches with the Agrobacterium strain C58C1. The infection solution comprised 1/2 MS medium with 3% sucrose and 200 μM AS at an OD600 of 0.8, infection for 3 h and then followed by 2 days of dark cultivation, which achieving a maximum transformation rate of 97%. The maximum transformation rates of the seedlings and calluses were 57.17% and 39.51%, respectively. Moreover, we successfully utilized the assimilated branch transient transformation system to confirm the role of the previously reported transcription factor EsDREB2B in E. songoricum. The overexpression of EsDREB2B enhanced drought tolerance by increasing the plant's reactive oxygen species (ROS) scavenging capacity in situ. This study established the first transient transformation system for a desert legume woody plant, E. songoricum. This efficient system can be readily applied to investigate gene functions in E. songoricum. It will expedite the exploration of genetic resources and stress tolerance mechanisms in this species, offering valuable insights and serving as a reference for the transformation of other desert plants and woody legumes.
Collapse
Affiliation(s)
- Xi’an Lao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
| | - Pei Jin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
3
|
Ying W, Wen G, Xu W, Liu H, Ding W, Zheng L, He Y, Yuan H, Yan D, Cui F, Huang J, Zheng B, Wang X. Agrobacterium rhizogenes: paving the road to research and breeding for woody plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1196561. [PMID: 38034586 PMCID: PMC10682722 DOI: 10.3389/fpls.2023.1196561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Woody plants play a vital role in global ecosystems and serve as valuable resources for various industries and human needs. While many woody plant genomes have been fully sequenced, gene function research and biotechnological breeding advances have lagged behind. As a result, only a limited number of genes have been elucidated, making it difficult to use newer tools such as CRISPR-Cas9 for biotechnological breeding purposes. The use of Agrobacterium rhizogenes as a transformative tool in plant biotechnology has received considerable attention in recent years, particularly in the research field on woody plants. Over the past three decades, numerous woody plants have been effectively transformed using A. rhizogenes-mediated techniques. Some of these transformed plants have successfully regenerated. Recent research on A. rhizogenes-mediated transformation of woody plants has demonstrated its potential for various applications, including gene function analysis, gene expression profiling, gene interaction studies, and gene regulation analysis. The introduction of the Ri plasmid has resulted in the emergence of several Ri phenotypes, such as compact plant types, which can be exploited for Ri breeding purposes. This review paper presents recent advances in A. rhizogenes-mediated basic research and Ri breeding in woody plants. This study highlights various aspects of A. rhizogenes-mediated transformation, its multiple applications in gene function analysis, and the potential of Ri lines as valuable breeding materials.
Collapse
Affiliation(s)
- Wei Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guangchao Wen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wenyuan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Haixia Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Geng S, Sohail H, Cao H, Sun J, Chen Z, Zhou L, Wang W, Ye R, Yang L, Bie Z. An efficient root transformation system for CRISPR/Cas9-based analyses of shoot-root communication in cucurbit crops. HORTICULTURE RESEARCH 2022; 9:uhab082. [PMID: 35048110 PMCID: PMC9071382 DOI: 10.1093/hr/uhab082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Cucurbit crops are suitable models for studying long-distance signaling in horticultural plants. Although thousands of substances are graft transmissible in cucurbits, functional studies have been hampered by the lack of efficient genetic transformation systems. Here, we report a convenient and efficient root transformation method for several cucurbit crops that will facilitate studies of functional genes and shoot-root crosstalk. We obtained healthy plants with completely transformed roots and non-transgenic shoots within 6 weeks. Furthermore, we combined this root transformation method with grafting, which allowed for gene manipulation in the rootstock. We validated our system by exploring salt tolerance mechanisms using a cucumber (Cucumis sativus)/pumpkin (Cucurbita moschata Duch.) (scion/rootstock) graft in which the sodium transporter gene High-affinity K+ transporter1 (CmoHKT1;1) was edited in the pumpkin rootstock, and by overexpressing the pumpkin tonoplast Na+/H+ antiporter gene Sodium hydrogen exchanger4 (CmoNHX4) in cucumber roots.
Collapse
Affiliation(s)
- Shouyu Geng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijian Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbo Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Runwen Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
van den Berg N, Swart V, Backer R, Fick A, Wienk R, Engelbrecht J, Prabhu SA. Advances in Understanding Defense Mechanisms in Persea americana Against Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2021; 12:636339. [PMID: 33747014 PMCID: PMC7971113 DOI: 10.3389/fpls.2021.636339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 06/03/2023]
Abstract
Avocado (Persea americana) is an economically important fruit crop world-wide, the production of which is challenged by notable root pathogens such as Phytophthora cinnamomi and Rosellinia necatrix. Arguably the most prevalent, P. cinnamomi, is a hemibiotrophic oomycete which causes Phytophthora root rot, leading to reduced yields and eventual tree death. Despite its' importance, the development of molecular tools and resources have been historically limited, prohibiting significant progress toward understanding this important host-pathogen interaction. The development of a nested qPCR assay capable of quantifying P. cinnamomi during avocado infection has enabled us to distinguish avocado rootstocks as either resistant or tolerant - an important distinction when unraveling the defense response. This review will provide an overview of our current knowledge on the molecular defense pathways utilized in resistant avocado rootstock against P. cinnamomi. Notably, avocado demonstrates a biphasic phytohormone profile in response to P. cinnamomi infection which allows for the timely expression of pathogenesis-related genes via the NPR1 defense response pathway. Cell wall modification via callose deposition and lignification have also been implicated in the resistant response. Recent advances such as composite plant transformation, single nucleotide polymorphism (SNP) analyses as well as genomics and transcriptomics will complement existing molecular, histological, and biochemical assay studies and further elucidate avocado defense mechanisms.
Collapse
Affiliation(s)
- Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alicia Fick
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Raven Wienk
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Juanita Engelbrecht
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - S. Ashok Prabhu
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Ho-Plágaro T, Huertas R, Tamayo-Navarrete MI, Ocampo JA, García-Garrido JM. An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. PLANT METHODS 2018; 14:34. [PMID: 29760765 PMCID: PMC5941616 DOI: 10.1186/s13007-018-0304-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Solanum lycopersicum, an economically important crop grown worldwide, has been used as a model for the study of arbuscular mycorrhizal (AM) symbiosis in non-legume plants for several years and several cDNA array hybridization studies have revealed specific transcriptomic profiles of mycorrhizal tomato roots. However, a method to easily screen candidate genes which could play an important role during tomato mycorrhization is required. RESULTS We have developed an optimized procedure for composite tomato plant obtaining achieved through Agrobacterium rhizogenes-mediated transformation. This protocol involves the unusual in vitro culture of composite plants between two filter papers placed on the culture media. In addition, we show that DsRed is an appropriate molecular marker for the precise selection of cotransformed tomato hairy roots. S. lycopersicum composite plant hairy roots appear to be colonized by the AM fungus Rhizophagus irregularis in a manner similar to that of normal roots, and a modified construct useful for localizing the expression of promoters putatively associated with mycorrhization was developed and tested. CONCLUSIONS In this study, we present an easy, fast and low-cost procedure to study AM symbiosis in tomato roots.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| | - Raúl Huertas
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - María I. Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| | - Juan A. Ocampo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| | - José M. García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| |
Collapse
|