1
|
Miguel Alfonso RA, Yael Yvette BH, Irma Martha MD, Cyndia Azucena GA, Briscia Socorro BV, José Francisco HM, Monserrat S, Aurora Elizabeth RG. Genotoxic effects of the ochratoxin A (OTA), its main metabolite (OTα) per se and in combination with fumonisin B1 in HepG2 cells and human lymphocytes. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503482. [PMID: 35649676 DOI: 10.1016/j.mrgentox.2022.503482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) and fumonisin B1 (FB1) are mycotoxins distributed in a wide variety of foods for human or animal consumption and are classified as possible carcinogens for humans. This study aimed to evaluate the cytotoxic, cytostatic and genotoxic effects of OTA and its main metabolite, ochratoxin α (OTα), FB1 and three combinations of OTA and FB1 at moderate and environmental doses. Cell viability was evaluated through MTT assay and the trypan blue exclusion method. The cytostatic and genotoxic effects were evaluated through the cytokinesis-block micronucleus assay. The results showed synergistic time- and concentration-dependent cytotoxic effects of one of the combinations of OTA and FB1. In contrast, significant differences were observed in the micronuclei (MN) frequency from OTA, OTα and coexposure of OTA + FB1. Some of these combinations increased the frequency of nuclear buds, nucleoplasmic bridges, donut-shaped nuclei, necrotic and apoptotic cells and MN in mononucleated cells. In conclusion, OTA and its main metabolite OTα, as well as the co-exposure of OTA and FB1, cause stable DNA damage at environmentally relevant concentrations, which was greater in metabolically competent cells. More studies are needed to understand the chemical interactions that occur due to the joint presence of mycotoxins, which occurs commonly.
Collapse
Affiliation(s)
- Ruíz-Arias Miguel Alfonso
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Bernal-Hernández Yael Yvette
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Medina-Díaz Irma Martha
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - González-Arias Cyndia Azucena
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Barrón-Vivanco Briscia Socorro
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Herrera-Moreno José Francisco
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Sordo Monserrat
- Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, P.O. Box 70228, Ciudad de México 04510, Mexico
| | - Rojas-García Aurora Elizabeth
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico.
| |
Collapse
|
2
|
Chebil S, Rjiba-Bahri W, Oueslati S, Ben Ismail H, Ben-Amar A, Natskoulis P. Ochratoxigenic fungi and Ochratoxin A determination in dried grapes marketed in Tunisia. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01584-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Purpose
With the present work, we aimed to assess the occurrence of ochratoxigenic fungi and Ochratoxin A (OTA) in dried grapes from Tunisia.
Methods
Dried grapes samples (n = 90) were investigated for the presence of ochratoxigenic fungi, which were further characterized at the species level through amplification of the internal transcribed spacer (ITS) region and polymerase chain reaction (PCR) product sequencing. Fungal isolates were tested for their ochratoxigenic potential by high-performance liquid chromatography with fluorescence detection (HPLC-FLD), as well as dried grapes samples after an immunoaffinity column (IAC) clean-up procedure.
Results
Black Aspergilli isolates were the dominant genre among the filamentous fungi found in dried grapes samples and were the only OTA-producing fungi encountered. Aspergillus niger aggregate were the most frequently found isolates reaching 70%, 80%, and 85% in dried grapes samples from regions of Kelibia, Sfax, and Rafraf, respectively, while covered 100% of the relevant mycobiota found in imported samples. Aspergillus carbonarius isolates were found only in Sfax’s and Kelibia’s samples, while uniseriate Aspergilli were found between 7 and 20% in dried grapes from Kelibia, Sfax, and the imported samples. The in vitro OTA production test showed that 88.9% of OTA-producing isolates belonged to A. carbonarius with OTA levels varying from 0.06 to 1.32 μg/g of Czapek Yeast Agar (CYA). The remaining OTA-producing fungi (11.1 %) belonged to A. niger aggregate group having a maximum OTA potential of 2.88 μg/g CYA, and no uniseriate Aspergilli isolate was able to produce OTA. All dried grapes samples were free of OTA presence.
Conclusion
According to the present study’s findings, no OTA contamination was recorded in the investigated samples from Tunisian market. Nevertheless, the presence of strong OTA producers A. carbonarius in samples originated from the two out of three studied Tunisian regions, as well the high incidences of Aspergillus niger aggregate group with an attested potential for OTA production in all samples, necessitates further research on Tunisian dried grapes. Additionally, a continuous analysis of staple food of the Mediterranean diet is imperative to insure the best quality for the consumers and prevent potential health problems.
Collapse
|
3
|
Mondani L, Palumbo R, Tsitsigiannis D, Perdikis D, Mazzoni E, Battilani P. Pest Management and Ochratoxin A Contamination in Grapes: A Review. Toxins (Basel) 2020; 12:E303. [PMID: 32392817 PMCID: PMC7290310 DOI: 10.3390/toxins12050303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
Ochratoxin A (OTA) is the most toxic member of ochratoxins, a group of toxic secondary metabolites produced by fungi. The most relevant species involved in OTA production in grapes is Aspergillus carbonarius. Berry infection by A. carbonarius is enhanced by damage to the skin caused by abiotic and biotic factors. Insect pests play a major role in European vineyards, and Lepidopteran species such as the European grapevine moth Lobesia botrana are undoubtedly crucial. New scenarios are also emerging due to the introduction and spread of allochthonous pests as well as climate change. Such pests may be involved in the dissemination of OTA producing fungi even if confirmation is still lacking and further studies are needed. An OTA predicting model is available, but it should be integrated with models aimed at forecasting L. botrana phenology and demography in order to improve model reliability.
Collapse
Affiliation(s)
- Letizia Mondani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| | - Roberta Palumbo
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| | - Dimitrios Tsitsigiannis
- School of Plant Sciences, Department of Crop Science, Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Dionysios Perdikis
- School of Plant Sciences, Department of Crop Science, Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Emanuele Mazzoni
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy; (L.M.); (R.P.)
| |
Collapse
|
4
|
Azam MS, Yu D, Liu N, Wu A. Degrading Ochratoxin A and Zearalenone Mycotoxins Using a Multifunctional Recombinant Enzyme. Toxins (Basel) 2019; 11:toxins11050301. [PMID: 31137857 PMCID: PMC6563298 DOI: 10.3390/toxins11050301] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic and ochratoxin A (OTA) is a hepatotoxic Fusarium mycotoxin commonly seen in cereals and fruits products. No previous investigation has studied on a single platform for the multi degradation mycotoxin. The current study aimed to investigate the bifunctional activity of a novel fusion recombinant. We have generated a recombinant fusion enzyme (ZHDCP) by combining two single genes named zearalenone hydrolase (ZHD) and carboxypeptidase (CP) in frame deletion by crossover polymerase chain reaction (PCR). We identified enzymatic properties and cell cytotoxicity assay of ZHDCP enzyme. Our findings have demonstrated that ZEA was completely degraded to the non-toxic product in 2 h by ZHDCP enzyme at an optimum pH of 7 and a temperature of 35 °C. For the first time, it was found out that ZEA 60% was degraded by CP degrades in 48 h. Fusion ZHDCP and CP enzyme were able to degrade 100% OTA in 30 min at pH 7 and temperature 30 °C. ZEA- and OTA-induced cell death and increased cell apoptosis rate and regulated mRNA expression of Sirt1, Bax, Bcl2, Caspase3, TNFα, and IL6 genes. Our novel findings demonstrated that the fusion enzyme ZHDCP possess bifunctional activity (degrade OTA and ZEA), and it could be used to degrade more mycotoxins.
Collapse
Affiliation(s)
- Md Shofiul Azam
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Freire L, Guerreiro TM, Pia AKR, Lima EO, Oliveira DN, Melo CFOR, Catharino RR, Sant'Ana AS. A quantitative study on growth variability and production of ochratoxin A and its derivatives by A. carbonarius and A. niger in grape-based medium. Sci Rep 2018; 8:14573. [PMID: 30275502 PMCID: PMC6167359 DOI: 10.1038/s41598-018-32907-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
Aspergillus carbonarius and Aspergillus niger are the main responsible fungi for the accumulation of ochratoxin A (OTA) in wine grapes. Some strains are able to convert the parent mycotoxin into other compounds by means of hydrolysis and/or conjugation reactions through their defense mechanisms and enzymatic activity, leading to the formation of a modified mycotoxin. Thus, the variability of growth and metabolite production are inherent to the strain, occurring distinctively even when submitted to similar conditions. In this sense, this contribution aimed at determining the variability in multiplication and production of OTA by strains of A. carbonarius and A. niger isolated from grapes, as well as investigating the formation of modified mycotoxins. Strains were incubated in grape-based medium, and the diameter of the colonies measured daily. The determination of OTA was performed by high-performance liquid chromatography and the identification of modified mycotoxins was carried out using high-resolution mass spectrometry. Variabilities in terms of growth and OTA production were assessed across five different strains. Peak production of OTA was detected on day 15, and a decline on day 21 was observed, indicating that the observed reduction may be associated with the degradation or modification of the OTA over time by the fungus. Ethylamide ochratoxin A, a modified mycotoxin identified in this study, provides evidence that there may be underreporting of total mycotoxin levels in food, increasing uncertainty concerning health risks to the population.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Estela O Lima
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Diogo N Oliveira
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Carlos F O R Melo
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Genomic diversity in ochratoxigenic and non ochratoxigenic strains of Aspergillus carbonarius. Sci Rep 2018; 8:5439. [PMID: 29615708 PMCID: PMC5883058 DOI: 10.1038/s41598-018-23802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin with nephrotoxic effects on animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. We present the genome resequencing of four A. carbonarius strains, one OTA producer and three atypical and unique non-OTA producing strains. These strains were sequenced using Illumina technology and compared with a reference genome of this species. We performed some specific bioinformatics analyses in genes involved in OTA biosynthesis. Data obtained in this study revealed the high genomic diversity within A. carbonarius strains. Although some gaps of more than 1,000 bp were identified in non-ochratoxigenic strains, no large deletions in functional genes related with OTA production were found. Moreover, the expression of five genes of the putative OTA biosynthetic cluster was down regulated under OTA-inducing conditions in the non-ochratoxigenic strains. Knowledge of the regulatory mechanisms involved in OTA biosynthesis will provide a deeper understanding of these non-ochratoxigenic strains.
Collapse
|