1
|
Ortiz R, Ramos-Méndez J. A clustering tool for generating biological geometries for computational modeling in radiobiology. Phys Med Biol 2024; 69:10.1088/1361-6560/ad7f1d. [PMID: 39317231 PMCID: PMC11563033 DOI: 10.1088/1361-6560/ad7f1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Objective.To develop a computational tool that converts biological images into geometries compatible with computational software dedicated to the Monte Carlo simulation of radiation transport (TOPAS), and subsequent biological tissue responses (CompuCell3D). The depiction of individual biological entities from segmentation images is essential in computational radiobiological modeling for two reasons: image pixels or voxels representing a biological structure, like a cell, should behave as a single entity when simulating biological processes, and the action of radiation in tissues is described by the association of biological endpoints to physical quantities, as radiation dose, scored the entire group of voxels assembling a cell.Approach.The tool is capable of cropping and resizing the images and performing clustering of image voxels to create independent entities (clusters) by assigning a unique identifier to these voxels conforming to the same cluster. The clustering algorithm is based on the adjacency of voxels with image values above an intensity threshold to others already assigned to a cluster. The performance of the tool to generate geometries that reproduced original images was evaluated by the dice similarity coefficient (DSC), and by the number of individual entities in both geometries. A set of tests consisting of segmentation images of cultured neuroblastoma cells, two cell nucleus populations, and the vasculature of a mouse brain were used.Main results.The DSC was 1.0 in all images, indicating that original and generated geometries were identical, and the number of individual entities in both geometries agreed, proving the ability of the tool to cluster voxels effectively following user-defined specifications. The potential of this tool in computational radiobiological modeling, was shown by evaluating the spatial distribution of DNA double-strand-breaks after microbeam irradiation in a segmentation image of a cell culture.Significance.This tool enables the use of realistic biological geometries in computational radiobiological studies.
Collapse
Affiliation(s)
- Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - José Ramos-Méndez
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| |
Collapse
|
2
|
Eling L, Kefs S, Keshmiri S, Balosso J, Calvet S, Chamel G, Drevon-Gaud R, Flandin I, Gaudin M, Giraud L, Laissue JA, Pellicioli P, Verry C, Adam JF, Serduc R. Neuro-Oncologic Veterinary Trial for the Clinical Transfer of Microbeam Radiation Therapy: Acute to Subacute Radiotolerance after Brain Tumor Irradiation in Pet Dogs. Cancers (Basel) 2024; 16:2701. [PMID: 39123429 PMCID: PMC11311398 DOI: 10.3390/cancers16152701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Synchrotron Microbeam Radiation Therapy (MRT) has repeatedly proven its superiority compared with conventional radiotherapy for glioma control in preclinical research. The clinical transfer phase of MRT has recently gained momentum; seven dogs with suspected glioma were treated under clinical conditions to determine the feasibility and safety of MRT. We administered a single fraction of 3D-conformal, image-guided MRT. Ultra-high-dose rate synchrotron X-ray microbeams (50 µm-wide, 400 µm-spaced) were delivered through five conformal irradiation ports. The PTV received ~25 Gy peak dose (within microbeams) per port, corresponding to a minimal cumulated valley dose (diffusing between microbeams) of 2.8 Gy. The dogs underwent clinical and MRI follow-up, and owner evaluations. One dog was lost to follow-up. Clinical exams of the remaining six dogs during the first 3 months did not indicate radiotoxicity induced by MRT. Quality of life improved from 7.3/10 [±0.7] to 8.9/10 [±0.3]. Tumor-induced seizure activity decreased significantly. A significant tumor volume reduction of 69% [±6%] was reached 3 months after MRT. Our study is the first neuro-oncologic veterinary trial of 3D-conformal Synchrotron MRT and reveals that MRT does not induce acute to subacute radiotoxicity in normal brain tissues. MRT improves quality of life and leads to remarkable tumor volume reduction despite low valley dose delivery. This trial is an essential step towards the forthcoming clinical application of MRT against deep-seated human brain tumors.
Collapse
Affiliation(s)
- Laura Eling
- Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Université Grenoble Alpes, 38400 Saint-Martin-d’Hères, France; (S.K.); (J.-F.A.); (R.S.)
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, 38700 La Tronche, France; (S.K.); (J.B.); (I.F.); (C.V.)
| | - Samy Kefs
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, 38700 La Tronche, France; (S.K.); (J.B.); (I.F.); (C.V.)
| | - Sarvenaz Keshmiri
- Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Université Grenoble Alpes, 38400 Saint-Martin-d’Hères, France; (S.K.); (J.-F.A.); (R.S.)
| | - Jacques Balosso
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, 38700 La Tronche, France; (S.K.); (J.B.); (I.F.); (C.V.)
| | - Susan Calvet
- Argos Clinique Vétérinaire Pierre du Terrail, 38530 Pontcharra, France;
| | - Gabriel Chamel
- Clinical Oncology Unit, Small Animal Internal Medicine Department, University of Lyon, VetAgro Sup Campus Vétérinaire, 69280 Marcy l’Etoile, France;
- Unité de Recherche Interaction Cellules Environnement, University of Lyon, VetAgro Sup Campus Vétérinaire, 69280 Marcy l’Etoile, France
| | | | - Isabelle Flandin
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, 38700 La Tronche, France; (S.K.); (J.B.); (I.F.); (C.V.)
| | - Maxime Gaudin
- OnlyVet, Centre Hospitalier Vétérinaire, 69800 Saint Priest, France; (M.G.); (L.G.)
| | - Lucile Giraud
- OnlyVet, Centre Hospitalier Vétérinaire, 69800 Saint Priest, France; (M.G.); (L.G.)
| | | | - Paolo Pellicioli
- European Synchrotron Radiation Facility, 38000 Grenoble, France;
| | - Camille Verry
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, 38700 La Tronche, France; (S.K.); (J.B.); (I.F.); (C.V.)
| | - Jean-François Adam
- Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Université Grenoble Alpes, 38400 Saint-Martin-d’Hères, France; (S.K.); (J.-F.A.); (R.S.)
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, 38700 La Tronche, France; (S.K.); (J.B.); (I.F.); (C.V.)
| | - Raphaël Serduc
- Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Université Grenoble Alpes, 38400 Saint-Martin-d’Hères, France; (S.K.); (J.-F.A.); (R.S.)
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, 38700 La Tronche, France; (S.K.); (J.B.); (I.F.); (C.V.)
| |
Collapse
|
3
|
Steel H, Brüningk SC, Box C, Oelfke U, Bartzsch SH. Quantification of Differential Response of Tumour and Normal Cells to Microbeam Radiation in the Absence of FLASH Effects. Cancers (Basel) 2021; 13:3238. [PMID: 34209502 PMCID: PMC8268803 DOI: 10.3390/cancers13133238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Microbeam radiotherapy (MRT) is a preclinical method of delivering spatially-fractionated radiotherapy aiming to improve the therapeutic window between normal tissue complication and tumour control. Previously, MRT was limited to ultra-high dose rate synchrotron facilities. The aim of this study was to investigate in vitro effects of MRT on tumour and normal cells at conventional dose rates produced by a bench-top X-ray source. Two normal and two tumour cell lines were exposed to homogeneous broad beam (BB) radiation, MRT, or were separately irradiated with peak or valley doses before being mixed. Clonogenic survival was assessed and compared to BB-estimated surviving fractions calculated by the linear-quadratic (LQ)-model. All cell lines showed similar BB sensitivity. BB LQ-model predictions exceeded the survival of cell lines following MRT or mixed beam irradiation. This effect was stronger in tumour compared to normal cell lines. Dose mixing experiments could reproduce MRT survival. We observed a differential response of tumour and normal cells to spatially fractionated irradiations in vitro, indicating increased tumour cell sensitivity. Importantly, this was observed at dose rates precluding the presence of FLASH effects. The LQ-model did not predict cell survival when the cell population received split irradiation doses, indicating that factors other than local dose influenced survival after irradiation.
Collapse
Affiliation(s)
- Harriet Steel
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Sarah C. Brüningk
- Machine Learning & Computational Biology, Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
- Swiss Institute for Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Carol Box
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Uwe Oelfke
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK; (C.B.); (U.O.)
| | - Stefan H. Bartzsch
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany;
- Helmholtz Centre Munich, Institute for Radiation Medicine, Ingolstädter Landstraße 1, 85764 Munich, Germany
| |
Collapse
|
4
|
Treibel F, Nguyen M, Ahmed M, Dombrowsky A, Wilkens JJ, Combs SE, Schmid TE, Bartzsch S. Establishment of Microbeam Radiation Therapy at a Small-Animal Irradiator. Int J Radiat Oncol Biol Phys 2021; 109:626-636. [PMID: 33038461 DOI: 10.1016/j.ijrobp.2020.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Microbeam radiation therapy is a preclinical concept in radiation oncology. It spares normal tissue more effectively than conventional radiation therapy at equal tumor control. The radiation field consists of peak regions with doses of several hundred gray, whereas doses between the peaks (valleys) are below the tissue tolerance level. Widths and distances of the beams are in the submillimeter range for microbeam radiation therapy. A similar alternative concept with beam widths and distances in the millimeter range is presented by minibeam radiation therapy. Although both methods were developed at large synchrotron facilities, compact alternative sources have been proposed recently. METHODS AND MATERIALS A small-animal irradiator was fitted with a special 3-layered collimator that is used for preclinical research and produces microbeams of flexible width of up to 100 μm. Film dosimetry provided measurements of the dose distributions and was compared with Monte Carlo dose predictions. Moreover, the micronucleus assay in Chinese hamster CHO-K1 cells was used as a biological dosimeter. The focal spot size and beam emission angle of the x-ray tube were modified to optimize peak dose rate, peak-to-valley dose ratio (PVDR), beam shape, and field homogeneity. An equivalent collimator with slit widths of up to 500 μm produced minibeams and allowed for comparison of microbeam and minibeam field characteristics. RESULTS The setup achieved peak entrance dose rates of 8 Gy/min and PVDRs >30 for microbeams. Agreement between Monte Carlo simulations and film dosimetry is generally better for larger beam widths; qualitative measurements validated Monte Carlo predicted results. A smaller focal spot enhances PVDRs and reduces beam penumbras but substantially reduces the dose rate. A reduction of the beam emission angle improves the PVDR, beam penumbras, and dose rate without impairing field homogeneity. Minibeams showed similar field characteristics compared with microbeams at the same ratio of beam width and distance but had better agreement with simulations. CONCLUSION The developed setup is already in use for in vitro experiments and soon for in vivo irradiations. Deviations between Monte Carlo simulations and film dosimetry are attributed to scattering at the collimator surface and manufacturing inaccuracies and are a matter of ongoing research.
Collapse
Affiliation(s)
- Franziska Treibel
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Mai Nguyen
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Mabroor Ahmed
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Annique Dombrowsky
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Jan J Wilkens
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Stephanie E Combs
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Thomas E Schmid
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Stefan Bartzsch
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany.
| |
Collapse
|
5
|
Günther B, Gradl R, Jud C, Eggl E, Huang J, Kulpe S, Achterhold K, Gleich B, Dierolf M, Pfeiffer F. The versatile X-ray beamline of the Munich Compact Light Source: design, instrumentation and applications. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1395-1414. [PMID: 32876618 PMCID: PMC7467334 DOI: 10.1107/s1600577520008309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 05/08/2023]
Abstract
Inverse Compton scattering provides means to generate low-divergence partially coherent quasi-monochromatic, i.e. synchrotron-like, X-ray radiation on a laboratory scale. This enables the transfer of synchrotron techniques into university or industrial environments. Here, the Munich Compact Light Source is presented, which is such a compact synchrotron radiation facility based on an inverse Compton X-ray source (ICS). The recent improvements of the ICS are reported first and then the various experimental techniques which are most suited to the ICS installed at the Technical University of Munich are reviewed. For the latter, a multipurpose X-ray application beamline with two end-stations was designed. The beamline's design and geometry are presented in detail including the different set-ups as well as the available detector options. Application examples of the classes of experiments that can be performed are summarized afterwards. Among them are dynamic in vivo respiratory imaging, propagation-based phase-contrast imaging, grating-based phase-contrast imaging, X-ray microtomography, K-edge subtraction imaging and X-ray spectroscopy. Finally, plans to upgrade the beamline in order to enhance its capabilities are discussed.
Collapse
Affiliation(s)
- Benedikt Günther
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Regine Gradl
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Christoph Jud
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Elena Eggl
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Juanjuan Huang
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Stephanie Kulpe
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Klaus Achterhold
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Martin Dierolf
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Franz Pfeiffer
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| |
Collapse
|
6
|
Burger K, Urban T, Dombrowsky AC, Dierolf M, Günther B, Bartzsch S, Achterhold K, Combs SE, Schmid TE, Wilkens JJ, Pfeiffer F. Technical and dosimetric realization of in vivo x-ray microbeam irradiations at the Munich Compact Light Source. Med Phys 2020; 47:5183-5193. [PMID: 32757280 DOI: 10.1002/mp.14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE X-ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer-sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory-sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). METHODS A specially made beam collimation optic allows to increase x-ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. RESULTS We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 μm slit size and 350 μm center-to-center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak-to-valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. CONCLUSIONS This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.
Collapse
Affiliation(s)
- Karin Burger
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Theresa Urban
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Annique C Dombrowsky
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Benedikt Günther
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany.,Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, München, 81675, Germany
| |
Collapse
|
7
|
Wu H, Gu J, Zhou D, Cheng W, Wang Y, Wang Q, Wang X. LINC00160 mediated paclitaxel-And doxorubicin-resistance in breast cancer cells by regulating TFF3 via transcription factor C/EBPβ. J Cell Mol Med 2020; 24:8589-8602. [PMID: 32652877 PMCID: PMC7412707 DOI: 10.1111/jcmm.15487] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance represents a major challenge in breast cancer (BC) treatment. This study aimed to probe the roles of LINC00160 in paclitaxel‐ and doxorubicin‐resistant BC cells. Three pairs of BC and adjacent normal tissue were used for lncRNA microarray analysis. Paclitaxel‐resistant MCF‐7 (MCF‐7/Tax) and doxorubicin‐resistant BT474 (BT474/Dox) cells were generated by exposure of parental drug‐sensitive MCF‐7 or BT474 cells to gradient concentrations of drugs. Correlation between LINC00160 expression and clinical response to paclitaxel in BC patients was examined. Short interfering RNAs specifically targeting LINC00160 or TFF3 were designed to construct LINC00160‐ and TFF3‐depleted BC cells to discuss their effects on biological episodes of MCF‐7/Tax and BT474/Dox cells. Interactions among LINC00160, transcription factor C/EBPβ and TFF3 were identified. MCF‐7/Tax and BT474/Dox cells stable silencing of LINC00160 were transplanted into nude mice. Consequently, up‐regulated LINC00160 led to poor clinical response to paclitaxel in BC patients. LINC00160 knockdown reduced drug resistance in MCF‐7/Tax and BT474/Dox cells and reduced cell migration and invasion. LINC00160 recruited C/EBPβ into the promoter region of TFF3 and increased TFF3 expression. LINC00160‐depleted MCF‐7/Tax and BT474/Dox cells showed decreased tumour growth rates in nude mice. Overall, we identified a novel mechanism of LINC00160‐mediated chemoresistance via the C/EBPβ/TFF3 axis, highlighting the potential of LINC00160 for treating BC with chemoresistance.
Collapse
Affiliation(s)
- Huaiguo Wu
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Juan Gu
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Wuxi, China
| | - Daoping Zhou
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Wei Cheng
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Yueping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Biology, College of Arts & Science, Massachusetts University, Boston, MA, USA
| | - Qingping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Xuedong Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| |
Collapse
|
8
|
Dombrowsky AC, Burger K, Porth AK, Stein M, Dierolf M, Günther B, Achterhold K, Gleich B, Feuchtinger A, Bartzsch S, Beyreuther E, Combs SE, Pfeiffer F, Wilkens JJ, Schmid TE. A proof of principle experiment for microbeam radiation therapy at the Munich compact light source. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:111-120. [PMID: 31655869 DOI: 10.1007/s00411-019-00816-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.
Collapse
Affiliation(s)
- Annique C Dombrowsky
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Karin Burger
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Ann-Kristin Porth
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Marlon Stein
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Benedikt Günther
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Stefan Bartzsch
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Stephanie E Combs
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- German Consortium for Translational Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (dktk), Technical University Munich, 81675, Munich, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiobiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Thomas E Schmid
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany.
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
9
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guardiola C, Prezado Y, Roulin C, Bergs JW. Effect of X-ray minibeam radiation therapy on clonogenic survival of glioma cells. Clin Transl Radiat Oncol 2018; 13:7-13. [PMID: 30211325 PMCID: PMC6134191 DOI: 10.1016/j.ctro.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
The goal is to compare, in vitro, the efficiency of minibeam radiotherapy (MBRT) and standard RT in inducing clonogenic cell death in glioma cell lines. With this aim, we report on the first in vitro study performed in an X-ray Small Animal Radiation Research Platform (SARRP) modified for minibeam irradiations. F98 rat and U87 human glioma cells were irradiated with either an array of minibeams (MB) or with conventional homogeneous beams (broad beam, BB). A specially designed multislit collimator was used to generate the minibeams with a with of a center-to-center distance of 1465 (±10) μm, and a PVDR value of 12.4 (±2.3) measured at 1 cm depth in a water phantom. Cells were either replated for clonogenic assay directly (immediate plating, IP) or 24 h after irradiation (delayed plating, DP) to assess the effect of potentially lethal damage repair (PLDR) on cell survival. Our hypothesis is that with MBRT, a similar level of clonogenic cell death can be reached compared to standard RT, when using equal mean radiation doses. To prove this, we performed dose escalations to determine the minimum integrated dose needed to reach a similar level of clonogenic cell death for both treatments. We show that this minimum dose can vary per cell line: in F98 cells a dose of 19 Gy was needed to obtain similar levels of clonogenic survival, whereas in U87 cells there was still a slightly increased survival with MB compared to BB 19 Gy treatment. The results suggest also an impairment of DNA damage repair in F98 cells as there is no difference in clonogenic cell survival between immediately and delayed plated cells for each dose and irradiation mode. For U87 cells, a small IP-DP effect was observed in the case of BB irradiation up to a dose of 17 Gy. However, at 19 Gy BB, as well as for the complete dose range of MB irradiation, U87 cells did not show a difference in clonogenic survival between IP and DP. We therefore speculate that MBRT might influence PLDR. The current results show that X-ray MBRT is a promising method for treatment of gliomas: future preclinical and clinical studies should aim at reaching a minimum radiation (valley) dose for effective eradication of gliomas with increased sparing of normal tissues compared to standard RT.
Collapse
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Christophe Roulin
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Judith W.J. Bergs
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| |
Collapse
|