1
|
Imura K, Takeda A, Endo M, Funakoshi K. Innervation and osteoclast distribution in the inferior pharyngeal jaw of the cichlid Nile tilapia (Oreochromis niloticus). Anat Rec (Hoboken) 2024; 307:2139-2148. [PMID: 38183341 DOI: 10.1002/ar.25381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
In addition to an oral jaw, cichlids have a pharyngeal jaw, which is used for crushing and processing captured prey. The teeth and morphology of the pharyngeal jaw bones adapt to changes in prey in response to changes in the growing environment. This study aimed to explore the possible involvement of the peripheral nervous system in remodeling the cichlid pharyngeal jaw by examining the innervation of the inferior pharyngeal jaw in the Nile tilapia, Oreochromis niloticus. Vagal innervation was identified in the Nile tilapia inferior pharyngeal jaw. Double staining with tartrate-resistant acid phosphatase and immunostaining with the neuronal markers, protein gene product 9.5, and acetylated tubulin, revealed that osteoclasts, which play an important role in remodeling, were distributed in the vicinity of the nerves and were in apposition with the nerve terminals. This contact between peripheral nerves and osteoclasts suggests that the peripheral nervous system may play a role in remodeling the inferior pharyngeal jaw in cichlids.
Collapse
Affiliation(s)
- Kosuke Imura
- Department of Neuroanatomy, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Akihito Takeda
- Department of Neuroanatomy, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masato Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
2
|
Zhang L, Liu N, Shao J, Gao D, Liu Y, Zhao Y, Han C, Chen D, Wang L, Lu WW, Yang F. Bidirectional control of parathyroid hormone and bone mass by subfornical organ. Neuron 2023; 111:1914-1932.e6. [PMID: 37084721 DOI: 10.1016/j.neuron.2023.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/02/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Parathyroid hormone (PTH) is one of the most important hormones for bone turnover and calcium homeostasis. It is unclear how the central nervous system regulates PTH. The subfornical organ (SFO) lies above the third ventricle and modulates body fluid homeostasis. Through retrograde tracing, electrophysiology, and in vivo calcium imaging, we identified the SFO as an important brain nucleus that responds to serum PTH changes in mice. Chemogenetic stimulation of GABAergic neurons in SFO induces decreased serum PTH followed by a decrease in trabecular bone mass. Conversely, stimulation of glutamatergic neurons in the SFO promoted serum PTH and bone mass. Moreover, we found that the blockage of different PTH receptors in the SFO affects peripheral PTH levels and the PTH's response to calcium stimulation. Furthermore, we identified a GABAergic projection from the SFO to the paraventricular nucleus, which modulates PTH and bone mass. These findings advance our understanding of the central neural regulation of PTH at cellular and circuit level.
Collapse
Affiliation(s)
- Lu Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Nian Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie Shao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dashuang Gao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunhui Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingzi Zhao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanliang Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, Guangdong, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, Guangdong, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - William Weijia Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, Guangdong, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, Guangdong, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Lin WY, Dharini KK, Peng CH, Lin CY, Yeh KT, Lee WC, Lin MD. Zebrafish models for glucocorticoid-induced osteoporosis. Tzu Chi Med J 2022; 34:373-380. [PMID: 36578638 PMCID: PMC9791848 DOI: 10.4103/tcmj.tcmj_80_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis due to excessive or long-term glucocorticoid administration, disturbing the homeostasis between bone formation and bone resorption. The bone biology of zebrafish shares a high degree of similarities with mammals. In terms of molecular level, genes and signaling pathways related to skeletogenesis are also highly correlated between zebrafish and humans. Therefore, zebrafish have been utilized to develop multiple GIOP models. Taking advantage of the transparency of zebrafish larvae, their skeletal development and bone mineralization can be readily visualized through in vivo staining without invasive experimental handlings. Moreover, the feasibility of using scales or fin rays to study bone remodeling makes adult zebrafish an ideal model for GIOP research. Here, we reviewed current zebrafish models for GIOP research, focused on the tools and methods established for examining bone homeostasis. As an in vivo, convenient, and robust model, zebrafish have an advantage in performing high-throughput drug screening and could be used to investigate the action mechanisms of therapeutic drugs.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Chih Lee
- Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Wen-Chih Lee, Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
Prof. Ming-Der Lin, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| | - Ming-Der Lin
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Wen-Chih Lee, Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
Prof. Ming-Der Lin, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
4
|
Sato T, Takakura A, Lee JW, Tokunaga K, Matsumori H, Takao-Kawabata R, Iimura T. A Quantitative Analysis of Bone Lamellarity and Bone Collagen Linearity Induced by Distinct Dosing and Frequencies of Teriparatide Administration in Ovariectomized Rats and Monkeys. Microscopy (Oxf) 2021; 70:498-509. [PMID: 34100544 PMCID: PMC8633100 DOI: 10.1093/jmicro/dfab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
The lamellar structure of bone, which endows biomechanical rigidity to support the host organism, is observed in mammals, including humans. It is therefore essential to develop a quantitative analysis to evaluate the lamellarity of bone, which would especially be useful for the pharmacological evaluation of anti-osteoporotic drugs. This study applied a current system for the semi-automatic recognition of fluorescence signals to the analysis of un-decalcified bone sections from rat and monkey specimens treated with teriparatide (TPTD). Our analyses on bone formation pattern and collagen topology indicated that TPTD augmented bone lamellarity and bone collagen linearity, which were possibly associated with the recovery of collagen cross-linking, thus endowing bone rigidity.
Collapse
Affiliation(s)
- Takanori Sato
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan
| | - Aya Takakura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan.,Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka 410-2321, Japan
| | - Ji-Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan
| | - Kazuaki Tokunaga
- Nikon Corporation, 2-15-3 Konan, Minato-ku, Tokyo 108-6290, Japan
| | - Haruka Matsumori
- Nikon Corporation, 2-15-3 Konan, Minato-ku, Tokyo 108-6290, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka 410-2321, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan
| |
Collapse
|
5
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
6
|
Verri T, Werner A. Type II Na +-phosphate Cotransporters and Phosphate Balance in Teleost Fish. Pflugers Arch 2018; 471:193-212. [PMID: 30542786 DOI: 10.1007/s00424-018-2239-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/27/2022]
Abstract
Teleost fish are excellent models to study the phylogeny of the slc34 gene family, Slc34-mediated phosphate (Pi) transport and how Slc34 transporters contribute Pi homeostasis. Fish need to accumulate Pi from the diet to sustain growth. Much alike in mammals, intestinal uptake in fish is partly a paracellular and partly a Slc34-mediated transcellular process. Acute regulation of Pi balance is achieved in the kidney via a combination of Slc34-mediated secretion and/or reabsorption. A great plasticity is observed in how various species perform and combine the different processes of secretion and reabsorption. A reason for this diversity is found in one or two whole genome duplication events followed by potential gene loss; consequently, teleosts exhibit distinctly different repertoires of Slc34 transporters. Moreover, due to habitats with vastly different salinity, teleosts face the challenge of either preserving water in a hyperosmotic environment (seawater) or excreting water in hypoosmotic freshwater. An additional challenge in understanding teleost Pi homeostasis are the genome duplication and retention events that diversified peptide hormones such as parathyroid hormone and stanniocalcin. Dietary Pi and non-coding RNAs also regulate the expression of piscine Slc34 transporters. The adaptive responses of teleost Slc34 transporters to e.g. Pi diets and vitamin D are informative in the context of comparative physiology, but also relevant in applied physiology and aquaculture. In fact, Pi is essential for teleost fish growth but it also exerts significant adverse consequences if over-supplied. Thus, investigating Slc34 transporters helps tuning the physiology of commercially valuable teleost fish in a confined environment.
Collapse
Affiliation(s)
- Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Andreas Werner
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|