1
|
Banno T, Shirley H, Fishman YI, Cohen YE. Changes in neural readout of response magnitude during auditory streaming do not correlate with behavioral choice in the auditory cortex. Cell Rep 2023; 42:113493. [PMID: 38039133 PMCID: PMC10784988 DOI: 10.1016/j.celrep.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
A fundamental goal of the auditory system is to group stimuli from the auditory environment into a perceptual unit (i.e., "stream") or segregate the stimuli into multiple different streams. Although previous studies have clarified the psychophysical and neural mechanisms that may underlie this ability, the relationship between these mechanisms remains elusive. Here, we recorded multiunit activity (MUA) from the auditory cortex of monkeys while they participated in an auditory-streaming task consisting of interleaved low- and high-frequency tone bursts. As the streaming stimulus unfolded over time, MUA amplitude habituated; the magnitude of this habituation was correlated with the frequency difference between the tone bursts. An ideal-observer model could classify these time- and frequency-dependent changes into reports of "one stream" or "two streams" in a manner consistent with the behavioral literature. However, because classification was not modulated by the monkeys' behavioral choices, this MUA habituation may not directly reflect perceptual reports.
Collapse
Affiliation(s)
- Taku Banno
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Harry Shirley
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Yonatan I Fishman
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yale E Cohen
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Chillale RK, Shamma S, Ostojic S, Boubenec Y. Dynamics and maintenance of categorical responses in primary auditory cortex during task engagement. eLife 2023; 12:e85706. [PMID: 37970945 DOI: 10.7554/elife.85706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Grouping sets of sounds into relevant categories is an important cognitive ability that enables the association of stimuli with appropriate goal-directed behavioral responses. In perceptual tasks, the primary auditory cortex (A1) assumes a prominent role by concurrently encoding both sound sensory features and task-related variables. Here, we sought to explore the role of A1 in the initiation of sound categorization, shedding light on its involvement in this cognitive process. We trained ferrets to discriminate click trains of different rates in a Go/No-Go delayed categorization task and recorded neural activity during both active behavior and passive exposure to the same sounds. Purely categorical response components were extracted and analyzed separately from sensory responses to reveal their contributions to the overall population response throughout the trials. We found that categorical activity emerged during sound presentation in the population average and was present in both active behavioral and passive states. However, upon task engagement, categorical responses to the No-Go category became suppressed in the population code, leading to an asymmetrical representation of the Go stimuli relative to the No-Go sounds and pre-stimulus baseline. The population code underwent an abrupt change at stimulus offset, with sustained responses after the Go sounds during the delay period. Notably, the categorical responses observed during the stimulus period exhibited a significant correlation with those extracted from the delay epoch, suggesting an early involvement of A1 in stimulus categorization.
Collapse
Affiliation(s)
- Rupesh K Chillale
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL University,, Paris, France
- Laboratoire de Neurosciences Cognitives Computationnelle (INSERM U960), Département d'Études Cognitives, École Normale Supérieure, Paris, France
| | - Shihab Shamma
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL University,, Paris, France
- Institute for System Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, Maryland, United States
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives Computationnelle (INSERM U960), Département d'Études Cognitives, École Normale Supérieure, Paris, France
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL University,, Paris, France
| |
Collapse
|
3
|
Moerel M, Yacoub E, Gulban OF, Lage-Castellanos A, De Martino F. Using high spatial resolution fMRI to understand representation in the auditory network. Prog Neurobiol 2021; 207:101887. [PMID: 32745500 PMCID: PMC7854960 DOI: 10.1016/j.pneurobio.2020.101887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Following rapid methodological advances, ultra-high field (UHF) functional and anatomical magnetic resonance imaging (MRI) has been repeatedly and successfully used for the investigation of the human auditory system in recent years. Here, we review this work and argue that UHF MRI is uniquely suited to shed light on how sounds are represented throughout the network of auditory brain regions. That is, the provided gain in spatial resolution at UHF can be used to study the functional role of the small subcortical auditory processing stages and details of cortical processing. Further, by combining high spatial resolution with the versatility of MRI contrasts, UHF MRI has the potential to localize the primary auditory cortex in individual hemispheres. This is a prerequisite to study how sound representation in higher-level auditory cortex evolves from that in early (primary) auditory cortex. Finally, the access to independent signals across auditory cortical depths, as afforded by UHF, may reveal the computations that underlie the emergence of an abstract, categorical sound representation based on low-level acoustic feature processing. Efforts on these research topics are underway. Here we discuss promises as well as challenges that come with studying these research questions using UHF MRI, and provide a future outlook.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Brain Innovation B.V., Maastricht, the Netherlands.
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba.
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
4
|
Knyazeva S, Selezneva E, Gorkin A, Ohl FW, Brosch M. Representation of Auditory Task Components and of Their Relationships in Primate Auditory Cortex. Front Neurosci 2020; 14:306. [PMID: 32372903 PMCID: PMC7186436 DOI: 10.3389/fnins.2020.00306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
The current study aimed to resolve some of the inconsistencies in the literature on which mental processes affect auditory cortical activity. To this end, we studied auditory cortical firing in four monkeys with different experience while they were involved in six conditions with different arrangements of the task components sound, motor action, and water reward. Firing rates changed most strongly when a sound-only condition was compared to a condition in which sound was paired with water. Additional smaller changes occurred in more complex conditions in which the monkeys received water for motor actions before or after sounds. Our findings suggest that auditory cortex is most strongly modulated by the subjects’ level of arousal, thus by a psychological concept related to motor activity triggered by reinforcers and to readiness for operant behavior. Our findings also suggest that auditory cortex is involved in associative and emotional functions, but not in agency and cognitive effort.
Collapse
Affiliation(s)
| | | | - Alexander Gorkin
- Institute of Psychology, Russian Academy of Sciences, Moscow, Russia
| | - Frank W Ohl
- Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Brosch
- Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Evoked Response Strength in Primary Auditory Cortex Predicts Performance in a Spectro-Spatial Discrimination Task in Rats. J Neurosci 2019; 39:6108-6121. [PMID: 31175214 DOI: 10.1523/jneurosci.0041-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022] Open
Abstract
The extent to which the primary auditory cortex (A1) participates in instructing animal behavior remains debated. Although multiple studies have shown A1 activity to correlate with animals' perceptual judgments (Jaramillo and Zador, 2011; Bizley et al., 2013; Rodgers and DeWeese, 2014), others have found no relationship between A1 responses and reported auditory percepts (Lemus et al., 2009; Dong et al., 2011). To address this ambiguity, we performed chronic recordings of evoked local field potentials (eLFPs) in A1 of head-fixed female rats performing a two-alternative forced-choice auditory discrimination task. Rats were presented with two interleaved sequences of pure tones from opposite sides and had to indicate the side from which the higher-frequency target stimulus was played. Animal performance closely correlated (r rm = 0.68) with the difference between the target and distractor eLFP responses: the more the target response exceeded the distractor response, the better the animals were at identifying the side of the target frequency. Reducing the evoked response of either frequency through stimulus-specific adaptation affected performance in the expected way: target localization accuracy was degraded when the target frequency was adapted and improved when the distractor frequency was adapted. Target frequency eLFPs were stronger on hit trials than on error trials. Our results suggest that the degree to which one stimulus stands out over others within A1 activity may determine its perceptual saliency for the animals and accordingly bias their behavioral choices.SIGNIFICANCE STATEMENT The brain must continuously calibrate the saliency of sensory percepts against their relevance to the current behavioral goal. The inability to ignore irrelevant distractors characterizes a spectrum of human attentional disorders. Meanwhile, the connection between the neural underpinnings of stimulus saliency and sensory decisions remains elusive. Here, we record local field potentials in the primary auditory cortex of rats engaged in auditory discrimination to investigate how the cortical representation of target and distractor stimuli impacts behavior. We find that the amplitude difference between target- and distractor-evoked activity predicts discrimination performance (r rm = 0.68). Specific adaptation of target or distractor shifts performance either below or above chance, respectively. It appears that recent auditory history profoundly influences stimulus saliency, biasing animals toward diametrically-opposed decisions.
Collapse
|
6
|
Selezneva E, Gorkin A, Budinger E, Brosch M. Neuronal correlates of auditory streaming in the auditory cortex of behaving monkeys. Eur J Neurosci 2018; 48:3234-3245. [PMID: 30070745 DOI: 10.1111/ejn.14098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 11/29/2022]
Abstract
This study tested the hypothesis that spiking activity in the primary auditory cortex of monkeys is related to auditory stream formation. Evidence for this hypothesis was previously obtained in animals that were passively exposed to stimuli and in which differences in the streaming percept were confounded with differences between the stimuli. In this study, monkeys performed an operant task on sequences that were composed of light flashes and tones. The tones alternated between a high and a low frequency and could be perceived either as one auditory stream or two auditory streams. The flashes promoted either a one-stream percept or a two-stream percept. Comparison of different types of sequences revealed that the neuronal responses to the alternating tones were more similar when the flashes promoted auditory stream integration, and were more dissimilar when the flashes promoted auditory stream segregation. Thus our findings show that the spiking activity in the monkey primary auditory cortex is related to auditory stream formation.
Collapse
Affiliation(s)
| | | | - Eike Budinger
- Leibniz Institut für Neurobiologie, Magdeburg, Germany
| | | |
Collapse
|
7
|
Christison-Lagay KL, Cohen YE. The Contribution of Primary Auditory Cortex to Auditory Categorization in Behaving Monkeys. Front Neurosci 2018; 12:601. [PMID: 30210282 PMCID: PMC6123543 DOI: 10.3389/fnins.2018.00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
The specific contribution of core auditory cortex to auditory perception –such as categorization– remains controversial. To identify a contribution of the primary auditory cortex (A1) to perception, we recorded A1 activity while monkeys reported whether a temporal sequence of tone bursts was heard as having a “small” or “large” frequency difference. We found that A1 had frequency-tuned responses that habituated, independent of frequency content, as this auditory sequence unfolded over time. We also found that A1 firing rate was modulated by the monkeys’ reports of “small” and “large” frequency differences; this modulation correlated with their behavioral performance. These findings are consistent with the hypothesis that A1 contributes to the processes underlying auditory categorization.
Collapse
Affiliation(s)
- Kate L Christison-Lagay
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yale E Cohen
- Departments of Otorhinolaryngology, Neuroscience, and Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|