1
|
Sun YW, Chen KM, Aliaga C, El-Bayoumy K. Metabolic reprogramming in saliva of mice treated with the environmental and tobacco carcinogen dibenzo[def, p]chrysene. Sci Rep 2024; 14:29517. [PMID: 39604478 PMCID: PMC11603290 DOI: 10.1038/s41598-024-80921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
The goal of this study is to develop a non-invasive approach for early detection of oral squamous cell carcinoma (OSCC) using our established mouse model that faithfully recapitulates the human disease. We present for the first time a comparative metabolomic profiling of saliva samples of the tobacco smoke constituent, dibenzo[def, p]pyrene, (DB[a, l]P) vs. DMSO (control)-treated mice using an established and highly sensitive LC-MS/MS approach. DB[a, l]P was administered by topical application into the mouse oral cavity (25 µmol, 3x week for 6 weeks) and saliva was collected 24 h after the last dose of carcinogen administration. Using an untargeted metabolomics approach (negative and positive modes), we found that DB[a, l]P differentially altered several metabolites known to be involved in the carcinogenesis process when compared to DMSO. Of particular significance, we found that DB[a, l]P significantly enriched the levels of phosphatidic acid, known to bind and activate mTORC which can enhance proliferation and promote carcinogenesis. Pathway enrichment analysis revealed that DB[a, l]P altered two major lipid metabolism pathways (phospholipid biosynthesis and glycerolipid metabolism). Collectively, our results using saliva as a safe and non-invasive approach, provide additional mechanistic insights on DB[a, l]P-induced OSCC and potential biomarkers for early detection and an opportunity for cancer interception via reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Cesar Aliaga
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Ponomarenko I, Pasenov K, Churnosova M, Sorokina I, Aristova I, Churnosov V, Ponomarenko M, Reshetnikov E, Churnosov M. Sex-Hormone-Binding Globulin Gene Polymorphisms and Breast Cancer Risk in Caucasian Women of Russia. Int J Mol Sci 2024; 25:2182. [PMID: 38396861 PMCID: PMC10888713 DOI: 10.3390/ijms25042182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In our work, the associations of GWAS (genome-wide associative studies) impact for sex-hormone-binding globulin (SHBG)-level SNPs with the risk of breast cancer (BC) in the cohort of Caucasian women of Russia were assessed. The work was performed on a sample of 1498 women (358 BC patients and 1140 control (non BC) subjects). SHBG correlated in previously GWAS nine polymorphisms such as rs780093 GCKR, rs17496332 PRMT6, rs3779195 BAIAP2L1, rs10454142 PPP1R21, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs440837 ZBTB10, rs12150660 SHBG, and rs8023580 NR2F2 have been genotyped. BC risk effects of allelic and non-allelic SHBG-linked gene SNPs interactions were detected by regression analysis. The risk genetic factor for BC developing is an SHBG-lowering allele variant C rs10454142 PPP1R21 ([additive genetic model] OR = 1.31; 95%CI = 1.08-1.65; pperm = 0.024; power = 85.26%), which determines 0.32% of the cancer variance. Eight of the nine studied SHBG-related SNPs have been involved in cancer susceptibility as part of nine different non-allelic gene interaction models, the greatest contribution to which is made by rs10454142 PPP1R21 (included in all nine models, 100%) and four more SNPs-rs7910927 JMJD1C (five models, 55.56%), rs17496332 PRMT6 (four models, 44.44%), rs780093 GCKR (four models, 44.44%), and rs440837 ZBTB10 (four models, 44.44%). For SHBG-related loci, pronounced functionality in the organism (including breast, liver, fibroblasts, etc.) was predicted in silico, having a direct relationship through many pathways with cancer pathophysiology. In conclusion, our results demonstrated the involvement of SHBG-correlated genes polymorphisms in BC risk in Caucasian women in Russia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (I.P.); (K.P.); (M.C.); (I.S.); (I.A.); (V.C.); (M.P.); (E.R.)
| |
Collapse
|
3
|
Vatsa PP, Jindal Y, Bhadwalkar J, Chamoli A, Upadhyay V, Mandoli A. Role of epigenetics in OSCC: an understanding above genetics. Med Oncol 2023; 40:122. [PMID: 36941511 DOI: 10.1007/s12032-023-01992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023]
Abstract
Oral cavity cancer is categorized under head and neck cancer that frequently develops from squamous cells hence also known as oral squamous cell carcinoma (OSCC). Although molecular markers for oral cavity cancer are already known, epigenetic signatures for the same haven't been explored much. Epigenetic and genetic alterations were initially thought to be discrete mechanisms driving the tumour but the whole exome sequencing of various cancers has revealed the interdependency of epigenetics and genetic alterations. The reversible nature of these epigenetic changes makes them an alluring target for cancer therapeutics. The primary epigenetic alterations in cancer include DNA methylation and histone modifications. These alterations are useful for patient early detection and prognostication. This review summarizes the epigenetic perspective to understand the etiology, epigenetic biomarkers, and epi-drugs for better predictive diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Priyanka P Vatsa
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Yogita Jindal
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Janhavi Bhadwalkar
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ambika Chamoli
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vinal Upadhyay
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Amit Mandoli
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection. Cancers (Basel) 2023; 15:cancers15030821. [PMID: 36765779 PMCID: PMC9913359 DOI: 10.3390/cancers15030821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) has a high lifetime prevalence (one out of six men), but currently there is no widely accepted screening programme. Widely used prostate specific antigen (PSA) test at cut-off of 3.0 ng/mL does not have sufficient accuracy for detection of any prostate cancer, resulting in numerous unnecessary prostate biopsies in men with benign disease and false reassurance in some men with PCa. We have recently identified circulating chromosome conformation signatures (CCSs, Episwitch® PCa test) allowing PCa detection and risk stratification in line with standards of clinical PCa staging. The purpose of this study was to determine whether combining the Episwitch PCa test with the PSA test will increase its diagnostic accuracy. METHODS n = 109 whole blood samples of men enrolled in the PROSTAGRAM screening pilot study and n = 38 samples of patients with established PCa diagnosis and cancer-negative controls from Imperial College NHS Trust were used. Samples were tested for PSA, and the presence of CCSs in the loci encoding for of DAPK1, HSD3B2, SRD5A3, MMP1, and miRNA98 associated with high-risk PCa identified in our previous work. RESULTS PSA > 3 ng/mL alone showed a low positive predicted value (PPV) of 0.14 and a high negative predicted value (NPV) of 0.93. EpiSwitch alone showed a PPV of 0.91 and a NPV of 0.32. Combining PSA and Episwitch tests has significantly increased the PPV to 0.81 although reducing the NPV to 0.78. Furthermore, integrating PSA, as a continuous variable (rather than a dichotomised 3 ng/mL cut-off), with EpiSwitch in a new multivariant stratification model, Prostate Screening EpiSwitch (PSE) test, has yielded a remarkable combined PPV of 0.92 and NPV of 0.94 when tested on the independent prospective cohort. CONCLUSIONS Our results demonstrate that combining the standard PSA readout with circulating chromosome conformations (PSE test) allows for significantly enhanced PSA PPV and overall accuracy for PCa detection. The PSE test is accurate, rapid, minimally invasive, and inexpensive, suggesting significant screening diagnostic potential to minimise unnecessary referrals for expensive and invasive MRI and/or biopsy testing. Further extended prospective blinded validation of the new combined signature in a screening cohort with low cancer prevalence would be the recommended step for PSE adoption in PCa screening.
Collapse
|
5
|
Chen KM, Sun YW, Sun D, Gowda K, Amin S, El-Bayoumy K. Black Raspberry Extract Enhances Glutathione Conjugation of the Fjord-Region Diol Epoxide Derived from the Tobacco Carcinogen Dibenzo[ def, p]chrysene in Human Oral Cells. Chem Res Toxicol 2022; 35:2152-2159. [PMID: 36260657 PMCID: PMC10630969 DOI: 10.1021/acs.chemrestox.2c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In a series of previous studies we reported that black raspberry (BRB) powder inhibits dibenzo[a,l]pyrene (DBP)-induced DNA damage, mutagenesis, and oral squamous cell carcinoma (OSCC) development in mice. In the present study, using human oral leukoplakia (MSK-Leuk1) and squamous cell carcinoma (SCC1483) cells, we tested the hypothesis that BRB extract (BRBE) will enhance the synthesis of glutathione (GSH) and in turn increase GSH conjugation of the fjord-region DBP diol epoxide (DBPDE) derived from DBP leading to inhibition of DBP-induced DNA damage. The syntheses of DBPDE-GSH conjugate, DBPDE-dA adduct, and the corresponding isotope-labeled internal standards were performed; LC-MS/MS methods were used for their quantification. BRBE significantly (p < 0.05) increased cellular GSH by 31% and 13% at 6 and 24 h, respectively, in OSCC cells; in MSK-LeuK1 cells, the levels of GSH significantly (p < 0.05) increased by 55% and 22%, at 1 and 6 h. Since BRBE significantly enhanced the synthesis of GSH in both cell types, subsequent experiments were performed in MSK-Leuk1 cells. Western blot analysis was performed to determine the types of proteins involved in the synthesis of GSH. BRBE significantly (p < 0.05) increased the protein expression (2.5-fold) of the glutamate-cysteine ligase catalytic subunit (GCLC) but had no effect on the glutamate-cysteine ligase modifier subunit (GCLM) and glutathione synthetase (GSS). LC-MS/MS analysis showed that pretreatment of cells with BRBE followed by DBPDE significantly (p < 0.05) increased the levels of DBPDE-GSH conjugate (2.5-fold) and decreased DNA damage by 74% measured by assessing levels of DBPDE-dA adduct formation. Collectively, the results of this in vitro study clearly support our hypothesis, and the LC-MS/MS methods developed in the present study will be highly useful in testing the same hypothesis initially in our mouse model and ultimately in smokers.
Collapse
|
6
|
Alshaker H, Hunter E, Salter M, Ramadass A, Westra W, Winkler M, Green J, Akoulitchev A, Pchejetski D. Monocytes acquire prostate cancer specific chromatin conformations upon indirect co-culture with prostate cancer cells. Front Oncol 2022; 12:990842. [PMID: 36059613 PMCID: PMC9437316 DOI: 10.3389/fonc.2022.990842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Three-dimensional chromosome loop conformations are powerful regulators of gene expression. These chromosome conformations can be detected both in tumour and in circulating cells and have significant disease biomarker potential. We have recently detected specific chromosome conformations in circulating cells of patients with prostate cancer (PCa) which were similar to ones found in their primary tumours, however, the possibility of horizontal transfer of chromosome conformations was not studied previously. Methods Human monocytes (U937) were co-cultured in Boyden chambers through 0.4 uM membrane with or without PC-3 human PCa cells or their conditioned media and a custom DNA microarray for 900,000 chromosomal loops covering all coding loci and non-coding RNA genes was performed on each part of the co-culture system. Results We have detected 684 PC-3 cell-specific chromosome conformations across the whole genome that were absent in naïve monocytes but appeared in monocytes co-cultured with PC-3 cells or with PC-3-conditioned media. Comparing PC3-specific conformations to the ones we have previously detected in systemic circulation of high-risk PCa patients revealed 9 positive loops present in both settings. Conclusions Our results demonstrate for the first time a proof of concept for horizontal transfer of chromosome conformations without direct cell-cell contact. This carries high clinical relevance as we have previously observed chromatin conformations in circulating cells of patients with melanoma and PCa similar to ones in their primary tumours. These changes can be used as highly specific biomarkers for diagnosis and prognosis. Further studies are required to elucidate the specific mechanism of chromosome conformations transfer and its clinical significance in particular diseases.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Ewan Hunter
- Oxford BioDynamics Limited, Oxford, United Kingdom
| | | | | | | | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jayne Green
- Oxford BioDynamics Limited, Oxford, United Kingdom
| | | | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
- *Correspondence: Dmitri Pchejetski,
| |
Collapse
|
7
|
The World of Oral Cancer and Its Risk Factors Viewed from the Aspect of MicroRNA Expression Patterns. Genes (Basel) 2022; 13:genes13040594. [PMID: 35456400 PMCID: PMC9027895 DOI: 10.3390/genes13040594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide, with a reported 5-year survival rate of around 50% after treatment. Epigenetic modifications are considered to have a key role in oral carcinogenesis due to histone modifications, aberrant DNA methylation, and altered expression of miRNAs. MicroRNAs (miRNAs) are small non-coding RNAs that have a key role in cancer development by regulating signaling pathways involved in carcinogenesis. MiRNA deregulation identified in oral cancer has led to the idea of using them as potential biomarkers for early diagnosis, prognosis, and the development of novel therapeutic strategies. In recent years, a key role has been observed for risk factors in preventing and treating this malignancy. The purpose of this review is to summarize the recent knowledge about the altered mechanisms of oral cancer due to risk factors and the role of miRNAs in these mechanisms.
Collapse
|
8
|
Stairs DB, Landmesser ME, Aliaga C, Chen KM, Sun YW, El-Bayoumy K. Black raspberry restores the expression of the tumor suppressor p120ctn in the oral cavity of mice treated with the carcinogen dibenzo[a,l]pyrene diol epoxide. PLoS One 2021; 16:e0259998. [PMID: 34784403 PMCID: PMC8594836 DOI: 10.1371/journal.pone.0259998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
One of the major risk factors for head and neck squamous cell carcinoma (HNSCC) is tobacco smoke exposure, but the mechanisms that can account for disease development remain to be fully defined. Utilizing our HNSCC mouse model, we analyzed oral squamous cell carcinomas (OSCC) induced by the active metabolite of a common smoke constituent, dibenzo[a,l]pyrene diol-epoxide (DBPDE). Analyzing protein expression by either immunofluorescence or immunohistochemistry, we identified biologic processes that are dysregulated in premalignant and invasive cancer lesions induced by DBPDE. Interestingly, p120ctn expression is downregulated in both stages of the disease. In addition to decreased p120ctn expression, there was also increased proliferation (as measured by Ki67), inflammation (as measured by NFkB (p65) expression), neovascularization (as measured by CD31) and recruitment of Ly6G-positive immune cells as well as strong EGFR expression. We also examined the effect of the chemopreventive agent black raspberry (BRB) on p120ctn and EGFR protein expression in DBPDE treated mice. p120ctn, but not EGFR, protein expression increased in mice treated with BRB. Our results suggest that modulation of p120ctn may, in part, account for the mechanism by which BRB inhibits DBPDE induced OSCC in mice.
Collapse
Affiliation(s)
- Douglas B Stairs
- Department of Pathology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America.,Penn State Cancer Institute, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Mary E Landmesser
- Department of Pathology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America.,Penn State Cancer Institute, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Cesar Aliaga
- Penn State Cancer Institute, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America.,Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Kun-Ming Chen
- Penn State Cancer Institute, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America.,Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Yuan-Wan Sun
- Penn State Cancer Institute, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America.,Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Karam El-Bayoumy
- Penn State Cancer Institute, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America.,Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
9
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
10
|
Sabit H, Tombuloglu H, Cevik E, Abdel-Ghany S, El-Zawahri E, El-Sawy A, Isik S, Al-Suhaimi E. Knockdown of c-MYC Controls the Proliferation of Oral Squamous Cell Carcinoma Cells in vitro via Dynamic Regulation of Key Apoptotic Marker Genes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:45-55. [PMID: 34268253 PMCID: PMC8256829 DOI: 10.22088/ijmcm.bums.10.1.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/09/2021] [Indexed: 01/09/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Shaimaa Abdel-Ghany
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| | - Engy El-Zawahri
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| | - Amr El-Sawy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| | - Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey.
- SANKARA Brain & Biotechnology Research Center, Istanbul Biotechnology Inc, Technocity, Avcilar, Istanbul, Turkey.
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
11
|
Hier J, Vachon O, Bernstein A, Ibrahim I, Mlynarek A, Hier M, Alaoui-Jamali MA, Maschietto M, da Silva SD. Portrait of DNA methylated genes predictive of poor prognosis in head and neck cancer and the implication for targeted therapy. Sci Rep 2021; 11:10012. [PMID: 33976322 PMCID: PMC8113272 DOI: 10.1038/s41598-021-89476-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
In addition to chronic infection with human papilloma virus (HPV) and exposure to environmental carcinogens, genetic and epigenetic factors act as major risk factors for head and neck cancer (HNC) development and progression. Here, we conducted a systematic review in order to assess whether DNA hypermethylated genes are predictive of high risk of developing HNC and/or impact on survival and outcomes in non-HPV/non-tobacco/non-alcohol associated HNC. We identified 85 studies covering 32,187 subjects where the relationship between DNA methylation, risk factors and survival outcomes were addressed. Changes in DNA hypermethylation were identified for 120 genes. Interactome analysis revealed enrichment in complex regulatory pathways that coordinate cell cycle progression (CCNA1, SFN, ATM, GADD45A, CDK2NA, TP53, RB1 and RASSF1). However, not all these genes showed significant statistical association with alcohol consumption, tobacco and/or HPV infection in the multivariate analysis. Genes with the most robust HNC risk association included TIMP3, DCC, DAPK, CDH1, CCNA1, MGMT, P16, MINT31, CD44, RARβ. From these candidates, we further validated CD44 at translational level in an independent cohort of 100 patients with tongue cancer followed-up beyond 10 years. CD44 expression was associated with high-risk of tumor recurrence and metastasis (P = 0.01) in HPV-cases. In summary, genes regulated by methylation play a modulatory function in HNC susceptibility and it represent a critical therapeutic target to manage patients with advanced disease.
Collapse
Affiliation(s)
- Jessica Hier
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Olivia Vachon
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Allison Bernstein
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Iman Ibrahim
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Alex Mlynarek
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Michael Hier
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Moulay A Alaoui-Jamali
- Segal Cancer Centre of the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Mariana Maschietto
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP) and Boldrini Children's Center, Campinas, Sao Paulo, Brazil
| | - Sabrina Daniela da Silva
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada. .,Segal Cancer Centre of the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Alshaker H, Mills R, Hunter E, Salter M, Ramadass A, Skinner BM, Westra W, Green J, Akoulitchev A, Winkler M, Pchejetski D. Chromatin conformation changes in peripheral blood can detect prostate cancer and stratify disease risk groups. J Transl Med 2021; 19:46. [PMID: 33509203 PMCID: PMC7845038 DOI: 10.1186/s12967-021-02710-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current diagnostic blood tests for prostate cancer (PCa) are unreliable for the early stage disease, resulting in numerous unnecessary prostate biopsies in men with benign disease and false reassurance of negative biopsies in men with PCa. Predicting the risk of PCa is pivotal for making an informed decision on treatment options as the 5-year survival rate in the low-risk group is more than 95% and most men would benefit from surveillance rather than active treatment. Three-dimensional genome architecture and chromosome structures undergo early changes during tumourigenesis both in tumour and in circulating cells and can serve as a disease biomarker. METHODS In this prospective study we screened whole blood of newly diagnosed, treatment naïve PCa patients (n = 140) and cancer-free controls (n = 96) for the presence of 14,241 chromosomal loops in the loci of 425 genes. RESULTS We have detected specific chromosome conformation changes in the loci of ETS1, MAP3K14, SLC22A3 and CASP2 genes in peripheral blood from PCa patients yielding PCa detection with 80% sensitivity and 80% specificity. Further analysis between PCa risk groups yielded prognostic validation sets consisting of HSD3B2, VEGFC, APAF1, BMP6, ERG, MSR1, MUC1, ACAT1 and DAPK1 genes that achieved 80% sensitivity and 93% specificity stratifying high-risk category 3 vs low risk category 1 and 84% sensitivity and 89% specificity stratifying high risk category 3 vs intermediate risk category 2 disease. CONCLUSIONS Our results demonstrate specific chromosome conformations in the blood of PCa patients that allow PCa diagnosis and risk stratification with high sensitivity and specificity.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, UK
| | - Robert Mills
- Department of Urology, Norfolk and Norwich NHS Trust, Norwich, UK
| | | | | | | | | | | | | | | | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
13
|
Christensen ND, Chen KM, Hu J, Stairs DB, Sun YW, Aliaga C, Balogh KK, Atkins H, Shearer D, Li J, Brendle SA, Gowda K, Amin S, Walter V, Viscidi R, El-Bayoumy K. The environmental pollutant and tobacco smoke constituent dibenzo[def,p]chrysene is a co-factor for malignant progression of mouse oral papillomavirus infections. Chem Biol Interact 2021; 333:109321. [PMID: 33186600 PMCID: PMC9340668 DOI: 10.1016/j.cbi.2020.109321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
HPV infections in the oral cavity that progress to cancer are on the increase in the USA. Model systems to study co-factors for progression of these infections are lacking as HPVs are species-restricted and cannot grow in preclinical animal models. We have recently developed a mouse papillomavirus (MmuPV1) oral mucosal infection model that provides opportunities to test, for the first time, the hypothesis that tobacco carcinogens are co-factors that can impact the progression of oral papillomas to squamous cell carcinoma (SCC). Four cohorts of mice per sex were included: (1) infected with MmuPV1 and treated orally with DMSO-saline; (2) infected with MmuPV1 and treated orally with the tobacco carcinogen, dibenzo[def,p]chrysene (DBP); (3) uninfected and treated orally with DMSO-saline, and (4) uninfected and treated orally with DBP. Oral swabs were collected monthly for subsequent assessment of viral load. Oral tissues were collected for in situ viral DNA/RNA detection, viral protein staining, and pathological assessment for hyperplasia, papillomas and SCC at study termination. We observed increased rates of SCC in oral tissue infected with MmuPV1 and treated with DBP when compared to mice treated with DBP or virus individually, each of which showed minimal disease. Virally-infected epithelium showed strong levels of viral DNA/RNA and viral protein E4/L1 staining. In contrast, areas of SCC showed reduced viral DNA staining indicative of lower viral copy per nucleus but strong RNA signals. Several host markers (p120 ctn, p53, S100A9) were also examined in the mouse oral tissues; of particular significance, p120 ctn discriminated normal un-infected epithelium from SCC or papilloma epithelium. In summary, we have confirmed that our infection model is an excellent platform to assess the impact of co-factors including tobacco carcinogens for oral PV cancerous progression. Our findings can assist in the design of novel prevention/treatment strategies for HPV positive vs. HPV negative disease.
Collapse
Affiliation(s)
- Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA; Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Kun-Ming Chen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA; Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Douglas B Stairs
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Yuan-Wan Sun
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Cesar Aliaga
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Karla K Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Hannah Atkins
- Department of Comparative Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Debra Shearer
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jingwei Li
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Sarah A Brendle
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA; Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Raphael Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| |
Collapse
|
14
|
El-Bayoumy K, Christensen ND, Hu J, Viscidi R, Stairs DB, Walter V, Chen KM, Sun YW, Muscat JE, Richie JP. An Integrated Approach for Preventing Oral Cavity and Oropharyngeal Cancers: Two Etiologies with Distinct and Shared Mechanisms of Carcinogenesis. Cancer Prev Res (Phila) 2020; 13:649-660. [PMID: 32434808 DOI: 10.1158/1940-6207.capr-20-0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) was the 7th most common malignancy worldwide in 2018 and despite therapeutic advances, the overall survival rate for oral squamous cell carcinoma (OSCC; ∼50%) has remained unchanged for decades. The most common types are OSCC and oropharyngeal squamous cell carcinoma (OPSCC, survival rate ∼85%). Tobacco smoking is a major risk factor of HNSCC. In the developed world, the incidence of OSCC is declining as a result of tobacco cessation programs. However, OPSCC, which is also linked to human papillomavirus (HPV) infection, is on the rise and now ranks as the most common HPV-related cancer. The current state of knowledge indicates that HPV-associated disease differs substantially from other types of HNSCC and distinct biological differences between HPV-positive and HPV-negative HNSCC have been identified. Although risk factors have been extensively discussed in the literature, there are multiple clinically relevant questions that remain unanswered and even unexplored. Moreover, existing approaches (e.g., tobacco cessation, vaccination, and chemoprevention) to manage and control this disease remain a challenge. Thus, in this review, we discuss potential future basic research that can assist in a better understanding of disease pathogenesis which may lead to novel and more effective preventive strategies for OSCC and OPSCC.
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Raphael Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas B Stairs
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Kun-Ming Chen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Yuan-Wan Sun
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joshua E Muscat
- Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
15
|
High-risk human papillomavirus-mediated adenocarcinoma of palatine tonsil. Pathol Res Pract 2020; 216:152924. [PMID: 32224073 DOI: 10.1016/j.prp.2020.152924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 01/02/2023]
Abstract
We describe the case of a human papillomavirus-mediated adenocarcinoma of palatine tonsil in a 51-year-old male. Histologically, the tumor exhibited a predominantly cribriform and tubular (glandular) growth of cuboidal and columnar cells with moderate amount of pale eosinophilic cytoplasm and oval or spindled nuclei with finely dispersed or coarse chromatin and small to medium-sized nucleoli. Foci of nuclear anaplasia and multinucleation, numerous mitotic figures, and necrosis (individual-cell and confluent) were seen. No squamous differentiation was identified. The tumor cells showed strong expression of CK7, p16 and HPV E6/E7 mRNA transcripts, and were negative for p40, CK5/6, AR, synaptophysin and chromogranin. Next generation sequencing showed 3 variants of unknown significance: FGF3 p.(R44fs); NF1 p.(S749 L) and POLE p. (S1506 L) with variant allele frequencies of 37 %; 20 %, and 17 % respectively. Chromosomal microarray analysis using single nucleotide polymorphism microarray (OncoScan) assay showed whole chromosomal gains of chromosomes 8 and 19, whole chromosomal losses of chromosomes 2 and 16, as well as segmental gains of chromosomes 3q25.31q29 (encompassing the PIK3CA gene), 17q21.31q25.3, 20p13q13.33, Xq28, and segmental losses of chromosomes 1q32.2, 6p25.1p21.1, 11q23.1q24.1, 12p11.22, 12p11.22, 14q24.1q32.33, 17p13.3q21.31 (encompassing the TP53 and NF1 genes). The results highlight the need to consider HPV testing in non-squamous cell carcinomas of the oropharynx.
Collapse
|
16
|
Chen KM, Sun YW, Kawasawa YI, Salzberg AC, Zhu J, Gowda K, Aliaga C, Amin S, Atkins H, El-Bayoumy K. Black Raspberry Inhibits Oral Tumors in Mice Treated with the Tobacco Smoke Constituent Dibenzo(def,p)chrysene Via Genetic and Epigenetic Alterations. Cancer Prev Res (Phila) 2020; 13:357-366. [PMID: 31969344 DOI: 10.1158/1940-6207.capr-19-0496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
We previously reported that the environmental pollutant and tobacco smoke constituent dibenzo[def,p]chrysene (DBP) induced DNA damage, altered DNA methylation and induced oral squamous cell carcinoma (OSCC) in mice. In the present study, we showed that 5% dietary black raspberry (BRB) significantly reduced (P < 0.05) the levels of DBP-DNA adducts in the mouse oral cavity with comparable effect to those of its constitutes. Thus, only BRB was selected to examine if aberrant DNA methylation induced by DBP can be altered by BRB. Using comparative genome-wide DNA methylation analysis, we identified 479 hypermethylated and 481 hypomethylated sites (q < 0.01, methylation difference >25%) between the oral tissues of mice treated with DBP and fed control diet or diet containing BRB. Among the 30 differential methylated sites (DMS) induced by DBP, we found DMS mapped to Fgf3, Qrich2, Rmdn2, and Cbarp were hypermethylated by BRB whereas hypomethylated by DBP at either the exact position or proximal sites; DMS mapped to Vamp3, Ppp1rB1, Pkm, and Zfp316 were hypomethylated by BRB but hypermethylated by DBP at proximal sites. In addition to Fgf3, 2 DMS mapped to Fgf4 and Fgf13 were hypermethylated by BRB; these fibroblast growth factors are involved in regulation of the epithelial-mesenchymal transition (EMT) pathway as identified by IPA. Moreover, BRB significantly reduced (P < 0.05) the tumor incidence from 70% to 46.7%. Taken together, the inhibitory effects of BRB on DNA damage combined with its effects on epigenetic alterations may account for BRB inhibition of oral tumorigenesis induced by DBP. SIGNIFICANCE: We provided mechanistic insights that can account for the inhibition of oral tumors by BRB, which could serve as the framework for future chemopreventive trials for addicted smokers as well as non- or former smokers who are exposed to environmental carcinogens.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Yuka Imamura Kawasawa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Institute for Personalized Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Anna C Salzberg
- Institute for Personalized Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Junjia Zhu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cesar Aliaga
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Hannah Atkins
- Department of Comparative Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
17
|
Suzuki T, Yamazaki H, Honda K, Ryo E, Kaneko A, Ota Y, Mori T. Altered DNA methylation is associated with aberrant stemness gene expression in early‑stage HNSCC. Int J Oncol 2019; 55:915-924. [PMID: 31432153 DOI: 10.3892/ijo.2019.4857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 11/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by morphological and functional cellular heterogeneity, which are properties of progenitor cells, as opposed to cell alterations caused by accidental expression of stem cell‑related molecules. The expression levels of stemness molecules and their distribution in HNSCC are unclear. As regards sporadic cellular heterogeneity, methylation is an important factor for transcriptional regulation in tumors. Integrative screening analysis of mRNA expression and altered methylation status was performed with original microarrays in 12 tumor and non‑tumor pairs of oral squamous cell carcinoma (SCC) cases. From this data set, genes regulated via aberrant DNA methylation and classified proteins were validated by function clustering. Olfactomedin 4 (OLFM4), known as an intestinal stemness molecule and cell‑cell adhesion factor, was found to be highly expressed in tumors, with an mRNA expression ratio [tumor/normal (T/N)] of 40.7686 and low methylation (‑18.02%) in the promoter region. In addition, the OLFM4 expression levels increased following treatment with the demethylating agent 5‑azacytidine in two HNSCC cell lines. Furthermore, the expression levels of OLFM4 in 59 cases of early‑stage tongue SCC were analyzed using immunohistochemistry to examine protein expression corresponding to the histopathological definition of tumors and to evaluate prognosis. The aberrant stemness gene expression caused by altered DNA methylation appeared to regulate early‑stage HNSCC characteristics. The results of the present study indicated a correlation between OLFM4 expression and promoter methylation, and suggest that it plays an important role in tumor cell heterogeneity in HNSCC.
Collapse
Affiliation(s)
- Takatsugu Suzuki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Hiroshi Yamazaki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Kazufumi Honda
- Division of Biomarker for Cancer Early Detection, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Akihiro Kaneko
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Yoshihide Ota
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Taisuke Mori
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| |
Collapse
|
18
|
Identification of DNA methylation-regulated differentially-expressed genes and related pathways using Illumina 450K BeadChip and bioinformatic analysis in gastric cancer. Pathol Res Pract 2019; 215:152570. [PMID: 31378454 DOI: 10.1016/j.prp.2019.152570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 01/11/2023]
Abstract
In the current research, we aimed to identify and analyze methylation-regulated differentially-expressed genes (MeDEGs) and related pathways using bioinformatic methods. We downloaded RNA-seq, Illumina Human Methylation 450 K BeadChip and clinical information of gastric cancer (GC) from The Cancer Genome Atlas (TCGA) project. Differentially-expressed genes (DEGs) were identified using the edgeR package. Then, we performed Spearman's correlation analysis between DEG expression levels and methylation levels. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in the DAVID database. We then conducted Kaplan-Meier survival analysis to explore the relationship between methylation, expression and prognosis. The protein-protein interaction networks were further analyzed using the STRING database. A total of 204 down-regulated DEGs and 164 up-regulated DEGs were identified as MeDEGs. GO and KEGG pathway analyses showed that MeDEGs were enriched in multiple cancer-related terms. Kaplan-Meier survival analysis showed that eight up-regulated MeDEGs (CAMKV, COMP, FGF3, FGF19, FOXL2, IGF2BP1, IGFBP1 and NPPB) and five down-regulated MeDEGs (ALDH3B2, CALML3, FLRT1, G6PC and HRASLS2) were associated with prognosis of GC patients. In addition, PPI networks and KEGG pathway analyses further confirmed the critical role of prognosis-related MeDEGs. In conclusion, methylation plays a critical role in GC progression. Multiple MeDEGs are related to prognosis, suggesting that they may be potential targets in tumor treatment.
Collapse
|
19
|
Fragou D, Pakkidi E, Aschner M, Samanidou V, Kovatsi L. Smoking and DNA methylation: Correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure. Food Chem Toxicol 2019; 129:312-327. [PMID: 31063835 DOI: 10.1016/j.fct.2019.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Among epigenetic mechanisms, DNA methylation has been widely studied with respect to many environmental factors. Smoking is a common factor which affects both global and gene-specific DNA methylation. It is supported that smoking directly affects DNA methylation, and these effects contribute to the development and progression of various diseases, such as cancer, lung and cardiovascular diseases and male infertility. In addition, prenatal smoking influences the normal development of the fetus via DNA methylation changes. The DNA methylation profile and its smoking-induced alterations helps to distinguish current from former smokers and non-smokers and can be used to predict the risk for the development of a disease. This review summarizes the DNA methylation changes induced by smoking, their correlation with smoking behavior and their association with various diseases and fetus development.
Collapse
Affiliation(s)
- Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Eleni Pakkidi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | - Michael Aschner
- Departments of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The present review aims to describe the epigenetic alterations observed in oral cancer linked to the exposure to alcohol and/or tobacco. RECENT FINDINGS Recent findings emphasize the importance of epigenetics in oral cancer progression and in how risk factors (as tobacco and alcohol) affect the basal epigenetic profiles. Deeper techniques and detailed approaches allowed the perception that individual CG changes and even subtle changes may represent important epigenetic alterations resulting in expression changes and other carcinogenic consequences. New classes of epigenetic alterations including noncoding RNAs have been gaining attention. SUMMARY Many epigenetic alterations have been described in oral carcinoma progression induced by tobacco and/or alcohol, including: promoter hypermethylation in genes with tumor suppressive activity, global (genome-wide) hypomethylation, change in methylation patterns throughout the genes, alteration in noncoding RNAs, and histones modifications. These changes represent progress in the knowledge of how these risk factors act in a molecular level. There is an urgent need for large independent studies to move these potential makers further and validate them to identify risk assessment, early diagnostic markers, and therapeutic targets, as well as to be the base for prevention and intervention strategies.
Collapse
|
21
|
|