1
|
Gutierrez JJG, Lau E, Dharmapalan S, Parker M, Chen Y, Álvarez MA, Wang D. Multi-output prediction of dose-response curves enables drug repositioning and biomarker discovery. NPJ Precis Oncol 2024; 8:209. [PMID: 39304771 DOI: 10.1038/s41698-024-00691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Drug response prediction is hampered by uncertainty in the measures of response and selection of doses. In this study, we propose a probabilistic multi-output model to simultaneously predict all dose-responses and uncover their biomarkers. By describing the relationship between genomic features and chemical properties to every response at every dose, our multi-output Gaussian Process (MOGP) models enable assessment of drug efficacy using any dose-response metric. This approach was tested across two drug screening studies and ten cancer types. Kullback-leibler divergence measured the importance of each feature and identified EZH2 gene as a novel biomarker of BRAF inhibitor response. We demonstrate the effectiveness of our MOGP models in accurately predicting dose-responses in different cancer types and when there is a limited number of drug screening experiments for training. Our findings highlight the potential of MOGP models in enhancing drug development pipelines by reducing data requirements and improving precision in dose-response predictions.
Collapse
Affiliation(s)
- Juan-José Giraldo Gutierrez
- National Heart and Lung Institute, Imperial College London, London, UK.
- Department of Computer Science, The University of Sheffield, Sheffield, UK.
| | - Evelyn Lau
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Subhashini Dharmapalan
- Department of Computer Science, The University of Sheffield, Sheffield, UK
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Melody Parker
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Yurui Chen
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Mathematics, National University of Singapore, Singapore, Republic of Singapore
| | - Mauricio A Álvarez
- Department of Computer Science, The University of Manchester, Manchester, UK
| | - Dennis Wang
- National Heart and Lung Institute, Imperial College London, London, UK.
- Department of Computer Science, The University of Sheffield, Sheffield, UK.
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore.
| |
Collapse
|
2
|
Xu M, Zhu Z, Zhao Y, He K, Huang Q, Zhao Y. RedCDR: Dual Relation Distillation for Cancer Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1468-1479. [PMID: 38776197 DOI: 10.1109/tcbb.2024.3404262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Based on multi-omics data and drug information, predicting the response of cancer cell lines to drugs is a crucial area of research in modern oncology, as it can promote the development of personalized treatments. Despite the promising performance achieved by existing models, most of them overlook the variations among different omics and lack effective integration of multi-omics data. Moreover, the explicit modeling of cell line/drug attribute and cell line-drug association has not been thoroughly investigated in existing approaches. To address these issues, we propose RedCDR, a dual relation distillation model for cancer drug response (CDR) prediction. Specifically, a parallel dual-branch architecture is designed to enable both the independent learning and interactive fusion feasible for cell line/drug attribute and cell line-drug association information. To facilitate the adaptive interacting integration of multi-omics data, the proposed multi-omics encoder introduces the multiple similarity relations between cell lines and takes the importance of different omics data into account. To accomplish knowledge transfer from the two independent attribute and association branches to their fusion, a dual relation distillation mechanism consisting of representation distillation and prediction distillation is presented. Experiments conducted on the GDSC and CCLE datasets show that RedCDR outperforms previous state-of-the-art approaches in CDR prediction.
Collapse
|
3
|
Li X, Shi X, Li Y, Wang L. MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. J Integr Bioinform 2024; 21:jib-2024-0026. [PMID: 39238451 PMCID: PMC11602226 DOI: 10.1515/jib-2024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
Drug therapy remains the primary approach to treating tumours. Variability among cancer patients, including variations in genomic profiles, often results in divergent therapeutic responses to analogous anti-cancer drug treatments within the same cohort of cancer patients. Hence, predicting the drug response by analysing the genomic profile characteristics of individual patients holds significant research importance. With the notable progress in machine learning and deep learning, many effective methods have emerged for predicting drug responses utilizing features from both drugs and cell lines. However, these methods are inadequate in capturing a sufficient number of features inherent to drugs. Consequently, we propose a representational approach for drugs that incorporates three distinct types of features: the molecular graph, the SMILE strings, and the molecular fingerprints. In this study, a novel deep learning model, named MCMVDRP, is introduced for the prediction of cancer drug responses. In our proposed model, an amalgamation of these extracted features is performed, followed by the utilization of fully connected layers to predict the drug response based on the IC50 values. Experimental results demonstrate that the presented model outperforms current state-of-the-art models in performance.
Collapse
Affiliation(s)
- Xiangyu Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Xiumin Shi
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yuxuan Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Dong F, Yan J, Zhang X, Zhang Y, Liu D, Pan X, Xue L, Liu Y. Artificial intelligence-based predictive model for guidance on treatment strategy selection in oral and maxillofacial surgery. Heliyon 2024; 10:e35742. [PMID: 39170321 PMCID: PMC11336844 DOI: 10.1016/j.heliyon.2024.e35742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Application of deep learning (DL) and machine learning (ML) is rapidly increasing in the medical field. DL is gaining significance for medical image analysis, particularly, in oral and maxillofacial surgeries. Owing to the ability to accurately identify and categorize both diseased and normal soft- and hard-tissue structures, DL has high application potential in the diagnosis and treatment of tumors and in orthognathic surgeries. Moreover, DL and ML can be used to develop prediction models that can aid surgeons to assess prognosis by analyzing the patient's medical history, imaging data, and surgical records, develop more effective treatment strategies, select appropriate surgical modalities, and evaluate the risk of postoperative complications. Such prediction models can play a crucial role in the selection of treatment strategies for oral and maxillofacial surgeries. Their practical application can improve the utilization of medical staff, increase the treatment accuracy and efficiency, reduce surgical risks, and provide an enhanced treatment experience to patients. However, DL and ML face limitations, such as data drift, unstable model results, and vulnerable social trust. With the advancement of social concepts and technologies, the use of these models in oral and maxillofacial surgery is anticipated to become more comprehensive and extensive.
Collapse
Affiliation(s)
- Fanqiao Dong
- School of Stomatology, China Medical University, Shenyang, China
| | - Jingjing Yan
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiyue Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Yikun Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Di Liu
- School of Stomatology, China Medical University, Shenyang, China
| | - Xiyun Pan
- School of Stomatology, China Medical University, Shenyang, China
| | - Lei Xue
- School of Stomatology, China Medical University, Shenyang, China
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yu Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Duo L, Liu Y, Ren J, Tang B, Hirst JD. Artificial intelligence for small molecule anticancer drug discovery. Expert Opin Drug Discov 2024; 19:933-948. [PMID: 39074493 DOI: 10.1080/17460441.2024.2367014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The transition from conventional cytotoxic chemotherapy to targeted cancer therapy with small-molecule anticancer drugs has enhanced treatment outcomes. This approach, which now dominates cancer treatment, has its advantages. Despite the regulatory approval of several targeted molecules for clinical use, challenges such as low response rates and drug resistance still persist. Conventional drug discovery methods are costly and time-consuming, necessitating more efficient approaches. The rise of artificial intelligence (AI) and access to large-scale datasets have revolutionized the field of small-molecule cancer drug discovery. Machine learning (ML), particularly deep learning (DL) techniques, enables the rapid identification and development of novel anticancer agents by analyzing vast amounts of genomic, proteomic, and imaging data to uncover hidden patterns and relationships. AREA COVERED In this review, the authors explore the important landmarks in the history of AI-driven drug discovery. They also highlight various applications in small-molecule cancer drug discovery, outline the challenges faced, and provide insights for future research. EXPERT OPINION The advent of big data has allowed AI to penetrate and enable innovations in almost every stage of medicine discovery, transforming the landscape of oncology research through the development of state-of-the-art algorithms and models. Despite challenges in data quality, model interpretability, and technical limitations, advancements promise breakthroughs in personalized and precision oncology, revolutionizing future cancer management.
Collapse
Affiliation(s)
- Lihui Duo
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Yu Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jianfeng Ren
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Bencan Tang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham University Park, Nottingham, UK
| |
Collapse
|
6
|
Goldstein Y, Cohen OT, Wald O, Bavli D, Kaplan T, Benny O. Particle uptake in cancer cells can predict malignancy and drug resistance using machine learning. SCIENCE ADVANCES 2024; 10:eadj4370. [PMID: 38809990 PMCID: PMC11314625 DOI: 10.1126/sciadv.adj4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Tumor heterogeneity is a primary factor that contributes to treatment failure. Predictive tools, capable of classifying cancer cells based on their functions, may substantially enhance therapy and extend patient life span. The connection between cell biomechanics and cancer cell functions is used here to classify cells through mechanical measurements, via particle uptake. Machine learning (ML) was used to classify cells based on single-cell patterns of uptake of particles with diverse sizes. Three pairs of human cancer cell subpopulations, varied in their level of drug resistance or malignancy, were studied. Cells were allowed to interact with fluorescently labeled polystyrene particles ranging in size from 0.04 to 3.36 μm and analyzed for their uptake patterns using flow cytometry. ML algorithms accurately classified cancer cell subtypes with accuracy rates exceeding 95%. The uptake data were especially advantageous for morphologically similar cell subpopulations. Moreover, the uptake data were found to serve as a form of "normalization" that could reduce variation in repeated experiments.
Collapse
Affiliation(s)
- Yoel Goldstein
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ora T. Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ori Wald
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danny Bavli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
7
|
Hajim WI, Zainudin S, Mohd Daud K, Alheeti K. Optimized models and deep learning methods for drug response prediction in cancer treatments: a review. PeerJ Comput Sci 2024; 10:e1903. [PMID: 38660174 PMCID: PMC11042005 DOI: 10.7717/peerj-cs.1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.
Collapse
Affiliation(s)
- Wesam Ibrahim Hajim
- Department of Applied Geology, College of Sciences, Tirkit University, Tikrit, Salah ad Din, Iraq
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Suhaila Zainudin
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Khattab Alheeti
- Department of Computer Networking Systems, College of Computer Sciences and Information Technology, University of Anbar, Al Anbar, Ramadi, Iraq
| |
Collapse
|
8
|
Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges. Front Pharmacol 2024; 14:1260276. [PMID: 38264526 PMCID: PMC10803549 DOI: 10.3389/fphar.2023.1260276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.
Collapse
Affiliation(s)
| | | | | | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
9
|
Li Y, Guo Z, Gao X, Wang G. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Bioinformatics 2023; 39:btad734. [PMID: 38070154 PMCID: PMC10756335 DOI: 10.1093/bioinformatics/btad734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
MOTIVATION Cancer is a complex disease that results in a significant number of global fatalities. Treatment strategies can vary among patients, even if they have the same type of cancer. The application of precision medicine in cancer shows promise for treating different types of cancer, reducing healthcare expenses, and improving recovery rates. To achieve personalized cancer treatment, machine learning models have been developed to predict drug responses based on tumor and drug characteristics. However, current studies either focus on constructing homogeneous networks from single data source or heterogeneous networks from multiomics data. While multiomics data have shown potential in predicting drug responses in cancer cell lines, there is still a lack of research that effectively utilizes insights from different modalities. Furthermore, effectively utilizing the multimodal knowledge of cancer cell lines poses a challenge due to the heterogeneity inherent in these modalities. RESULTS To address these challenges, we introduce MMCL-CDR (Multimodal Contrastive Learning for Cancer Drug Responses), a multimodal approach for cancer drug response prediction that integrates copy number variation, gene expression, morphology images of cell lines, and chemical structure of drugs. The objective of MMCL-CDR is to align cancer cell lines across different data modalities by learning cell line representations from omic and image data, and combined with structural drug representations to enhance the prediction of cancer drug responses (CDR). We have carried out comprehensive experiments and show that our model significantly outperforms other state-of-the-art methods in CDR prediction. The experimental results also prove that the model can learn more accurate cell line representation by integrating multiomics and morphological data from cell lines, thereby improving the accuracy of CDR prediction. In addition, the ablation study and qualitative analysis also confirm the effectiveness of each part of our proposed model. Last but not least, MMCL-CDR opens up a new dimension for cancer drug response prediction through multimodal contrastive learning, pioneering a novel approach that integrates multiomics and multimodal drug and cell line modeling. AVAILABILITY AND IMPLEMENTATION MMCL-CDR is available at https://github.com/catly/MMCL-CDR.
Collapse
Affiliation(s)
- Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Zihou Guo
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| |
Collapse
|
10
|
Mumtaz H, Saqib M, Jabeen S, Muneeb M, Mughal W, Sohail H, Safdar M, Mehmood Q, Khan MA, Ismail SM. Exploring alternative approaches to precision medicine through genomics and artificial intelligence - a systematic review. Front Med (Lausanne) 2023; 10:1227168. [PMID: 37849490 PMCID: PMC10577305 DOI: 10.3389/fmed.2023.1227168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
The core idea behind precision medicine is to pinpoint the subpopulations that differ from one another in terms of disease risk, drug responsiveness, and treatment outcomes due to differences in biology and other traits. Biomarkers are found through genomic sequencing. Multi-dimensional clinical and biological data are created using these biomarkers. Better analytic methods are needed for these multidimensional data, which can be accomplished by using artificial intelligence (AI). An updated review of 80 latest original publications is presented on four main fronts-preventive medicine, medication development, treatment outcomes, and diagnostic medicine-All these studies effectively illustrated the significance of AI in precision medicine. Artificial intelligence (AI) has revolutionized precision medicine by swiftly analyzing vast amounts of data to provide tailored treatments and predictive diagnostics. Through machine learning algorithms and high-resolution imaging, AI assists in precise diagnoses and early disease detection. AI's ability to decode complex biological factors aids in identifying novel therapeutic targets, allowing personalized interventions and optimizing treatment outcomes. Furthermore, AI accelerates drug discovery by navigating chemical structures and predicting drug-target interactions, expediting the development of life-saving medications. With its unrivaled capacity to comprehend and interpret data, AI stands as an invaluable tool in the pursuit of enhanced patient care and improved health outcomes. It's evident that AI can open a new horizon for precision medicine by translating complex data into actionable information. To get better results in this regard and to fully exploit the great potential of AI, further research is required on this pressing subject.
Collapse
Affiliation(s)
| | | | | | - Muhammad Muneeb
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Wajiha Mughal
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Hassan Sohail
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Myra Safdar
- Armed Forces Institute of Cardiology and National Institute of Heart Diseases (AFIC-NIHD), Rawalpindi, Pakistan
| | - Qasim Mehmood
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Ahsan Khan
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
11
|
Wang C, Zhang M, Zhao J, Li B, Xiao X, Zhang Y. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer. Comput Biol Med 2023; 163:107220. [PMID: 37406589 DOI: 10.1016/j.compbiomed.2023.107220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Cancer drug response prediction based on genomic information plays a crucial role in modern pharmacogenomics, enabling individualized therapy. Given the expensive and complexity of biological experiments, computational methods serve as effective tools in predicting cancer drug sensitivity. In this study, we proposed a novel method called Multi-Omics Integrated Collective Variational Autoencoders (MOICVAE), which leverages integrated omics knowledge, including genomic and transcriptomic data, to fill in missing cancer-drug associations and enhance drug sensitivity prediction. Our method employs an encoder-decoder network to learn latent feature representations from cell lines. These learned feature vectors are then fed into a collective variational autoencoder network to train an association matrix. We evaluated MOICVAE on the GDSC and CCLE benchmark datasets using 10-fold cross-validation and achieved impressive AUCs of 0.856 and 0.808, respectively, outperforming state-of-the-art methods. Furthermore, on the TCGA dataset, consisting of 25 drugs across 7 cancer types, MOICVAE exhibited an average AUC of 0.91 in predicting drug sensitivity. Additionally, significant differences were observed in survival, tumor inflammatory assessment, and tumor microenvironment between the predicted drug-sensitive and drug-resistant groups. These results are consistent with predictions made on the METABRIC dataset. Moreover, we discovered that fusing omics data based on mRNA and CNV (copy number variations) yielded superior results in drug sensitivity prediction. MOICVAE not only achieved higher accuracy in drug sensitivity prediction but also provided additional value for combining immunotherapy with chemotherapy, offering patients with more precise treatment options. The code and dataset for MOICVAE are freely available at https://github.com/wanggnoc/MOICVAE.
Collapse
Affiliation(s)
- Cong Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Mengyan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiyun Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Bin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xingjun Xiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, People's Republic of China.
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China; College of Pathology, Qiqihar Medical University, Qiqihar, 161042, China.
| |
Collapse
|
12
|
Shahzad M, Tahir MA, Alhussein M, Mobin A, Shams Malick RA, Anwar MS. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response. Diagnostics (Basel) 2023; 13:2043. [PMID: 37370938 DOI: 10.3390/diagnostics13122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
With the beginning of the high-throughput screening, in silico-based drug response analysis has opened lots of research avenues in the field of personalized medicine. For a decade, many different predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response, but still, there is a need for improvements in drug sensitivity prediction. The intent of this research study is to propose a framework, namely NeuPD, to validate the potential anti-cancer drugs against a panel of cancer cell lines in publicly available datasets. The datasets used in this work are Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). As not all drugs are effective on cancer cell lines, we have worked on 10 essential drugs from the GDSC dataset that have achieved the best modeling results in previous studies. We also extracted 1610 essential oncogene expressions from 983 cell lines from the same dataset. Whereas, from the CCLE dataset, 16,383 gene expressions from 1037 cell lines and 24 drugs have been used in our experiments. For dimensionality reduction, Pearson correlation is applied to best fit the model. We integrate the genomic features of cell lines and drugs' fingerprints to fit the neural network model. For evaluation of the proposed NeuPD framework, we have used repeated K-fold cross-validation with 5 times repeats where K = 10 to demonstrate the performance in terms of root mean square error (RMSE) and coefficient determination (R2). The results obtained on the GDSC dataset that were measured using these cost functions show that our proposed NeuPD framework has outperformed existing approaches with an RMSE of 0.490 and R2 of 0.929.
Collapse
Affiliation(s)
- Muhammad Shahzad
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Atif Tahir
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Ansharah Mobin
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Rauf Ahmed Shams Malick
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Shahid Anwar
- Department of AI and Software, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
13
|
Chu T, Nguyen TT, Hai BD, Nguyen QH, Nguyen T. Graph Transformer for Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1065-1072. [PMID: 36107906 DOI: 10.1109/tcbb.2022.3206888] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Previous models have shown that learning drug features from their graph representation is more efficient than learning from their strings or numeric representations. Furthermore, integrating multi-omics data of cell lines increases the performance of drug response prediction. However, these models have shown drawbacks in extracting drug features from graph representation and incorporating redundancy information from multi-omics data. This paper proposes a deep learning model, GraTransDRP, to better drug representation and reduce information redundancy. First, the Graph transformer was utilized to extract the drug representation more efficiently. Next, Convolutional neural networks were used to learn the mutation, meth, and transcriptomics features. However, the dimension of transcriptomics features was up to 17737. Therefore, KernelPCA was applied to transcriptomics features to reduce the dimension and transform them into a dense presentation before putting them through the CNN model. Finally, drug and omics features were combined to predict a response value by a fully connected network. Experimental results show that our model outperforms some state-of-the-art methods, including GraphDRP and GraOmicDRP.
Collapse
|
14
|
Parpinel G, Laudani ME, Piovano E, Zola P, Lecuru F. The Use of Artificial Intelligence for Complete Cytoreduction Prediction in Epithelial Ovarian Cancer: A Narrative Review. Cancer Control 2023; 30:10732748231159553. [PMID: 36847148 PMCID: PMC9972055 DOI: 10.1177/10732748231159553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
INTRODUCTION In patients affected by epithelial ovarian cancer (EOC) complete cytoreduction (CC) has been associated with higher survival outcomes. Artificial intelligence (AI) systems have proved clinical benefice in different areas of healthcare. OBJECTIVE To systematically assemble and analyze the available literature on the use of AI in patients affected by EOC to evaluate its applicability to predict CC compared to traditional statistics. MATERIAL AND METHODS Data search was carried out through PubMed, Scopus, Ovid MEDLINE, Cochrane Library, EMBASE, international congresses and clinical trials. The main search terms were: Artificial Intelligence AND surgery/cytoreduction AND ovarian cancer. Two authors independently performed the search by October 2022 and evaluated the eligibility criteria. Studies were included when data about Artificial Intelligence and methodological data were detailed. RESULTS A total of 1899 cases were analyzed. Survival data were reported in 2 articles: 92% of 5-years overall survival (OS) and 73% of 2-years OS. The median area under the curve (AUC) resulted 0,62. The model accuracy for surgical resection reported in two articles reported was 77,7% and 65,8% respectively while the median AUC was 0,81. On average 8 variables were inserted in the algorithms. The most used parameters were age and Ca125. DISCUSSION AI revealed greater accuracy compared against the logistic regression models data. Survival predictive accuracy and AUC were lower for advanced ovarian cancers. One study analyzed the importance of factors predicting CC in recurrent epithelial ovarian cancer and disease free interval, retroperitoneal recurrence, residual disease at primary surgery and stage represented the main influencing factors. Surgical Complexity Scores resulted to be more useful in the algorithms than pre-operating imaging. CONCLUSION AI showed better prognostic accuracy if compared to conventional algorithms. However further studies are needed to compare the impact of different AI methods and variables and to provide survival informations.
Collapse
Affiliation(s)
- Giulia Parpinel
- Department of Surgical Sciences, University of Turin, Torino, Italy,Giulia Parpinel, MD, Department of Surgical
Sciences, University of Turin, Via Ventimiglia 3, Torino 10126, Italy.
| | | | - Elisa Piovano
- Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Paolo Zola
- Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Fabrice Lecuru
- Breast, Gynecology and
Reconstructive Surgery Unit, Curie Institute, Paris, France
| |
Collapse
|
15
|
Sharma A, Lysenko A, Boroevich KA, Tsunoda T. DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics. Sci Rep 2023; 13:2483. [PMID: 36774402 PMCID: PMC9922304 DOI: 10.1038/s41598-023-29644-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Modern oncology offers a wide range of treatments and therefore choosing the best option for particular patient is very important for optimal outcome. Multi-omics profiling in combination with AI-based predictive models have great potential for streamlining these treatment decisions. However, these encouraging developments continue to be hampered by very high dimensionality of the datasets in combination with insufficiently large numbers of annotated samples. Here we proposed a novel deep learning-based method to predict patient-specific anticancer drug response from three types of multi-omics data. The proposed DeepInsight-3D approach relies on structured data-to-image conversion that then allows use of convolutional neural networks, which are particularly robust to high dimensionality of the inputs while retaining capabilities to model highly complex relationships between variables. Of particular note, we demonstrate that in this formalism additional channels of an image can be effectively used to accommodate data from different omics layers while implicitly encoding the connection between them. DeepInsight-3D was able to outperform other state-of-the-art methods applied to this task. The proposed improvements can facilitate the development of better personalized treatment strategies for different cancers in the future.
Collapse
Affiliation(s)
- Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.
| | - Artem Lysenko
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Laboratory for Medical Science Mathematics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Wang H, Dai C, Wen Y, Wang X, Liu W, He S, Bo X, Peng S. GADRP: graph convolutional networks and autoencoders for cancer drug response prediction. Brief Bioinform 2023; 24:6865039. [PMID: 36460622 DOI: 10.1093/bib/bbac501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 12/04/2022] Open
Abstract
Drug response prediction in cancer cell lines is of great significance in personalized medicine. In this study, we propose GADRP, a cancer drug response prediction model based on graph convolutional networks (GCNs) and autoencoders (AEs). We first use a stacked deep AE to extract low-dimensional representations from cell line features, and then construct a sparse drug cell line pair (DCP) network incorporating drug, cell line, and DCP similarity information. Later, initial residual and layer attention-based GCN (ILGCN) that can alleviate over-smoothing problem is utilized to learn DCP features. And finally, fully connected network is employed to make prediction. Benchmarking results demonstrate that GADRP can significantly improve prediction performance on all metrics compared with baselines on five datasets. Particularly, experiments of predictions of unknown DCP responses, drug-cancer tissue associations, and drug-pathway associations illustrate the predictive power of GADRP. All results highlight the effectiveness of GADRP in predicting drug responses, and its potential value in guiding anti-cancer drug selection.
Collapse
Affiliation(s)
- Hong Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yuqi Wen
- Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Wenjuan Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Song He
- Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.,The State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Nigdeli SM, Yücel M, Bekdaş G. A hybrid artificial intelligence model for design of reinforced concrete columns. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Moreno M, Vilaça R, Ferreira PG. Scalable transcriptomics analysis with Dask: applications in data science and machine learning. BMC Bioinformatics 2022; 23:514. [PMID: 36451115 PMCID: PMC9710082 DOI: 10.1186/s12859-022-05065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gene expression studies are an important tool in biological and biomedical research. The signal carried in expression profiles helps derive signatures for the prediction, diagnosis and prognosis of different diseases. Data science and specifically machine learning have many applications in gene expression analysis. However, as the dimensionality of genomics datasets grows, scalable solutions become necessary. METHODS In this paper we review the main steps and bottlenecks in machine learning pipelines, as well as the main concepts behind scalable data science including those of concurrent and parallel programming. We discuss the benefits of the Dask framework and how it can be integrated with the Python scientific environment to perform data analysis in computational biology and bioinformatics. RESULTS This review illustrates the role of Dask for boosting data science applications in different case studies. Detailed documentation and code on these procedures is made available at https://github.com/martaccmoreno/gexp-ml-dask . CONCLUSION By showing when and how Dask can be used in transcriptomics analysis, this review will serve as an entry point to help genomic data scientists develop more scalable data analysis procedures.
Collapse
Affiliation(s)
- Marta Moreno
- grid.5808.50000 0001 1503 7226Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal ,grid.20384.3d0000 0004 0500 6380Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ricardo Vilaça
- grid.20384.3d0000 0004 0500 6380High-Assurance Software Laboratory, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal ,grid.10328.380000 0001 2159 175XDepartment of Informatics, Minho Advanced Computing Center, University of Minho, Gualtar, 4710-070 Braga, Portugal
| | - Pedro G. Ferreira
- grid.5808.50000 0001 1503 7226Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal ,grid.20384.3d0000 0004 0500 6380Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal ,grid.5808.50000 0001 1503 7226Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Peng W, Liu H, Dai W, Yu N, Wang J. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Bioinformatics 2022; 38:4546-4553. [PMID: 35997568 DOI: 10.1093/bioinformatics/btac574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Due to cancer heterogeneity, the therapeutic effect may not be the same when a cohort of patients of the same cancer type receive the same treatment. The anticancer drug response prediction may help develop personalized therapy regimens to increase survival and reduce patients' expenses. Recently, graph neural network-based methods have aroused widespread interest and achieved impressive results on the drug response prediction task. However, most of them apply graph convolution to process cell line-drug bipartite graphs while ignoring the intrinsic differences between cell lines and drug nodes. Moreover, most of these methods aggregate node-wise neighbor features but fail to consider the element-wise interaction between cell lines and drugs. RESULTS This work proposes a neighborhood interaction (NI)-based heterogeneous graph convolution network method, namely NIHGCN, for anticancer drug response prediction in an end-to-end way. Firstly, it constructs a heterogeneous network consisting of drugs, cell lines and the known drug response information. Cell line gene expression and drug molecular fingerprints are linearly transformed and input as node attributes into an interaction model. The interaction module consists of a parallel graph convolution network layer and a NI layer, which aggregates node-level features from their neighbors through graph convolution operation and considers the element-level of interactions with their neighbors in the NI layer. Finally, the drug response predictions are made by calculating the linear correlation coefficients of feature representations of cell lines and drugs. We have conducted extensive experiments to assess the effectiveness of our model on Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets. It has achieved the best performance compared with the state-of-the-art algorithms, especially in predicting drug responses for new cell lines, new drugs and targeted drugs. Furthermore, our model that was well trained on the GDSC dataset can be successfully applied to predict samples of PDX and TCGA, which verified the transferability of our model from cell line in vitro to the datasets in vivo. AVAILABILITY AND IMPLEMENTATION The source code can be obtained from https://github.com/weiba/NIHGCN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Ning Yu
- Department of Computing Sciences, The College at Brockport, State University of New York, Brockport, NY 14422, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
20
|
Brindha GR, Rishiikeshwer BS, Santhi B, Nakendraprasath K, Manikandan R, Gandomi AH. Precise prediction of multiple anticancer drug efficacy using multi target regression and support vector regression analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107027. [PMID: 35914385 DOI: 10.1016/j.cmpb.2022.107027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The prediction of multiple drug efficacies using machine learning prediction techniques based on clinical and molecular attributes of tumors is a new approach in the field of precision medicine of oncology. The selection of suitable and effective therapeutic drugs among the potential drugs is performed computationally considering the tumor features. In this study, we developed and validated machine learning models to predict the efficacy of five anti-cancer drugs according to the clinical and molecular attributes of 30 oral squamous cell carcinoma (OSCC) cohorts. This sounds a bit odd - consider: Ranking of the drugs was achieved using their apoptotic priming. METHODS We developed multiple drug efficacy prediction models based on three types of tumor characteristics by applying machine learning methods, including multi-target regression (MTR) and support vector regression (SVR). The prediction accuracy of existing machine learning methods was enhanced by introducing novel pre-processing techniques to develop Enhanced MTR (E_MTR), Enhanced Log-based MTR (EL_MTR), Enhanced Multi-target SVR (EM_SVR), and Enhanced Log-based Multi-target SVR (ELM_SVR). As a unique capability, ELM_SVR and EL_MTR rank the drugs based on their predicted efficacy. All the drug efficacy prediction models were built using OSCC real samples and theoretical samples. The best model was selected was based on dataset size and evaluation metrics, such as error terms, residuals and parameter tuning, and cross-validated (CV) using 30 real samples and 340 theoretical samples. RESULTS When 30 real tumor samples were used for the train-test and CV methods, MTR models predicted the efficacy with less error than SVR models. Comparatively, using 340 theoretical samples for the train-test and CV methods, though MTR improved the performance, SVR predicted the efficacy with zero error. We found that, for small samples, the proposed MTR provided a 0.01 difference between actual apoptotic priming and predicted priming of five drugs. For large samples, the predicted values by the proposed SVR had a difference of 0.00001. The error terms (Actual vs. Predicted) also reveal that the enhanced log model is suitable when MTR is applied. Meanwhile, the enhanced model is suitable for SVR learning for multiple drug efficacy prediction. It was found that the predicted ranks of the drugs based on the multi-targeted efficacy prediction exactly match the actual rankings. CONCLUSION We developed efficient statistical and machine learning models using MTR and SVR analysis for anticancer drug efficacy, which will be useful in the field of precision medicine to choose the most suitable drugs in personalized manner. The performance results of the proposed enhanced ranking techniques are described as follows: i) EL_MTR is the best to predict multiple anticancer drug efficacies and improve the accuracy of ranking drugs, irrespective of sample size; and ii) ELM_SVR performs better than other MTR models with a large sample size and precise ranking process.
Collapse
Affiliation(s)
- G R Brindha
- SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India
| | | | - B Santhi
- SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India.
| | | | - R Manikandan
- SASTRA Deemed to be University, Thanjavur, Tamilnadu 613401, India
| | - Amir H Gandomi
- Data Science Institute, Faculty of Engineering and Information Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
21
|
Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol 2022; 39:120. [PMID: 35704152 PMCID: PMC9198206 DOI: 10.1007/s12032-022-01711-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 10/28/2022]
Abstract
The advancement of precision medicine in medical care has led behind the conventional symptom-driven treatment process by allowing early risk prediction of disease through improved diagnostics and customization of more effective treatments. It is necessary to scrutinize overall patient data alongside broad factors to observe and differentiate between ill and relatively healthy people to take the most appropriate path toward precision medicine, resulting in an improved vision of biological indicators that can signal health changes. Precision and genomic medicine combined with artificial intelligence have the potential to improve patient healthcare. Patients with less common therapeutic responses or unique healthcare demands are using genomic medicine technologies. AI provides insights through advanced computation and inference, enabling the system to reason and learn while enhancing physician decision making. Many cell characteristics, including gene up-regulation, proteins binding to nucleic acids, and splicing, can be measured at high throughput and used as training objectives for predictive models. Researchers can create a new era of effective genomic medicine with the improved availability of a broad range of datasets and modern computer techniques such as machine learning. This review article has elucidated the contributions of ML algorithms in precision and genome medicine.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, 560043, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
22
|
Abstract
The advancement of precision medicine in medical care has led behind the conventional symptom-driven treatment process by allowing early risk prediction of disease through improved diagnostics and customization of more effective treatments. It is necessary to scrutinize overall patient data alongside broad factors to observe and differentiate between ill and relatively healthy people to take the most appropriate path toward precision medicine, resulting in an improved vision of biological indicators that can signal health changes. Precision and genomic medicine combined with artificial intelligence have the potential to improve patient healthcare. Patients with less common therapeutic responses or unique healthcare demands are using genomic medicine technologies. AI provides insights through advanced computation and inference, enabling the system to reason and learn while enhancing physician decision making. Many cell characteristics, including gene up-regulation, proteins binding to nucleic acids, and splicing, can be measured at high throughput and used as training objectives for predictive models. Researchers can create a new era of effective genomic medicine with the improved availability of a broad range of datasets and modern computer techniques such as machine learning. This review article has elucidated the contributions of ML algorithms in precision and genome medicine.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, 560043, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
23
|
Pu L, Singha M, Ramanujam J, Brylinski M. CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling. Oncotarget 2022; 13:695-706. [PMID: 35601606 PMCID: PMC9119687 DOI: 10.18632/oncotarget.28234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Development of novel anti-cancer treatments requires not only a comprehensive knowledge of cancer processes and drug mechanisms of action, but also the ability to accurately predict the response of various cancer cell lines to therapeutics. Numerous computational methods have been developed to address this issue, including algorithms employing supervised machine learning. Nonetheless, high prediction accuracies reported for many of these techniques may result from a significant overlap among training, validation, and testing sets, making existing predictors inapplicable to new data. To address these issues, we developed CancerOmicsNet, a graph neural network with sophisticated attention propagation mechanisms to predict the therapeutic effects of kinase inhibitors across various tumors. Emphasizing on the system-level complexity of cancer, CancerOmicsNet integrates multiple heterogeneous data, such as biological networks, genomics, inhibitor profiling, and gene-disease associations, into a unified graph structure. The performance of CancerOmicsNet, properly cross-validated at the tissue level, is 0.83 in terms of the area under the receiver operating characteristics, which is notably higher than those measured for other approaches. CancerOmicsNet generalizes well to unseen data, i.e., it can predict therapeutic effects across a variety of cancer cell lines and inhibitors. CancerOmicsNet is freely available to the academic community at https://github.com/pulimeng/CancerOmicsNet.
Collapse
Affiliation(s)
- Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA.,These authors contributed equally to this work
| | - Manali Singha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,These authors contributed equally to this work
| | - Jagannathan Ramanujam
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA.,Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
24
|
Shahzad M, Tahir MA, Khan MA, Jiang R, Malick RAS. EBSRMF: Ensemble based similarity-regularized matrix factorization to predict anticancer drug responses. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drug sensitivity prediction to a panel of cancer cell lines using computational approaches has been a challenge for two decades. With the emergence of high-throughput screening technologies, thousands of compounds and cancer cell lines panels with drug sensitivity data are publicly available at various pharmacogenomics databases. Analyzing these data is crucial to improve cancer treatment and develop new anticancer drugs. In this work, we propose EBSRMF: Ensemble Based Similarity-Regularized Matrix Factorization, which is a bagging based framework to improve the drug sensitivity prediction on the Cancer Cell Line Encyclopedia (CCLE) data. Based on the fact that similar drugs and cell lines exhibit similar drug response, we have investigated cell line and drug similarity matrices based on gene expression profiles and chemical structure respectively. The drug sensitivity value is used as outcome values which are the half maximal inhibitory concentrations (IC50). In order to improve the generalization ability of the proposed model, a homogeneous ensemble based bagging learning approach is also investigated where multiple SRMF models are used to train N subsets of the input data. The outcome of each training algorithm is aggregated using the averaging method to predict the outcome. Experiments are conducted on two benchmark datasets: CCLE and GDSC. The proposed model is compared with state-of-the-art models using multiple evaluation metrics including Root Means Square Error (RMSE) and Pearson Correlation Coefficient (PCC). The proposed model is quite promising and achieves better performance on CCLE dataset when compared with the existing approaches.
Collapse
Affiliation(s)
- Muhammad Shahzad
- School of Computing and Communications, Lancaster University, Lancaster, United Kingdom
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi Campus, Pakistan
| | - M. Atif Tahir
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi Campus, Pakistan
| | - M. Atta Khan
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi Campus, Pakistan
| | - Richard Jiang
- School of Computing and Communications, Lancaster University, Lancaster, United Kingdom
| | - Rauf Ahmed Shams Malick
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi Campus, Pakistan
| |
Collapse
|
25
|
Harish KB, Price WN, Aphinyanaphongs Y. Open-Source Clinical Machine Learning Models: Critical Appraisal of Feasibility, Advantages, and Challenges. JMIR Form Res 2022; 6:e33970. [PMID: 35404258 PMCID: PMC9039816 DOI: 10.2196/33970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Machine learning applications promise to augment clinical capabilities and at least 64 models have already been approved by the US Food and Drug Administration. These tools are developed, shared, and used in an environment in which regulations and market forces remain immature. An important consideration when evaluating this environment is the introduction of open-source solutions in which innovations are freely shared; such solutions have long been a facet of digital culture. We discuss the feasibility and implications of open-source machine learning in a health care infrastructure built upon proprietary information. The decreased cost of development as compared to drugs and devices, a longstanding culture of open-source products in other industries, and the beginnings of machine learning–friendly regulatory pathways together allow for the development and deployment of open-source machine learning models. Such tools have distinct advantages including enhanced product integrity, customizability, and lower cost, leading to increased access. However, significant questions regarding engineering concerns about implementation infrastructure and model safety, a lack of incentives from intellectual property protection, and nebulous liability rules significantly complicate the ability to develop such open-source models. Ultimately, the reconciliation of open-source machine learning and the proprietary information–driven health care environment requires that policymakers, regulators, and health care organizations actively craft a conducive market in which innovative developers will continue to both work and collaborate.
Collapse
Affiliation(s)
- Keerthi B Harish
- Grossman School of Medicine, New York University, New York, NY, United States
| | - W Nicholson Price
- Law School, University of Michigan, Ann Arbor, MI, United States.,Centre for Advanced Studies In Biomedical Innovation Law, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
26
|
Shehab M, Abualigah L, Shambour Q, Abu-Hashem MA, Shambour MKY, Alsalibi AI, Gandomi AH. Machine learning in medical applications: A review of state-of-the-art methods. Comput Biol Med 2022; 145:105458. [PMID: 35364311 DOI: 10.1016/j.compbiomed.2022.105458] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Applications of machine learning (ML) methods have been used extensively to solve various complex challenges in recent years in various application areas, such as medical, financial, environmental, marketing, security, and industrial applications. ML methods are characterized by their ability to examine many data and discover exciting relationships, provide interpretation, and identify patterns. ML can help enhance the reliability, performance, predictability, and accuracy of diagnostic systems for many diseases. This survey provides a comprehensive review of the use of ML in the medical field highlighting standard technologies and how they affect medical diagnosis. Five major medical applications are deeply discussed, focusing on adapting the ML models to solve the problems in cancer, medical chemistry, brain, medical imaging, and wearable sensors. Finally, this survey provides valuable references and guidance for researchers, practitioners, and decision-makers framing future research and development directions.
Collapse
Affiliation(s)
- Mohammad Shehab
- Information Technology, The World Islamic Sciences and Education University. Amman, Jordan.
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman, Jordan; School of Computer Sciences, Universiti Sains Malaysia, Pulau, Pinang, 11800, Malaysia.
| | - Qusai Shambour
- Department of Software Engineering, Al-Ahliyya Amman University, Amman, Jordan.
| | - Muhannad A Abu-Hashem
- Department of Geomatics, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
27
|
Nguyen GTT, Vu HD, Le DH. Integrating Molecular Graph Data of Drugs and Multiple -Omic Data of Cell Lines for Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:710-717. [PMID: 34260355 DOI: 10.1109/tcbb.2021.3096960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Previous studies have either learned drug's features from their string or numeric representations, which are not natural forms of drugs, or only used genomic data of cell lines for the drug response prediction problem. Here, we proposed a deep learning model, GraOmicDRP, to learn drug's features from their graph representation and integrate multiple -omic data of cell lines. In GraOmicDRP, drugs are represented as graphs of bindings among atoms; meanwhile, cell lines are depicted by not only genomic but also transcriptomic and epigenomic data. Graph convolutional and convolutional neural networks were used to learn the representation of drugs and cell lines, respectively. A combination of the two representations was then used to be representative of each pair of drug-cell line. Finally, the response value of each pair was predicted by a fully connected network. Experimental results indicate that transcriptomic data shows the best among single -omic data; meanwhile, the combinations of transcriptomic and other -omic data achieved the best performance overall in terms of both Root Mean Square Error and Pearson correlation coefficient. In addition, we also show that GraOmicDRP outperforms some state-of-the-art methods, including ones integrating -omic data with drug information such as GraphDRP, and ones using -omic data without drug information such as DeepDR and MOLI.
Collapse
|
28
|
Lin YF, Liu JJ, Chang YJ, Yu CS, Yi W, Lane HY, Lu CH. Predicting Anticancer Drug Resistance Mediated by Mutations. Pharmaceuticals (Basel) 2022; 15:136. [PMID: 35215249 PMCID: PMC8878306 DOI: 10.3390/ph15020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer drug resistance presents a challenge for precision medicine. Drug-resistant mutations are always emerging. In this study, we explored the relationship between drug-resistant mutations and drug resistance from the perspective of protein structure. By combining data from previously identified drug-resistant mutations and information of protein structure and function, we used machine learning-based methods to build models to predict cancer drug resistance mutations. The performance of our combined model achieved an accuracy of 86%, a Matthews correlation coefficient score of 0.57, and an F1 score of 0.66. We have constructed a fast, reliable method that predicts and investigates cancer drug resistance in a protein structure. Nonetheless, more information is needed concerning drug resistance and, in particular, clarification is needed about the relationships between the drug and the drug resistance mutations in proteins. Highly accurate predictions regarding drug resistance mutations can be helpful for developing new strategies with personalized cancer treatments. Our novel concept, which combines protein structure information, has the potential to elucidate physiological mechanisms of cancer drug resistance.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Jia-Jun Liu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Chin-Sheng Yu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40201, Taiwan;
| | - Wei Yi
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Psychiatry, China Medical University Hospital, Taichung 40402, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
29
|
Xia F, Allen J, Balaprakash P, Brettin T, Garcia-Cardona C, Clyde A, Cohn J, Doroshow J, Duan X, Dubinkina V, Evrard Y, Fan YJ, Gans J, He S, Lu P, Maslov S, Partin A, Shukla M, Stahlberg E, Wozniak JM, Yoo H, Zaki G, Zhu Y, Stevens R. A cross-study analysis of drug response prediction in cancer cell lines. Brief Bioinform 2022; 23:bbab356. [PMID: 34524425 PMCID: PMC8769697 DOI: 10.1093/bib/bbab356] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022] Open
Abstract
To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a single study to assess model accuracy. While an essential first step, cross-validation within a biological data set typically provides an overly optimistic estimate of the prediction performance on independent test sets. To provide a more rigorous assessment of model generalizability between different studies, we use machine learning to analyze five publicly available cell line-based data sets: National Cancer Institute 60, ancer Therapeutics Response Portal (CTRP), Genomics of Drug Sensitivity in Cancer, Cancer Cell Line Encyclopedia and Genentech Cell Line Screening Initiative (gCSI). Based on observed experimental variability across studies, we explore estimates of prediction upper bounds. We report performance results of a variety of machine learning models, with a multitasking deep neural network achieving the best cross-study generalizability. By multiple measures, models trained on CTRP yield the most accurate predictions on the remaining testing data, and gCSI is the most predictable among the cell line data sets included in this study. With these experiments and further simulations on partial data, two lessons emerge: (1) differences in viability assays can limit model generalizability across studies and (2) drug diversity, more than tumor diversity, is crucial for raising model generalizability in preclinical screening.
Collapse
Affiliation(s)
| | | | | | | | | | - Austin Clyde
- Argonne National Laboratory
- University of Chicago
| | | | | | | | | | | | - Ya Ju Fan
- Lawrence Livermore National Laboratory
| | | | | | - Pinyi Lu
- Frederick National Laboratory for Cancer Research
| | | | | | | | | | | | | | - George Zaki
- Frederick National Laboratory for Cancer Research
| | | | - Rick Stevens
- Argonne National Laboratory
- University of Chicago
| |
Collapse
|
30
|
Sato M, Sato S, Shintani D, Hanaoka M, Ogasawara A, Miwa M, Yabuno A, Kurosaki A, Yoshida H, Fujiwara K, Hasegawa K. Clinical significance of metabolism-related genes and FAK activity in ovarian high-grade serous carcinoma. BMC Cancer 2022; 22:59. [PMID: 35027024 PMCID: PMC8756654 DOI: 10.1186/s12885-021-09148-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Administration of poly (ADP-ribose) polymerase (PARP) inhibitors after achieving a response to platinum-containing drugs significantly prolonged relapse-free survival compared to placebo administration. PARP inhibitors have been used in clinical practice. However, patients with platinum-resistant relapsed ovarian cancer still have a poor prognosis and there is an unmet need. The purpose of this study was to examine the clinical significance of metabolic genes and focal adhesion kinase (FAK) activity in advanced ovarian high-grade serous carcinoma (HGSC). METHODS The RNA sequencing (RNA-seq) data and clinical data of HGSC patients were obtained from the Genomic Data Commons (GDC) Data Portal and analysed ( https://portal.gdc.cancer.gov/ ). In addition, tumour tissue was sampled by laparotomy or screening laparoscopy prior to treatment initiation from patients diagnosed with stage IIIC ovarian cancer (International Federation of Gynecology and Obstetrics (FIGO) classification, 2014) at the Saitama Medical University International Medical Center, and among the patients diagnosed with HGSC, 16 cases of available cryopreserved specimens were included in this study. The present study was reviewed and approved by the Institutional Review Board of Saitama Medical University International Medical Center (Saitama, Japan). Among the 6307 variable genes detected in both The Cancer Genome Atlas-Ovarian (TCGA-OV) data and clinical specimen data, 35 genes related to metabolism and FAK activity were applied. RNA-seq data were analysed using the Subio Platform (Subio Inc, Japan). JMP 15 (SAS, USA) was used for statistical analysis and various types of machine learning. The Kaplan-Meier method was used for survival analysis, and the Wilcoxon test was used to analyse significant differences. P < 0.05 was considered significant. RESULTS In the TCGA-OV data, patients with stage IIIC with a residual tumour diameter of 1-10 mm were selected for K means clustering and classified into groups with significant prognostic correlations (p = 0.0444). These groups were significantly associated with platinum sensitivity/resistance in clinical cases (χ2 test, p = 0.0408) and showed significant relationships with progression-free survival (p = 0.0307). CONCLUSION In the TCGA-OV data, 2 groups classified by clustering focusing on metabolism-related genes and FAK activity were shown to be associated with platinum resistance and a poor prognosis.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Sho Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Mieko Hanaoka
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Maiko Miwa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Akira Yabuno
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Akira Kurosaki
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Hiroyuki Yoshida
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | | | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
31
|
Pepe G, Carrino C, Parca L, Helmer-Citterich M. Dissecting the Genome for Drug Response Prediction. Methods Mol Biol 2022; 2449:187-196. [PMID: 35507263 DOI: 10.1007/978-1-0716-2095-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The prediction of the cancer cell lines sensitivity to a specific treatment is one of the current challenges in precision medicine. With omics and pharmacogenomics data being available for over 1000 cancer cell lines, several machine learning and deep learning algorithms have been proposed for drug sensitivity prediction. However, deciding which omics data to use and which computational methods can efficiently incorporate data from different sources is the challenge which several research groups are working on. In this review, we summarize recent advances in the representative computational methods that have been developed in the last 2 years on three public datasets: COSMIC, CCLE, NCI-60. These methods aim to improve the prediction of the cancer cell lines sensitivity to a given treatment by incorporating drug's chemical information in the input or using a priori feature selection. Finally, we discuss the latest published method which aims to improve the prediction of clinical drug response of real patients starting from cancer cell line molecular profiles.
Collapse
Affiliation(s)
- Gerardo Pepe
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Carrino
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Parca
- Italian Space Agency, Via del Politecnico snc, Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
32
|
Machine learning to empower electrohydrodynamic processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112553. [DOI: 10.1016/j.msec.2021.112553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
|
33
|
Panja S, Rahem S, Chu CJ, Mitrofanova A. Big Data to Knowledge: Application of Machine Learning to Predictive Modeling of Therapeutic Response in Cancer. Curr Genomics 2021; 22:244-266. [PMID: 35273457 PMCID: PMC8822229 DOI: 10.2174/1389202921999201224110101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022] Open
Abstract
Background In recent years, the availability of high throughput technologies, establishment of large molecular patient data repositories, and advancement in computing power and storage have allowed elucidation of complex mechanisms implicated in therapeutic response in cancer patients. The breadth and depth of such data, alongside experimental noise and missing values, requires a sophisticated human-machine interaction that would allow effective learning from complex data and accurate forecasting of future outcomes, ideally embedded in the core of machine learning design. Objective In this review, we will discuss machine learning techniques utilized for modeling of treatment response in cancer, including Random Forests, support vector machines, neural networks, and linear and logistic regression. We will overview their mathematical foundations and discuss their limitations and alternative approaches in light of their application to therapeutic response modeling in cancer. Conclusion We hypothesize that the increase in the number of patient profiles and potential temporal monitoring of patient data will define even more complex techniques, such as deep learning and causal analysis, as central players in therapeutic response modeling.
Collapse
Affiliation(s)
| | | | | | - Antonina Mitrofanova
- Address correspondence to this author at the Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107, USA; E-mail:
| |
Collapse
|
34
|
Abstract
Advances in the trusted autonomy of air-traffic management (ATM) systems are currently being pursued to cope with the predicted growth in air-traffic densities in all classes of airspace. Highly automated ATM systems relying on artificial intelligence (AI) algorithms for anomaly detection, pattern identification, accurate inference, and optimal conflict resolution are technically feasible and demonstrably able to take on a wide variety of tasks currently accomplished by humans. However, the opaqueness and inexplicability of most intelligent algorithms restrict the usability of such technology. Consequently, AI-based ATM decision-support systems (DSS) are foreseen to integrate eXplainable AI (XAI) in order to increase interpretability and transparency of the system reasoning and, consequently, build the human operators’ trust in these systems. This research presents a viable solution to implement XAI in ATM DSS, providing explanations that can be appraised and analysed by the human air-traffic control operator (ATCO). The maturity of XAI approaches and their application in ATM operational risk prediction is investigated in this paper, which can support both existing ATM advisory services in uncontrolled airspace (Classes E and F) and also drive the inflation of avoidance volumes in emerging performance-driven autonomy concepts. In particular, aviation occurrences and meteorological databases are exploited to train a machine learning (ML)-based risk-prediction tool capable of real-time situation analysis and operational risk monitoring. The proposed approach is based on the XGBoost library, which is a gradient-boost decision tree algorithm for which post-hoc explanations are produced by SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME). Results are presented and discussed, and considerations are made on the most promising strategies for evolving the human–machine interactions (HMI) to strengthen the mutual trust between ATCO and systems. The presented approach is not limited only to conventional applications but also suitable for UAS-traffic management (UTM) and other emerging applications.
Collapse
|
35
|
Abstract
This review provides the feasible literature on drug discovery through ML tools and techniques that are enforced in every phase of drug development to accelerate the research process and deduce the risk and expenditure in clinical trials. Machine learning techniques improve the decision-making in pharmaceutical data across various applications like QSAR analysis, hit discoveries, de novo drug architectures to retrieve accurate outcomes. Target validation, prognostic biomarkers, digital pathology are considered under problem statements in this review. ML challenges must be applicable for the main cause of inadequacy in interpretability outcomes that may restrict the applications in drug discovery. In clinical trials, absolute and methodological data must be generated to tackle many puzzles in validating ML techniques, improving decision-making, promoting awareness in ML approaches, and deducing risk failures in drug discovery.
Collapse
Affiliation(s)
- Suresh Dara
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Swetha Dhamercherla
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR) and Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak, 502313 Telangana India
| | - CH Madhu Babu
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, 302023 Rajasthan India
| |
Collapse
|
36
|
García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The Emerging Role of Long Non-Coding RNAs and MicroRNAs in Neurodegenerative Diseases: A Perspective of Machine Learning. Biomolecules 2021; 11:1132. [PMID: 34439798 PMCID: PMC8391852 DOI: 10.3390/biom11081132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive neuronal dysfunction and death of brain cells population. As the early manifestations of NDs are similar, their symptoms are difficult to distinguish, making the timely detection and discrimination of each neurodegenerative disorder a priority. Several investigations have revealed the importance of microRNAs and long non-coding RNAs in neurodevelopment, brain function, maturation, and neuronal activity, as well as its dysregulation involved in many types of neurological diseases. Therefore, the expression pattern of these molecules in the different NDs have gained significant attention to improve the diagnostic and treatment at earlier stages. In this sense, we gather the different microRNAs and long non-coding RNAs that have been reported as dysregulated in each disorder. Since there are a vast number of non-coding RNAs altered in NDs, some sort of synthesis, filtering and organization method should be applied to extract the most relevant information. Hence, machine learning is considered as an important tool for this purpose since it can classify expression profiles of non-coding RNAs between healthy and sick people. Therefore, we deepen in this branch of computer science, its different methods, and its meaningful application in the diagnosis of NDs from the dysregulated non-coding RNAs. In addition, we demonstrate the relevance of machine learning in NDs from the description of different investigations that showed an accuracy between 85% to 95% in the detection of the disease with this tool. All of these denote that artificial intelligence could be an excellent alternative to help the clinical diagnosis and facilitate the identification diseases in early stages based on non-coding RNAs.
Collapse
Affiliation(s)
- Ángela García-Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Cynthia Martin-Jimenez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Andres Felipe Aristizábal Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| |
Collapse
|
37
|
Feng F, Shen B, Mou X, Li Y, Li H. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine. J Genet Genomics 2021; 48:540-551. [PMID: 34023295 DOI: 10.1016/j.jgg.2021.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/26/2022]
Abstract
The response rate of most anti-cancer drugs is limited because of the high heterogeneity of cancer and the complex mechanism of drug action. Personalized treatment that stratifies patients into subgroups using molecular biomarkers is promising to improve clinical benefit. With the accumulation of preclinical models and advances in computational approaches of drug response prediction, pharmacogenomics has made great success over the last 20 years and is increasingly used in the clinical practice of personalized cancer medicine. In this article, we first summarize FDA-approved pharmacogenomic biomarkers and large-scale pharmacogenomic studies of preclinical cancer models such as patient-derived cell lines, organoids, and xenografts. Furthermore, we comprehensively review the recent developments of computational methods in drug response prediction, covering network, machine learning, and deep learning technologies and strategies to evaluate immunotherapy response. In the end, we discuss challenges and propose possible solutions for further improvement.
Collapse
Affiliation(s)
- Fangyoumin Feng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bihan Shen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoqin Mou
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 330106, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
38
|
Przedborski M, Smalley M, Thiyagarajan S, Goldman A, Kohandel M. Systems biology informed neural networks (SBINN) predict response and novel combinations for PD-1 checkpoint blockade. Commun Biol 2021; 4:877. [PMID: 34267327 PMCID: PMC8282606 DOI: 10.1038/s42003-021-02393-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Anti-PD-1 immunotherapy has recently shown tremendous success for the treatment of several aggressive cancers. However, variability and unpredictability in treatment outcome have been observed, and are thought to be driven by patient-specific biology and interactions of the patient's immune system with the tumor. Here we develop an integrative systems biology and machine learning approach, built around clinical data, to predict patient response to anti-PD-1 immunotherapy and to improve the response rate. Using this approach, we determine biomarkers of patient response and identify potential mechanisms of drug resistance. We develop systems biology informed neural networks (SBINN) to calculate patient-specific kinetic parameter values and to predict clinical outcome. We show how transfer learning can be leveraged with simulated clinical data to significantly improve the response prediction accuracy of the SBINN. Further, we identify novel drug combinations and optimize the treatment protocol for triple combination therapy consisting of IL-6 inhibition, recombinant IL-12, and anti-PD-1 immunotherapy in order to maximize patient response. We also find unexpected differences in protein expression levels between response phenotypes which complement recent clinical findings. Our approach has the potential to aid in the development of targeted experiments for patient drug screening as well as identify novel therapeutic targets.
Collapse
Affiliation(s)
- Michelle Przedborski
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Munisha Smalley
- Integrative Immuno Oncology Center, Mitra Biotech, Woburn, MA, USA
| | | | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
39
|
Artificial intelligence in drug design: algorithms, applications, challenges and ethics. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2020-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery paradigm of drugs is rapidly growing due to advances in machine learning (ML) and artificial intelligence (AI). This review covers myriad faces of AI and ML in drug design. There is a plethora of AI algorithms, the most common of which are summarized in this review. In addition, AI is fraught with challenges that are highlighted along with plausible solutions to them. Examples are provided to illustrate the use of AI and ML in drug discovery and in predicting drug properties such as binding affinities and interactions, solubility, toxicology, blood–brain barrier permeability and chemical properties. The review also includes examples depicting the implementation of AI and ML in tackling intractable diseases such as COVID-19, cancer and Alzheimer’s disease. Ethical considerations and future perspectives of AI are also covered in this review.
Collapse
|
40
|
Park S, Soh J, Lee H. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. BMC Bioinformatics 2021; 22:269. [PMID: 34034645 PMCID: PMC8152321 DOI: 10.1186/s12859-021-04146-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Predicting the drug response of a patient is important for precision oncology. In recent studies, multi-omics data have been used to improve the prediction accuracy of drug response. Although multi-omics data are good resources for drug response prediction, the large dimension of data tends to hinder performance improvement. In this study, we aimed to develop a new method, which can effectively reduce the large dimension of data, based on the supervised deep learning model for predicting drug response. RESULTS We proposed a novel method called Supervised Feature Extraction Learning using Triplet loss (Super.FELT) for drug response prediction. Super.FELT consists of three stages, namely, feature selection, feature encoding using a supervised method, and binary classification of drug response (sensitive or resistant). We used multi-omics data including mutation, copy number aberration, and gene expression, and these were obtained from cell lines [Genomics of Drug Sensitivity in Cancer (GDSC), Cancer Cell Line Encyclopedia (CCLE), and Cancer Therapeutics Response Portal (CTRP)], patient-derived tumor xenografts (PDX), and The Cancer Genome Atlas (TCGA). GDSC was used for training and cross-validation tests, and CCLE, CTRP, PDX, and TCGA were used for external validation. We performed ablation studies for the three stages and verified that the use of multi-omics data guarantees better performance of drug response prediction. Our results verified that Super.FELT outperformed the other methods at external validation on PDX and TCGA and was good at cross-validation on GDSC and external validation on CCLE and CTRP. In addition, through our experiments, we confirmed that using multi-omics data is useful for external non-cell line data. CONCLUSION By separating the three stages, Super.FELT achieved better performance than the other methods. Through our results, we found that it is important to train encoders and a classifier independently, especially for external test on PDX and TCGA. Moreover, although gene expression is the most powerful data on cell line data, multi-omics promises better performance for external validation on non-cell line data than gene expression data. Source codes of Super.FELT are available at https://github.com/DMCB-GIST/Super.FELT .
Collapse
Affiliation(s)
- Sejin Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jihee Soh
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea.
- Graduate School of Artificial Intelligence, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| |
Collapse
|
41
|
Abstract
Overcoming the challenges of understanding and treating cancer requires reliable patient-derived models of cancer (PDMCs). For decades, cancer research and therapeutic development relied primarily on cancer cell lines because of their prevalence, reproducibility, and simplicity to maintain. However, findings from research conducted in cell lines are rarely recapitulated in vivo and seldom directly translatable to patients. The tumor microenvironment (TME), tumor-stromal interactions, and associations with host immune cells produce profound changes in tumor phenotype and complexity not captured in traditional monolayer cell culture. In this chapter, we present various cancer explant models and discuss their applicability based on specific research aims. We discuss the appropriateness of these models for basic science questions, drug screening/development, and for personalized, precision medicine. We also consider logistical factors such as resource cost, technical difficulty, and accessibility. We finish this chapter with a practical guide intended to help the reader select the cancer explant model system(s) that best address their research aims.
Collapse
|
42
|
Moazemi S, Erle A, Khurshid Z, Lütje S, Muders M, Essler M, Schultz T, Bundschuh RA. Decision-support for treatment with 177Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:818. [PMID: 34268431 PMCID: PMC8246232 DOI: 10.21037/atm-20-6446] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 11/06/2022]
Abstract
Background Treatment with radiolabeled ligands to prostate-specific membrane antigen (PSMA) is gaining importance in the treatment of patients with advanced prostate carcinoma. Previous imaging with positron emission tomography/computed tomography (PET/CT) is mandatory. The aim of this study was to investigate the role of radiomics features in PSMA-PET/CT scans and clinical parameters to predict response to 177Lu-PSMA treatment given just baseline PSMA scans using state-of-the-art machine learning (ML) methods. Methods A total of 2,070 pathological hotspots annotated in 83 prostate cancer patients undergoing PSMA therapy were analyzed. Two main tasks are performed: (I) analyzing correlation of averaged (per patient) values of radiomics features of individual hotspots and clinical parameters with difference in prostate specific antigen levels (ΔPSA) in pre- and post-therapy as a therapy response indicator. (II) ML-based classification of patients into responders and non-responders based on averaged features values and clinical parameters. To achieve this, machine learning (ML) algorithms and linear regression tests are applied. Grid search, cross validation (CV) and permutation test were performed to assure that the results were significant. Results Radiomics features (PET_Min, PET_Correlation, CT_Min, CT_Busyness and CT_Coarseness) and clinical parameters such as Alp1 and Gleason score showed best correlations with ΔPSA. For the treatment response prediction task, 80% area under the curve (AUC), 75% sensitivity (SE), and 75% specificity (SP) were obtained, applying ML support vector machine (SVM) classifier with radial basis function (RBF) kernel on a selection of radiomics features and clinical parameters with strong correlations with ΔPSA. Conclusions Machine learning based on 68Ga-PSMA PET/CT radiomics features holds promise for the prediction of response to 177Lu-PSMA treatment, given only base-line 68Ga-PSMA scan. In addition, it was shown that, the best correlating set of radiomics features with ΔPSA are superior to clinical parameters for this therapy response prediction task using ML classifiers.
Collapse
Affiliation(s)
- Sobhan Moazemi
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany.,Department of Computer Science, University of Bonn, Bonn, Germany
| | - Annette Erle
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Zain Khurshid
- Nuclear Medicine, Oncology and Radiotherapy Institute, Department of Nuclear Medicine, Islamabad, Pakistan
| | - Susanne Lütje
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Michael Muders
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Thomas Schultz
- Department of Computer Science, University of Bonn, Bonn, Germany.,Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
43
|
An introduction to machine learning for clinicians: How can machine learning augment knowledge in geriatric oncology? J Geriatr Oncol 2021; 12:1159-1163. [PMID: 33795205 DOI: 10.1016/j.jgo.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022]
|
44
|
Egnell AC, Johansson S, Chen C, Berges A. Clinical Pharmacology Modeling and Simulation in Drug Development. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Sharma A, Rani R. Ensembled machine learning framework for drug sensitivity prediction. IET Syst Biol 2020; 14:39-46. [PMID: 31931480 DOI: 10.1049/iet-syb.2018.5094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug sensitivity prediction is one of the critical tasks involved in drug designing and discovery. Recently several online databases and consortiums have contributed to providing open access to pharmacogenomic data. These databases have helped in developing computational approaches for drug sensitivity prediction. Cancer is a complex disease involving the heterogeneous behaviour of same tumour-type patients towards the same kind of drug therapy. Several methods have been proposed in the literature to predict drug sensitivity. However, these methods are not efficient enough to predict drug sensitivity. The present study has proposed an ensemble learning framework for drug-response prediction using a modified rotation forest. The proposed framework is further compared with three state-of-the-art algorithms and two baseline methods using Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) drug screens. The authors have also predicted missing drug response values in the data set using the proposed approach. The proposed approach outperforms other counterparts even though gene mutation data is not incorporated while designing the approach. An average mean square error of 3.14 and 0.404 is achieved using GDSC and CCLE drug screens, respectively. The obtained results show that the proposed framework has considerable potential to improve anti-cancer drug response prediction.
Collapse
|
46
|
Daoud S, Mdhaffar A, Jmaiel M, Freisleben B. Q-Rank: Reinforcement Learning for Recommending Algorithms to Predict Drug Sensitivity to Cancer Therapy. IEEE J Biomed Health Inform 2020; 24:3154-3161. [PMID: 32750950 DOI: 10.1109/jbhi.2020.3004663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In personalized medicine, a challenging task is to identify the most effective treatment for a patient. In oncology, several computational models have been developed to predict the response of drugs to therapy. However, the performance of these models depends on multiple factors. This paper presents a new approach, called Q-Rank, to predict the sensitivity of cell lines to anti-cancer drugs. Q-Rank integrates different prediction algorithms and identifies a suitable algorithm for a given application. Q-Rank is based on reinforcement learning methods to rank prediction algorithms on the basis of relevant features (e.g., omics characterization). The best-ranked algorithm is recommended and used to predict the response of drugs to therapy. Our experimental results indicate that Q-Rank outperforms the integrated models in predicting the sensitivity of cell lines to different drugs.
Collapse
|
47
|
Zhu Y, Brettin T, Evrard YA, Partin A, Xia F, Shukla M, Yoo H, Doroshow JH, Stevens RL. Ensemble transfer learning for the prediction of anti-cancer drug response. Sci Rep 2020; 10:18040. [PMID: 33093487 PMCID: PMC7581765 DOI: 10.1038/s41598-020-74921-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Transfer learning, which transfers patterns learned on a source dataset to a related target dataset for constructing prediction models, has been shown effective in many applications. In this paper, we investigate whether transfer learning can be used to improve the performance of anti-cancer drug response prediction models. Previous transfer learning studies for drug response prediction focused on building models to predict the response of tumor cells to a specific drug treatment. We target the more challenging task of building general prediction models that can make predictions for both new tumor cells and new drugs. Uniquely, we investigate the power of transfer learning for three drug response prediction applications including drug repurposing, precision oncology, and new drug development, through different data partition schemes in cross-validation. We extend the classic transfer learning framework through ensemble and demonstrate its general utility with three representative prediction algorithms including a gradient boosting model and two deep neural networks. The ensemble transfer learning framework is tested on benchmark in vitro drug screening datasets. The results demonstrate that our framework broadly improves the prediction performance in all three drug response prediction applications with all three prediction algorithms.
Collapse
Affiliation(s)
- Yitan Zhu
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Thomas Brettin
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yvonne A Evrard
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Alexander Partin
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Fangfang Xia
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Maulik Shukla
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hyunseung Yoo
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Rick L Stevens
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Computer Science, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
48
|
Bertsimas D, Wiberg H. Machine Learning in Oncology: Methods, Applications, and Challenges. JCO Clin Cancer Inform 2020; 4:885-894. [PMID: 33058693 PMCID: PMC7608565 DOI: 10.1200/cci.20.00072] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 01/16/2023] Open
Affiliation(s)
- Dimitris Bertsimas
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA
| | - Holly Wiberg
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
49
|
Clayton EA, Pujol TA, McDonald JF, Qiu P. Leveraging TCGA gene expression data to build predictive models for cancer drug response. BMC Bioinformatics 2020; 21:364. [PMID: 32998700 PMCID: PMC7526215 DOI: 10.1186/s12859-020-03690-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Machine learning has been utilized to predict cancer drug response from multi-omics data generated from sensitivities of cancer cell lines to different therapeutic compounds. Here, we build machine learning models using gene expression data from patients' primary tumor tissues to predict whether a patient will respond positively or negatively to two chemotherapeutics: 5-Fluorouracil and Gemcitabine. RESULTS We focused on 5-Fluorouracil and Gemcitabine because based on our exclusion criteria, they provide the largest numbers of patients within TCGA. Normalized gene expression data were clustered and used as the input features for the study. We used matching clinical trial data to ascertain the response of these patients via multiple classification methods. Multiple clustering and classification methods were compared for prediction accuracy of drug response. Clara and random forest were found to be the best clustering and classification methods, respectively. The results show our models predict with up to 86% accuracy; despite the study's limitation of sample size. We also found the genes most informative for predicting drug response were enriched in well-known cancer signaling pathways and highlighted their potential significance in chemotherapy prognosis. CONCLUSIONS Primary tumor gene expression is a good predictor of cancer drug response. Investment in larger datasets containing both patient gene expression and drug response is needed to support future work of machine learning models. Ultimately, such predictive models may aid oncologists with making critical treatment decisions.
Collapse
Affiliation(s)
- Evan A. Clayton
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Toyya A. Pujol
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - John F. McDonald
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Dr NW, 30332-0230, Atlanta, GA 404-385-1656 USA
| |
Collapse
|
50
|
Laios A, Gryparis A, DeJong D, Hutson R, Theophilou G, Leach C. Predicting complete cytoreduction for advanced ovarian cancer patients using nearest-neighbor models. J Ovarian Res 2020; 13:117. [PMID: 32993745 PMCID: PMC7526140 DOI: 10.1186/s13048-020-00700-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background The foundation of modern ovarian cancer care is cytoreductive surgery to remove all macroscopic disease (R0). Identification of R0 resection patients may help individualise treatment. Machine learning and AI have been shown to be effective systems for classification and prediction. For a disease as heterogenous as ovarian cancer, they could potentially outperform conventional predictive algorithms for routine clinical use. We investigated the performance of an AI system, the k-nearest neighbor (k-NN) classifier, to predict R0, comparing it with logistic regression. Patients diagnosed with advanced stage, high grade serous ovarian, tubal and primary peritoneal cancer, undergoing surgical cytoreduction from 2015 to 2019, was selected from the ovarian database. Performance variables included age, BMI, Charlson Comorbidity Index, timing of surgery, surgical complexity and disease score. The k-NN algorithm classified R0 vs non-R0 patients using 3–20 nearest neighbors. Prediction accuracy was estimated as percentage of observations in the training set correctly classified. Results 154 patients were identified, with mean age of 64.4 + 10.5 yrs., BMI of 27.2 + 5.8 and mean SCS of 3 + 1 (1–8). Complete and optimal cytoreduction was achieved in 62 and 88% patients. The mean predictive accuracy was 66%. R0 resection prediction of true negatives was as high as 90% using k = 20 neighbors. Conclusions The k-NN algorithm is a promising and versatile tool for R0 resection prediction. It slightly outperforms logistic regression and is expected to improve accuracy with data expansion.
Collapse
Affiliation(s)
- Alexandros Laios
- Department of Gynaecological Oncology, St James's University Hospital, Leeds Teaching Hospitals, Leeds, LS9 7TF, UK.
| | - Alexandros Gryparis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaion Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Diederick DeJong
- Department of Gynaecological Oncology, St James's University Hospital, Leeds Teaching Hospitals, Leeds, LS9 7TF, UK
| | - Richard Hutson
- Department of Gynaecological Oncology, St James's University Hospital, Leeds Teaching Hospitals, Leeds, LS9 7TF, UK
| | - Georgios Theophilou
- Department of Gynaecological Oncology, St James's University Hospital, Leeds Teaching Hospitals, Leeds, LS9 7TF, UK
| | - Chris Leach
- School of Human & Health Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.,Department of Psychology Services, South West Yorkshire Mental Health NHS Foundation Trust, The Laura Mitchell Health & Wellbeing Centre, Halifax, HX1 1YR, UK
| |
Collapse
|