1
|
Surico PL, Narimatsu A, Forouzanfar K, Singh RB, Shoushtari S, Dana R, Blanco T. Effects of Diabetes Mellitus on Corneal Immune Cell Activation and the Development of Keratopathy. Cells 2024; 13:532. [PMID: 38534376 PMCID: PMC10969384 DOI: 10.3390/cells13060532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent diseases globally, and its prevalence is rapidly increasing. Most patients with a long-term history of DM present with some degree of keratopathy (DK). Despite its high incidence, the underlying inflammatory mechanism of DK has not been elucidated yet. For further insights into the underlying immunopathologic processes, we utilized streptozotocin-induced mice to model type 1 DM (T1D) and B6.Cg-Lepob/J mice to model type 2 DM (T2D). We evaluated the animals for the development of clinical manifestations of DK. Four weeks post-induction, the total frequencies of corneal CD45+CD11b+Ly-6G- myeloid cells, with enhanced gene and protein expression levels for the proinflammatory cytokines TNF-α and IL-1β, were higher in both T1D and T2D animals. Additionally, the frequencies of myeloid cells/mm2 in the sub-basal neural plexus (SBNP) were significantly higher in T1D and T2D compared to non-diabetic mice. DK clinical manifestations were observed four weeks post-induction, including significantly lower tear production, corneal sensitivity, and epitheliopathy. Nerve density in the SBNP and intraepithelial terminal endings per 40x field were lower in both models compared to the normal controls. The findings of this study indicate that DM alters the immune quiescent state of the cornea during disease onset, which may be associated with the progressive development of the clinical manifestations of DK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tomas Blanco
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (P.L.S.); (A.N.); (K.F.); (R.B.S.); (S.S.); (R.D.)
| |
Collapse
|
2
|
Wilczyńska A, Komsta R, Szadkowski M, Ziętek J, Adaszek Ł. Prevalence of Encephalitozoon cuniculi Infection in Guinea Pigs ( Cavia porcellus) in Poland with Different Clinical Disorders-A Pilot Study. Animals (Basel) 2023; 13:1992. [PMID: 37370502 DOI: 10.3390/ani13121992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Encephalitozoonosis is a disease caused by E. cuniculi. It is diagnosed primarily in rabbits but is less frequently so in other animal species. E. cuniculi is classified among Microsporidia-fungi frequently found in the environment, that are resistant to numerous external factors. Apart from rabbits, rodents form the next group of animals most exposed to infection with these pathogens. The objective of the study was to analyze the prevalence of E. cuniculi infection in guinea pigs with different clinical disorders. The study included 67 animals with E. cuniculi infection confirmed via real-time PCR. The infected animals most frequently exhibited nervous and urinary system symptoms, as well as issues with vision organs, while several animals were also recorded as having problems with the respiratory system and thyroid gland dysfunction. The study shows that encephalitozoonosis constitutes a significant problem in rodents kept as domestic animals, which in turn may be a source of infection for humans.
Collapse
Affiliation(s)
- Anna Wilczyńska
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine of the University of Life Sciences in Lublin, ul. Głęboka 30, 20-612 Lublin, Poland
| | - Renata Komsta
- Laboratory for Radiology and Ultrasonography, Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine of the University of Life Sciences in Lublin, ul. Głęboka 30, 20-612 Lublin, Poland
| | - Mateusz Szadkowski
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine of the University of Life Sciences in Lublin, ul. Głęboka 30, 20-612 Lublin, Poland
| | - Jerzy Ziętek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine of the University of Life Sciences in Lublin, ul. Głęboka 30, 20-612 Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine of the University of Life Sciences in Lublin, ul. Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
3
|
Codeceira JF, Alvares-Saraiva AM, Hurtado ECP, Spadacci-Morena DD, Coutinho SDA, Lallo MA. Heat-killed Malassezia pachydermatis suspension modulates the activity of macrophages challenged with Encephalitozoon cuniculi. J Mycol Med 2023; 33:101338. [PMID: 36306561 DOI: 10.1016/j.mycmed.2022.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 03/18/2023]
Abstract
Phagocytic responses are critical for effective host defense against opportunistic fungal pathogens, such as Encephalitozoon cuniculi, an obligate intracellular fungus that causes emerging encephalitozoonosis in humans and other animals. Malassezia has immunomodulatory effects and can modulate the production of pro- and anti-inflammatory cytokines via keratinocytes and human monocytes. In this study, we evaluated the modulatory effects of heat-killed Malassezia pachydermatis suspension on macrophages challenged with Encephalitozoon cuniculi. Macrophages were treated with heat-killed M. pachydermatis suspension before being infected with spores of E. cuniculi. The cultures were stained with calcofluor, and the spores, internalized or not, were counted to determine their phagocytic capacity and index (PC and PI, respectively). Microbicidal and phagocytic activities were evaluated by transmission electron microscopy (TEM). The untreated macrophages had higher PC and PI and number of phagocytosed spores than treated macrophages. However, TEM revealed that treated macrophages had higher microbicidal activity because there were few spores in different degrees of degeneration and amorphous materials in the phagocytic vacuoles. Macrophages treated with heat-killed M. pachydermatis suspension had lower PC and PI and incipient presence of E. cuniculi in phagosomes. Treated macrophages had a mixed pattern of cytokine release with Th1, Th2, and Th17 profiles, with emphasis on interleukin (IL)-10, IL-4, IL-17, IL-6, and interferon (IFN)-γ secretion, and particularly high production of anti-inflammatory cytokines. Our results suggest that treatment with heat-killed M. pachydermatis suspension increases the release of cytokines and decreases the phagocytic activity of macrophages challenged with E. cuniculi.
Collapse
Affiliation(s)
- Jéssica Feliciana Codeceira
- Programa de Patologia Ambiental e Experimental, Universidade Paulista-Unip, Rua Dr. Bacelar 902, São Paulo, SP CEP 05622-001, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Patologia Ambiental e Experimental, Universidade Paulista-Unip, Rua Dr. Bacelar 902, São Paulo, SP CEP 05622-001, Brazil
| | - Elizabeth Cristina Perez Hurtado
- Programa de Patologia Ambiental e Experimental, Universidade Paulista-Unip, Rua Dr. Bacelar 902, São Paulo, SP CEP 05622-001, Brazil
| | | | - Selene Dall Acqua Coutinho
- Programa de Patologia Ambiental e Experimental, Universidade Paulista-Unip, Rua Dr. Bacelar 902, São Paulo, SP CEP 05622-001, Brazil
| | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental, Universidade Paulista-Unip, Rua Dr. Bacelar 902, São Paulo, SP CEP 05622-001, Brazil.
| |
Collapse
|
4
|
Kicia M, Zajączkowska Ż, Kváč M, Cebulski K, Holubová N, Wencel P, Mayer L, Wesołowska M, Sak B. Encephalitozoon cuniculi and Extraintestinal Microsporidiosis in Bird Owners. Emerg Infect Dis 2022; 28:705-708. [PMID: 35202528 PMCID: PMC8888231 DOI: 10.3201/eid2803.211556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We identified Encephalitozoon cuniculi genotype II parasites as a cause of extraintestinal microsporidiosis in 2 owners of birds also infected with E. cuniculi. Patients experienced long-lasting nonspecific symptoms; the disease course was more progressive in a patient with diabetes. Our findings suggest direct bird-to-human transmission of this pathogen.
Collapse
|
5
|
Bonyek-Silva I, Nunes S, Santos RL, Lima FR, Lago A, Silva J, Carvalho LP, Arruda SM, Serezani HC, Carvalho EM, Brodskyn CI, Tavares NM. Unbalanced production of LTB 4/PGE 2 driven by diabetes increases susceptibility to cutaneous leishmaniasis. Emerg Microbes Infect 2020; 9:1275-1286. [PMID: 32525457 PMCID: PMC7473187 DOI: 10.1080/22221751.2020.1773744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
Poorly controlled diabetes mellitus leads to several comorbidities, including susceptibility to infections. Hyperglycemia increases phagocyte responsiveness, however immune cells from people with diabetes show inadequate antimicrobial functions. We and others have shown that aberrant production of leukotriene B4 (LTB4) is detrimental to host defense in models of bacterial infection. Here, we will unveil the consequences of high glucose in the outcome of Leishmania braziliensis skin infection in people with diabetes and determine the role of LTB4 in human phagocytes. We show that diabetes leads to higher systemic levels of LTB4, IL-6 and TNF-α in cutaneous leishmaniasis. Only LTB4 correlated with blood glucose levels and healing time in diabetes comorbidity. Skin lesions of people with leishmaniasis and diabetes exhibit increased neutrophil and amastigote numbers. Monocyte-derived macrophages from these individuals showed higher L. braziliensis loads, reduced production of Reactive Oxygen Species and unbalanced LTB4/PGE2 ratio. Our data reveal a systemic inflammation driven by diabetes comorbidity in opposition to a local reduced capacity to resolve L. braziliensis infection and a worse disease outcome.
Collapse
Affiliation(s)
- Icaro Bonyek-Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Reinan L. Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Filipe R. Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | | | - Juliana Silva
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Lucas P. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sergio M. Arruda
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Henrique C. Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edgar M. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT) in Tropical Diseases, Salvador, Brazil
| | - Claudia I. Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| | - Natalia M. Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| |
Collapse
|
6
|
Jeklova E, Leva L, Matiasovic J, Ondrackova P, Kummer V, Faldyna M. Characterization of humoral and cell-mediated immunity in rabbits orally infected with Encephalitozoon cuniculi. Vet Res 2020; 51:79. [PMID: 32539803 PMCID: PMC7296746 DOI: 10.1186/s13567-020-00806-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/02/2020] [Indexed: 05/30/2023] Open
Abstract
Encephalitozoonosis is a common infectious disease widely spread among rabbits. Encephalitozoon cuniculi, is considered as a zoonotic and emerging pathogen capable of infecting both immunocompetent and immunocompromised hosts. The aim of the study was to describe in detail the spread of the E. cuniculi in a rabbit organism after experimental infection and the host humoral and cellular immune response including cytokine production. For that purpose, healthy immunocompetent rabbits were infected orally in order to simulate the natural route of infection and euthanised at 2, 4, 6 and 8-weeks post-infection. Dissemination of E. cuniculi in the body of the rabbit was more rapid than previously reported. As early as 2 weeks post-infection, E. cuniculi was detected using immunohistochemistry not only in the intestine, mesenteric lymph nodes, spleen, liver, kidneys, lungs and heart, but also in nervous tissues, especially in medulla oblongata, cerebellum, and leptomeninges. Based on flow cytometry, no conspicuous changes in lymphocyte subpopulations were detected in the examined lymphoid organs of infected rabbits. Cell-mediated immunity was characterized by ability of both CD4+ and CD8+ T cells to proliferate after stimulation with specific antigens. Th1 polarization of immune response with a predominance of IFN-γ expression was detected in spleen, mesenteric lymph nodes and Peyer’s patches. The increased expression of IL-4 and IL-10 mRNA in mixed samples from the small intestine is indicative of balanced control of IFN-γ, which prevents tissue damage. On the other hand, it can enable E. cuniculi to survive and persist in the host organism in a balanced host-parasite relationship. The Th17 immunity lineage seems to play only a minor role in E. cuniculi infection in rabbits.
Collapse
Affiliation(s)
- Edita Jeklova
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Lenka Leva
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Jan Matiasovic
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Petra Ondrackova
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Vladimir Kummer
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Pereira A, Alvares-Saraiva AM, Konno FTDC, Spadacci-Morena DD, Perez EC, Mariano M, Lallo MA. B-1 cell-mediated modulation of M1 macrophage profile ameliorates microbicidal functions and disrupt the evasion mechanisms of Encephalitozoon cuniculi. PLoS Negl Trop Dis 2019; 13:e0007674. [PMID: 31536488 PMCID: PMC6779274 DOI: 10.1371/journal.pntd.0007674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/07/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Here, we have investigated the possible effect of B-1 cells on the activity of peritoneal macrophages in E. cuniculi infection. In the presence of B-1 cells, peritoneal macrophages had an M1 profile with showed increased phagocytic capacity and index, associated with the intense microbicidal activity and a higher percentage of apoptotic death. The absence of B-1 cells was associated with a predominance of the M2 macrophages, reduced phagocytic capacity and index and microbicidal activity, increased pro-inflammatory and anti-inflammatory cytokines production, and higher percentual of necrosis death. In addition, in the M2 macrophages, spore of phagocytic E. cuniculi with polar tubular extrusion was observed, which is an important mechanism of evasion of the immune response. The results showed the importance of B-1 cells in the modulation of macrophage function against E. cuniculi infection, increasing microbicidal activity, and reducing the fungal mechanisms involved in the evasion of the immune response. The adaptive immune response plays a key role against Encephalitozoon cuniculi, an opportunistic fungus for T cells immunodeficient patients. The role of B cells and antibody play in natural resistance to Encephalitozoon cuniculi remains unknown. Previously, we demonstrated that B-1 deficient mice (XID), an important component of innate immunity, were more susceptible to encephalitozoonosis, despite the increase in the number of CD4+ and CD8+ T lymphocytes. Here we observed that the absence of B-1 cells was associated with a larger population of M2 macrophages, a balance between anti-inflammatory and pro-inflammatory cytokines profile, which had lower microbicidal activity against E. cuniculi infection. However, in the presence of B-1 cells, peritoneal macrophages had a M1 profile with showed increased microbicidal activity and a higher percentage of apoptotic death.
Collapse
Affiliation(s)
- Adriano Pereira
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Curso de Biomedicina, Centro Universitário São Camilo, São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, Rua Galvão Bueno, São Paulo, SP, Brazil.,Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, SP, Brasil
| | | | | | - Elizabeth Cristina Perez
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil
| | - Mario Mariano
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil
| | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental, Universidade Paulista, Rua José Maria Whitaker, São Paulo, SP, Brasil.,Curso de Biomedicina, Centro Universitário São Camilo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Langanke dos Santos D, Alvares-Saraiva AM, Xavier JG, Spadacci-Morena DD, Peres GB, Dell'Armelina Rocha PR, Perez EC, Lallo MA. B-1 cells upregulate CD8 T lymphocytes and increase proinflammatory cytokines serum levels in oral encephalitozoonosis. Microbes Infect 2018; 20:196-204. [DOI: 10.1016/j.micinf.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 11/28/2022]
|