1
|
Inoue T, Ueno M. The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents. Front Neural Circuits 2025; 19:1566562. [PMID: 40191711 PMCID: PMC11968733 DOI: 10.3389/fncir.2025.1566562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Descending neural pathways to the spinal cord plays vital roles in motor control. They are often damaged by brain injuries such as stroke and trauma, which lead to severe motor impairments. Due to the limited capacity for regeneration of neural circuits in the adult central nervous system, currently no essential treatments are available for complete recovery. Notably, accumulating evidence shows that residual circuits of the descending pathways are dynamically reorganized after injury and contribute to motor recovery. Furthermore, recent technological advances in cell-type classification and manipulation have highlighted the structural and functional diversity of these pathways. Here, we focus on three major descending pathways, namely, the corticospinal tract from the cerebral cortex, the rubrospinal tract from the red nucleus, and the reticulospinal tract from the reticular formation, and summarize the current knowledge of their structures and functions, especially in rodent models (mice and rats). We then review and discuss the process and patterns of reorganization induced in these pathways following injury, which compensate for lost connections for recovery. Understanding the basic structural and functional properties of each descending pathway and the principles of the induction and outcome of the rewired circuits will provide therapeutic insights to enhance interactive rewiring of the multiple descending pathways for motor recovery.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Zhang A, Xing Y, Zheng J, Li C, Hua Y, Hu J, Tian Z, Bai Y. Constraint-Induced Movement Therapy Modulates Neuron Recruitment and Neurotransmission Homeostasis of the Contralesional Cortex to Enhance Function Recovery after Ischemic Stroke. ACS OMEGA 2024; 9:21612-21625. [PMID: 38764659 PMCID: PMC11097180 DOI: 10.1021/acsomega.4c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Stroke often results in long-term and severe limb dysfunction for a majority of patients, significantly limiting their activities and social participation. Constraint-induced movement therapy (CIMT) is a rehabilitation approach aimed explicitly at enhancing upper limb motor function following a stroke. However, the precise mechanism remains unknown. This study explores how CIMT may alleviate forelimb paralysis in ischemic mice, potentially through structural and functional remodeling of brain regions beyond the infarct area, especially the contralateral cortex. We demonstrated that CIMT recruits neurons from the contralesional cortex into the network that innervates the affected forelimb, as evidenced by PRV retrograde nerve tracing. Additionally, we investigated how CIMT influences synaptic plasticity in the contralateral cortex by evaluating synaptic growth marker levels and neurotransmission's homeostatic regulation. Our findings uncover a rehabilitative mechanism by which CIMT treats ischemic stroke, characterized by increased recruitment of neurons from the contralateral cortex into the network that innervates the affected forelimb, facilitated by homeostatic regulation of neurotransmission.
Collapse
Affiliation(s)
- Anjing Zhang
- Department
of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Department
of Neurological Rehabilitation Medicine, The First Rehabilitation Hospital of Shanghai, Shanghai 200093, P.R. China
| | - Ying Xing
- Department
of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jiayuan Zheng
- Department
of Integrative Medicine and Neurobiology, School of Basic Medical
Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers
Center for Brain Science, Institutes of Brain Science, Institute of
Acupuncture Research, Academy of Integrative Medicine, Shanghai Key
Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai
Medical College, Fudan University, Shanghai 200433, China
| | - Congqin Li
- Department
of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yan Hua
- Department
of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jian Hu
- Department
of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhanzhuang Tian
- Department
of Integrative Medicine and Neurobiology, School of Basic Medical
Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers
Center for Brain Science, Institutes of Brain Science, Institute of
Acupuncture Research, Academy of Integrative Medicine, Shanghai Key
Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai
Medical College, Fudan University, Shanghai 200433, China
| | - Yulong Bai
- Department
of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- National
Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
3
|
Huang Y, Yang B, Wong TWL, Ng SSM, Hu X. Personalized robots for long-term telerehabilitation after stroke: a perspective on technological readiness and clinical translation. FRONTIERS IN REHABILITATION SCIENCES 2024; 4:1329927. [PMID: 38259875 PMCID: PMC10800453 DOI: 10.3389/fresc.2023.1329927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Stroke rehabilitation, which demands consistent, intensive, and adaptable intervention in the long term, faced significant challenges due to the COVID-19 pandemic. During this time, telerehabilitation emerged as a noteworthy complement to traditional rehabilitation services, offering the convenience of at-home care delivery and overcoming geographical and resource limitations. Self-help rehabilitation robots deliver repetitive and intensive physical assistance, thereby alleviating the labor burden. However, robots have rarely demonstrated long-term readiness for poststroke telerehabilitation services. The transition from research trials to general clinical services presents several challenges that may undermine the rehabilitative gains observed in these studies. This perspective discusses the technological readiness of personal use robots in the context of telerehabilitation and identifies the potential challenges for their clinical translation. The goal is to leverage technology to seamlessly integrate it into standard clinical workflows, ultimately enhancing the outcomes of stroke rehabilitation.
Collapse
Affiliation(s)
- Yanhuan Huang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bibo Yang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Thomson Wai-Lung Wong
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Shamay S. M. Ng
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Farid H, Gelford WB, Goss LL, Garrett TL, Elbasiouny SM. Fast Blue and Cholera Toxin-B Survival Guide for Alpha-Motoneurons Labeling: Less Is Better in Young B6SJL Mice, but More Is Better in Aged C57Bl/J Mice. Bioengineering (Basel) 2023; 10:141. [PMID: 36829635 PMCID: PMC9952226 DOI: 10.3390/bioengineering10020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Fast Blue (FB) and Cholera Toxin-B (CTB) are two retrograde tracers extensively used to label alpha-motoneurons (α-MNs). The overall goals of the present study were to (1) assess the effectiveness of different FB and CTB protocols in labeling α-MNs, (2) compare the labeling quality of these tracers at standard concentrations reported in the literature (FB 2% and CTB 0.1%) versus lower concentrations to overcome tracer leakage, and (3) determine an optimal protocol for labeling α-MNs in young B6SJL and aged C57Bl/J mice (when axonal transport is disrupted by aging). Hindlimb muscles of young B6SJL and aged C57Bl/J mice were intramuscularly injected with different FB or CTB concentrations and then euthanized at either 3 or 5 days after injection. Measurements were performed to assess labeling quality via seven different parameters. Our results show that tracer protocols of lower concentration and shorter labeling durations were generally better in labeling young α-MNs, whereas tracer protocols of higher tracer concentration and longer labeling durations were generally better in labeling aged α-MNs. A 0.2%, 3-day FB protocol provided optimal labeling of young α-MNs without tracer leakage, whereas a 2%, 5-day FB protocol or 0.1% CTB protocol provided optimal labeling of aged α-MNs. These results inform future studies on the selection of optimal FB and CTB protocols for α-MNs labeling in normal, aging, and neurodegenerative disease conditions.
Collapse
Affiliation(s)
- Hasan Farid
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA
| | - Weston B. Gelford
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
| | - Lori L. Goss
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA
| | - Teresa L. Garrett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA
| | - Sherif M. Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
5
|
Greeley B, Rubino C, Denyer R, Chau B, Larssen B, Lakhani B, Boyd L. Individuals with Higher Levels of Physical Activity after Stroke Show Comparable Patterns of Myelin to Healthy Older Adults. Neurorehabil Neural Repair 2022; 36:381-389. [PMID: 35533214 PMCID: PMC9127936 DOI: 10.1177/15459683221100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Myelin asymmetry ratios (MARs) relate and contribute to motor impairment and
function after stroke. Physical activity (PA) may induce myelin plasticity,
potentially mitigating hemispheric myelin asymmetries that can occur after a
stroke. Objective The aim of this study was to determine whether individuals with higher levels
of PA showed lower MAR compared to individuals with lower levels of PA. Methods Myelin water fraction was obtained from 5 bilateral motor regions in 22
individuals with chronic stroke and 26 healthy older adults. Activity levels
were quantified with wrist accelerometers worn for a period of 72 hours (3
days). Higher and lower PA levels were defined by a cluster analysis within
each group. Results MAR was similar regardless of PA level within the older adult group. Compared
to the higher PA stroke group, lower PA stroke participants displayed
greater MAR. There was no difference in MAR between the stroke and older
adult higher PA groups. Within the lower PA groups, individuals with stroke
showed greater MAR compared to the older adults. Arm impairment, lesion
volume, age, time since stroke, and preferential arm use were not different
between the PA stroke groups, suggesting that motor impairment severity and
extent of brain damage did not drive differences in PA. Conclusion Individuals who have had a stroke and are also physically active display
lower MAR (i.e., similar myelin in both hemispheres) in motor regions. High
levels of PA may be neuroprotective and mitigate myelin asymmetries once a
neurological insult, such as a stroke, occurs. Alternately, it is possible
that promoting high levels of PA after a stroke may reduce myelin
asymmetries.
Collapse
Affiliation(s)
- Brian Greeley
- Department of Physical Therapy, 8166University of British Columbia, Vancouver, BC, Canada
| | - Cristina Rubino
- Graduate Program in Rehabilitation Sciences, 8166University of British Columbia, Vancouver, BC, Canada
| | - Ronan Denyer
- Graduate Program in Neuroscience, 8166University of British Columbia, Vancouver, BC, Canada
| | - Briana Chau
- Graduate Program in Rehabilitation Sciences, 8166University of British Columbia, Vancouver, BC, Canada
| | - Beverley Larssen
- Graduate Program in Rehabilitation Sciences, 8166University of British Columbia, Vancouver, BC, Canada
| | - Bimal Lakhani
- Department of Physical Therapy, 8166University of British Columbia, Vancouver, BC, Canada
| | - Lara Boyd
- Department of Physical Therapy, 8166University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Rehabilitation Sciences, 8166University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, 8166University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Li C, Sun R, Chen J, Hong J, Sun J, Zeng Y, Zhang X, Dou Z, Wen H. Different training patterns at recovery stage improve cognitive function in ischemic stroke rats through regulation of the axonal growth inhibitor pathway. Behav Brain Res 2021; 421:113730. [PMID: 34971645 DOI: 10.1016/j.bbr.2021.113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Running wheel exercise training (RWE) and skilled reaching training (SRT) are physical training approaches with positive effects on cognitive function. However, few studies have compared the different effects of these exercises on long-term memory, and their mechanism remains unknown. This study investigated the effects of SRT and RWE, at the recovery stage, on the cognitive function of transient middle cerebral artery occlusion (tMCAO) rats and explored their association with NgR1/Rho-A/ROCK/LOTUS/LGI1 signaling. Adult Sprague-Dawley rats (n = 55) were divided into four groups after pretraining: SRT, RWE, tMCAO, and Sham. Rats were subjected to modified neurological severity score (mNSS) measurements and forelimb grip strength and the Morris water maze tests. Using immunofluorescence and western blotting, we evaluated axonal growth inhibitor expression in the peri-infarct cortex on days 28 and 56 after tMCAO. Results showed the mNSS reduced, whereas the grip strengths improved in RWE and SRT groups. The escape latency in the Morris water maze test was shorter, whereas the number of times of crossing the platform was higher in both the SRT and RWE groups than in the tMCAO group on day 56; furthermore, the parameters in the SRT group improved compared to those in the RWE group. Physical exercise training could improve cognitive functions by reducing the expression of the NgR1/RhoA/ROCK axon growth inhibitors and increasing the expression of the endogenous antagonists LOTUS/LGI1. Exercise training beginning at the recovery stage could improve the cognitive function in tMCAO rats through a mechanism probably associated with the axonal growth inhibitor pathway.
Collapse
Affiliation(s)
- Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, 89 Taoyuan Road, Nanshan District, Shenzhen 518000, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xue Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
7
|
Zhou S, Guo Z, Wong K, Zhu H, Huang Y, Hu X, Zheng YP. Pathway-specific cortico-muscular coherence in proximal-to-distal compensation during fine motor control of finger extension after stroke. J Neural Eng 2021; 18. [PMID: 34428752 DOI: 10.1088/1741-2552/ac20bc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proximal-to-distal compensation is commonly observed in the upper extremity (UE) after a stroke, mainly due to the impaired fine motor control in hand joints. However, little is known about its related neural reorganization. This study investigated the pathway-specific corticomuscular interaction in proximal-to-distal UE compensation during fine motor control of finger extension post-stroke by directed corticomuscular coherence (dCMC).Approach.We recruited 14 chronic stroke participants and 11 unimpaired controls. Electroencephalogram (EEG) from the sensorimotor area was concurrently recorded with electromyography (EMG) from extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI) and biceps brachii (BIC) muscles in both sides of the stroke participants and in the dominant (right) side of the controls during the unilateral isometric finger extension at 20% maximal voluntary contractions. The dCMC was analyzed in descending (EEG → EMG) and ascending pathways (EMG → EEG) via the directed coherence. It was also analyzed in stable (segments with higher EMG stability) and less-stable periods (segments with lower EMG stability) subdivided from the whole movement period to investigate the fine motor control. Finally, the corticomuscular conduction time was estimated by dCMC phase delay.Main results.The affected limb had significantly lower descending dCMC in distal UE (ED and FD) than BIC (P< 0.05). It showed the descending dominance (significantly higher descending dCMC than the ascending,P< 0.05) in proximal UE (BIC and TRI) rather than the distal UE as in the controls. In the less-stable period, the affected limb had significantly lower EMG stability but higher ascending dCMC (P< 0.05) in distal UE than the controls. Furthermore, significantly prolonged descending conduction time (∼38.8 ms) was found in ED in the affected limb than the unaffected (∼26.94 ms) and control limbs (∼25.74 ms) (P< 0.05).Significance.The proximal-to-distal UE compensation in fine motor control post-stroke exhibited altered descending dominance from the distal to proximal UE, increased ascending feedbacks from the distal UE for fine motor control, and prolonged descending conduction time in the agonist muscle.
Collapse
Affiliation(s)
- Sa Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Ziqi Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Kiufung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Hanlin Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| |
Collapse
|
8
|
de Boer A, Storm A, Gomez-Soler M, Smolders S, Rué L, Poppe L, B Pasquale E, Robberecht W, Lemmens R. Environmental enrichment during the chronic phase after experimental stroke promotes functional recovery without synergistic effects of EphA4 targeted therapy. Hum Mol Genet 2021; 29:605-617. [PMID: 31814004 PMCID: PMC7068116 DOI: 10.1093/hmg/ddz288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
Worldwide, stroke is the main cause of long-term adult disability. After the initial insult, most patients undergo a subacute period with intense plasticity and rapid functional improvements. This period is followed by a chronic phase where recovery reaches a plateau that is only partially modifiable by rehabilitation. After experimental stroke, various subacute rehabilitation paradigms improve recovery. However, in order to reach the best possible outcome, a combination of plasticity-promoting strategies and rehabilitation might be necessary. EphA4 is a negative axonal guidance regulator during development. After experimental stroke, reduced EphA4 levels improve functional outcome with similar beneficial effects upon the inhibition of EphA4 downstream targets. In this study, we assessed the effectiveness of a basic enriched environment in the chronic phase after photothrombotic stroke in mice as well as the therapeutic potential of EphA4 targeted therapy followed by rehabilitation. Our findings show that environmental enrichment in the chronic phase improves functional outcome up to 2 months post-stroke. Although EphA4 levels increase after experimental stroke, subacute EphA4 inhibition followed by environmental enrichment does not further increase recovery. In conclusion, we show that environmental enrichment during the chronic phase of stroke improves functional outcome in mice with no synergistic effects of the used EphA4 targeted therapy.
Collapse
Affiliation(s)
- Antina de Boer
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Annet Storm
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Silke Smolders
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Laura Rué
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Lindsay Poppe
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven 3000, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
9
|
Tsai SY, Schreiber JA, Adamczyk NS, Wu JY, Ton ST, Hofler RC, Walter JS, O'Brien TE, Kartje GL, Nockels RP. Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke. Front Neurol 2021; 12:610434. [PMID: 33959086 PMCID: PMC8093517 DOI: 10.3389/fneur.2021.610434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients.
Collapse
Affiliation(s)
- Shih-Yen Tsai
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Jennifer A Schreiber
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | | | - Joanna Y Wu
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Son T Ton
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Ryan C Hofler
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | - James S Walter
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Timothy E O'Brien
- Department of Mathematics and Statistics and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States
| | - Gwendolyn L Kartje
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Science Division, Chicago, IL, United States
| | - Russ P Nockels
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
10
|
Liang AS, Pagano JE, Chrzan CA, McKinnon RD. Suicide transport blockade of motor neuron survival generates a focal graded injury and functional deficit. Neural Regen Res 2021; 16:1281-1287. [PMID: 33318406 PMCID: PMC8284299 DOI: 10.4103/1673-5374.301032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We describe a pre-clinical spinal cord motor neuron injury model that is minimal invasive, reproducible, focal and easily applied to small rodents. Retrograde axonal transport of a pro-apoptotic phosphatidylinosotol 3’-kinase inhibitor, wortmannin, via the sciatic nerve results in loss of ipsilateral lumbar motor neurons proportional to the level of drug administered. Motor neuron loss was detected by choline acetyltransferase (ChAT) immunostaining and with a transgenic thy1-eGFP marker. The short half-life of wortmannin generates minimal wound spread, and wortmannin does not affect axon transport, as determined by co-injection of a pseudorabies virus tracer. Using quantitative transcript analysis, we found that ChAT transcripts significantly decreased at 14 days post-delivery of 1 μg wortmannin, relative to sham controls, and remained low after 90 days. Smaller effects were observed with 200 ng and 100 ng wortmannin. Wortmannin also generated a transient and significant increase in astrocyte Gfap transcripts after 14 days with a return to control levels at 90 days. Treated mice had hind limb spasticity and a forced motor function defect that was quantified using a water exit test. Controls rapidly exit a shallow water tray, and wortmannin treated animals were up to 12-fold slower, a phenotype that persisted for at least 3 months. Thus the focal delivery of wortmannin to motor neurons generates a reproducible and scalable injury that can facilitate quantitative studies on neural regeneration and repair. The efficacy of sciatic nerve suicide transport can also explain neurotoxin-mediated selective loss of motor neurons in diseases such as amyotrophic lateral sclerosis. All procedures were performed at Rutgers under established Institutional Animal Care and Use protocols (eIACUC_TR201800022, approved on March 20, 2018).
Collapse
Affiliation(s)
- Allison S Liang
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Joanna E Pagano
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Christopher A Chrzan
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Randall D McKinnon
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, Piscataway; Member, The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Dutcher AM, Truong KV, Miller DD, Allred RP, Nudi E, Jones TA. Training in a cooperative bimanual skilled reaching task, the popcorn retrieval task, improves unimanual function after motor cortical infarcts in rats. Behav Brain Res 2020; 396:112900. [PMID: 32941880 DOI: 10.1016/j.bbr.2020.112900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Disuse of the paretic hand after stroke is encouraged by compensatory reliance on the nonparetic hand, to exacerbate impairment and potentially constrain motor rehabilitation efficacy. Rodent stroke model findings support that learning new unimanual skills with the nonparetic forelimb diminishes functional improvements that can be driven by rehabilitative training of the paretic forelimb. The influence of learning new ways of skillfully using the two hands together on paretic side function is much less clear. To begin to explore this, we developed a new cooperative bimanual skilled reaching task for rats, the Popcorn Retrieval Task. After motor cortical infarcts impaired an established unimanual reaching skill in the paretic forelimb, rats underwent a 7 week period of de novo bimanual training (BiT) or no-training control procedures (Cont). Probes of paretic forelimb unimanual performance revealed significant improvements during and after the training period in BiT vs. Cont. We additionally observed a striking change in the bimanual task strategy over training days: a switch from the paretic to the nonparetic forelimb for initiating reach-to-grasp sequences. This motivated another study to test whether rats that established the bimanual skill prior to the infarcts would similarly switch handedness, which they did not, though paretic paw use for manipulative movements diminished. These results indicate that unimanual function of the paretic side can be improved by novel bimanual skill practice, even when it involves compensatory reliance on the nonparetic hand. They further support the suitability of the Popcorn Retrieval Task for studying bimanual skill learning effects in rats.
Collapse
Affiliation(s)
| | | | | | | | - Evan Nudi
- Psychology Department, United States
| | - Theresa A Jones
- Institute for Neuroscience, United States; Psychology Department, United States.
| |
Collapse
|
12
|
Abstract
Novel therapeutic intervention that aims to enhance the endogenous recovery potential of the brain during the subacute phase of stroke has produced promising results. The paradigm shift in treatment approaches presents new challenges to preclinical and clinical researchers alike, especially in the functional endpoints domain. Shortcomings of the "neuroprotection" era of stroke research are yet to be fully addressed. Proportional recovery observed in clinics, and potentially in animal models, requires a thorough reevaluation of the methods used to assess recovery. To this end, this review aims to give a detailed evaluation of functional outcome measures used in clinics and preclinical studies. Impairments observed in clinics and animal models will be discussed from a functional testing perspective. Approaches needed to bridge the gap between clinical and preclinical research, along with potential means to measure the moving target recovery, will be discussed. Concepts such as true recovery of function and compensation and methods that are suitable for distinguishing the two are examined. Often-neglected outcomes of stroke, such as emotional disturbances, are discussed to draw attention to the need for further research in this area.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY, USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Neurological Research Institute, White Plains, NY, USA
| |
Collapse
|
13
|
Jia W, Kamen Y, Pivonkova H, Káradóttir RT. Neuronal activity-dependent myelin repair after stroke. Neurosci Lett 2019; 703:139-144. [PMID: 30904575 DOI: 10.1016/j.neulet.2019.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023]
Abstract
Brain tissue undergoes substantial activity-dependent reorganisation after stroke due to neuronal plasticity, leading to partial functional recovery in patients. Concurrent myelin repair is crucial for proper neuronal network function and reorganisation. Myelin repair after stroke might occur as myelin plasticity or as remyelination through the recruitment and differentiation of oligodendrocyte precursor cells (OPCs), which become myelin-forming oligodendrocytes (OLs). These two processes might share a similar guiding mechanism, which is postulated to depend on neuronal activity and glutamate signaling to OPCs. However, with ageing, the ability of OPCs to differentiate into myelinating OLs decreases due to changes in their ion channel and neurotransmitter receptor expression profile, rendering them less sensitive to neuronal activity. Because of their unique ability to replace damaged OLs, OPCs represent a potential therapeutic target for myelin repair in the context of stroke.
Collapse
Affiliation(s)
- Wanyi Jia
- Wellcome - Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yasmine Kamen
- Wellcome - Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Helena Pivonkova
- Wellcome - Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ragnhildur T Káradóttir
- Wellcome - Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
14
|
Nesin SM, Sabitha KR, Gupta A, Laxmi TR. Constraint Induced Movement Therapy as a Rehabilitative Strategy for Ischemic Stroke-Linking Neural Plasticity with Restoration of Skilled Movements. J Stroke Cerebrovasc Dis 2019; 28:1640-1653. [PMID: 30904472 DOI: 10.1016/j.jstrokecerebrovasdis.2019.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Stroke leads to devastating impact on health as well as quality of life making it one of the leading causes of disability. Restoring the functions of upper extremities after ischemic (ISC) stroke is one of the challenges for rehabilitation. Lack of trained professionals and accessibility to rehabilitation centers are limited in many counties. Constraint induced movement therapy (CIMT) has been practiced in regaining the functional activity following stroke. CIMT can be practiced with minimum clinical set up which makes it cost effective. However, the neural plasticity mechanism underlying the recovery with CIMT is not well understood. METHODS In the current study, we sought to investigate the extent to which CIMT helps in ameliorating neurological deficits in rat model of ISC stroke, induced by Endothelin-1 (ET-1). As well as to understand the cortical plasticity with Golgi-Cox staining and interhemispheric interaction with biotinylated dextran amine (BDA) following CIMT. Neurological deficits were identified within 24 hours of ET-1 infusion. RESULTS CIMT restored the impaired skilled movements after ISC stroke and improved the quality of fine movements. Golgi-Cox staining showed significant decrease in dendritic arborization in the injured motor cortex following ISC stroke. CIMT was efficient in reversing this effect as indicated by increased dendritic arborization especially in layer III pyramidal neurons. Also, the stroke induced asymmetry in dendritic length across both hemispheres was found to be reduced with CIMT. BDA tracing showed a re-establishment of the axonal connections between the hemispheres after CIMT. CONCLUSIONS Implications of CIMT can be one of the promising and low cost rehabilitative technique for the individuals with upper limb movement deficits.
Collapse
Affiliation(s)
| | - K R Sabitha
- Department of Neurophysiology, NIMHANS, Bengaluru, India
| | - Anupam Gupta
- Department of Neurological Rehabilitation, NIMHANS, Bengaluru, India
| | - T R Laxmi
- Department of Neurophysiology, NIMHANS, Bengaluru, India.
| |
Collapse
|
15
|
Okabe N, Himi N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Hasegawa T, Miyamoto O. Very Early Initiation Reduces Benefits of Poststroke Rehabilitation Despite Increased Corticospinal Projections. Neurorehabil Neural Repair 2019; 33:538-552. [PMID: 31140375 DOI: 10.1177/1545968319850132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Although the effect of rehabilitation is influenced by aspects of the training protocol, such as initiation time and intensity of training, it is unclear whether training protocol modifications affect the corticospinal projections. Objective. The present study was designed to investigate how modification of initiation time (time-dependency) and affected forelimb use (use-dependency) influence the effects of rehabilitation on functional recovery and corticospinal projections. Methods. The time-dependency of rehabilitation was investigated in rats forced to use their impaired forelimb immediately, at 1 day, and 4 days after photothrombotic stroke. The use-dependency of rehabilitation was investigated by comparing rats with affected forelimb immobilization (forced nonuse), unaffected forelimb immobilization (forced use), and a combination of forced use and skilled forelimb training beginning at 4 days after stroke. Results. Although forced use beginning 1 day or 4 days after stroke caused significant functional improvement, immediate forced limb use caused no functional improvement. On the other hand, a combination of forced use and skilled forelimb training boosted functional recovery in multiple tasks compared to simple forced use treatment. Histological examination showed that no treatment caused brain damage. However, a retrograde tracer study revealed that immediate forced use and combination training, including forced use and skilled forelimb training, increased corticospinal projections from the contralesional and ipsilesional motor cortex, respectively. Conclusions. These results indicate that although both very early initiation time and enhanced skilled forelimb use increased corticospinal projections, premature initiation time hampers the functional improvement induced by poststroke rehabilitation.
Collapse
Affiliation(s)
- Naohiko Okabe
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan.,2 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naoyuki Himi
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | | | - Norito Hayashi
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Issei Sakamoto
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Toru Hasegawa
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Osamu Miyamoto
- 1 Kawasaki Medical School, Kurashiki City, Okayama, Japan
| |
Collapse
|
16
|
Molecular Pharmacology and Pathology of Strokes. Int J Mol Sci 2018; 19:ijms19124103. [PMID: 30567346 PMCID: PMC6321196 DOI: 10.3390/ijms19124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
Abstract
Stroke, an important neurological disease, is becoming an increasingly non-communicable ailment and is the second leading cause of death after coronary heart disease in developed countries [...].
Collapse
|
17
|
Loy K, Schmalz A, Hoche T, Jacobi A, Kreutzfeldt M, Merkler D, Bareyre FM. Enhanced Voluntary Exercise Improves Functional Recovery following Spinal Cord Injury by Impacting the Local Neuroglial Injury Response and Supporting the Rewiring of Supraspinal Circuits. J Neurotrauma 2018; 35:2904-2915. [PMID: 29943672 DOI: 10.1089/neu.2017.5544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent reports suggest that rehabilitation measures that increase physical activity of patients can improve functional outcome after incomplete spinal cord injuries (iSCI). To investigate the structural basis of exercise-induced recovery, we examined local and remote consequences of voluntary wheel training in spinal cord injured female mice. In particular, we explored how enhanced voluntary exercise influences the neuronal and glial response at the lesion site as well as the rewiring of supraspinal tracts after iSCI. We chose voluntary exercise initiated by providing mice with free access to running wheels over "forced overuse" paradigms because the latter, at least in some cases, can lead to worsening of functional outcomes after SCI. Our results show that mice extensively use their running wheels not only before but also after injury reaching their pre-lesion exercise levels within five days after injury. Enhanced voluntary exercise improved their overall and skilled motor function after injury. In addition, exercising mice started to recover earlier and reached better sustained performance levels. These improvements in motor performance are accompanied by early changes of axonal and glial response at the lesion site and persistent enhancements of the rewiring of supraspinal connections that resulted in a strengthening of both indirect and direct inputs to lumbar motoneurons.
Collapse
Affiliation(s)
- Kristina Loy
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,3 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, Germany
| | - Anja Schmalz
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Tobias Hoche
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Anne Jacobi
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Mario Kreutzfeldt
- 4 Departement of Pathology et Immunology, CMU, University of Geneva, Rue Michel-Servet, Geneva, Switzerland
| | - Doron Merkler
- 4 Departement of Pathology et Immunology, CMU, University of Geneva, Rue Michel-Servet, Geneva, Switzerland
| | - Florence M Bareyre
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,5 Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
18
|
Choi IA, Lee CS, Kim HY, Choi DH, Lee J. Effect of Inhibition of DNA Methylation Combined with Task-Specific Training on Chronic Stroke Recovery. Int J Mol Sci 2018; 19:ijms19072019. [PMID: 29997355 PMCID: PMC6073594 DOI: 10.3390/ijms19072019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
To develop new rehabilitation therapies for chronic stroke, this study examined the effectiveness of task-specific training (TST) and TST combined with DNA methyltransferase inhibitor in chronic stroke recovery. Eight weeks after photothrombotic stroke, 5-Aza-2'-deoxycytidine (5-Aza-dC) infusion was done on the contralesional cortex for four weeks, with and without TST. Functional recovery was assessed using the staircase test, the cylinder test, and the modified neurological severity score (mNSS). Axonal plasticity and expression of brain-derived neurotrophic factor (BDNF) were determined in the contralateral motor cortex. TST and TST combined with 5-Aza-dC significantly improved the skilled reaching ability in the staircase test and ameliorated mNSS scores and cylinder test performance. TST and TST with 5-Aza-dC significantly increased the crossing fibers from the contralesional red nucleus, reticular formation in medullar oblongata, and dorsolateral spinal cord. Mature BDNF was significantly upregulated by TST and TST combined with 5-Azd-dC. Functional recovery after chronic stroke may involve axonal plasticity and increased mature BDNF by modulating DNA methylation in the contralesional cortex. Our results suggest that combined therapy to enhance axonal plasticity based on TST and 5-Aza-dC constitutes a promising approach for promoting the recovery of function in the chronic stage of stroke.
Collapse
Affiliation(s)
- In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Cheol Soon Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Medical Science Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
19
|
Okabe N, Himi N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Narita K, Hasegawa T, Miyamoto O. Constraint-induced movement therapy improves efficacy of task-specific training after severe cortical stroke depending on the ipsilesional corticospinal projections. Exp Neurol 2018; 305:108-120. [PMID: 29653186 DOI: 10.1016/j.expneurol.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 11/19/2022]
Abstract
Descending spinal pathways (corticospinal, rubrospinal, and reticulospinal) are believed to contribute to functional recovery resulting from rehabilitative training after stroke. However, the contribution of each pathway remains unclear. In the current study, we investigated rehabilitation-induced functional recovery and remodelling of the descending spinal pathways after severe cortical stroke in rats followed by 3 weeks of various rehabilitation [constraint-induced movement therapy (CIMT), skilled forelimb reaching, rotarod, and treadmill exercise]. Following photothrombotic stroke, 96% of corticospinal neurons in the ipsilesional motor cortex were destroyed. Despite the preservation of 82% of total spinal projection neurons (e.g. rubrospinal and reticulospinal projection neurons), rats showed persistent and severe disability, especially in skilled motor function. In this severe stroke model, only CIMT promoted functional recovery, associated with increased corticospinal projections from the peri-infarct motor cortex. Rehabilitation-induced recovery was reversed when the restored corticospinal neurons were destroyed by a second stroke. These data indicate that training-induced functional recovery is dependent on ipsilesional corticospinal projections, which highlights the importance of using strategies to enhance survival, axonal remodelling, or regeneration of corticospinal neurons to effectively restore function in severely affected stroke patients.
Collapse
Affiliation(s)
- Naohiko Okabe
- Second Department of Physiology, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan.
| | - Naoyuki Himi
- Second Department of Physiology, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Emi Nakamura-Maruyama
- Second Department of Physiology, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Norito Hayashi
- Second Department of Physiology, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan; Department of Orthopedic Surgery, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Issei Sakamoto
- Second Department of Physiology, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan; Department of Orthopedic Surgery, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Kazuhiko Narita
- Second Department of Physiology, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Toru Hasegawa
- Department of Orthopedic Surgery, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Osamu Miyamoto
- Second Department of Physiology, Kawasaki Medical School, 577, Matsushima, Kurashiki City, Okayama 701-0192, Japan
| |
Collapse
|
20
|
Okabe N, Miyamoto O. Role and limitations of rehabilitation-induced neural network remodeling after stroke. Neural Regen Res 2018; 13:2087-2088. [PMID: 30323129 PMCID: PMC6199934 DOI: 10.4103/1673-5374.241450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Naohiko Okabe
- Second Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Osamu Miyamoto
- Second Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|